共查询到20条相似文献,搜索用时 15 毫秒
1.
CuiLin Xu LiBo Dong Li Xin Yu Lan YongKun Chen LiMei Yang YueLong Shu 《中国科学:生命科学英文版》2009,52(5):407-411
Highly pathogenic influenza A (H5N1) virus causes a widespread poultry deaths worldwide. The first human H5N1 infected case
was reported in Hong Kong Special Administrative Region of China in 1997. Since then, the virus re-emerged in 2003 and continues
to infect people worldwide. Currently, over 400 human infections have been reported in more than 15 countries and mortality
rate is greater than 60%. H5N1 viruses still pose a potential pandemic threat in the future because of the continuing global
spread and evolution. Here, we summarize the epidemiological, clinical and virological characteristics of human H5N1 infection
in China monitored and identified by our national surveillance systems.
Chinese Nature Science Foundation Key Project (Grant No. 30599433), Chinese Basic Science Research Program (973)Key Project
(Grant No. 2005CB523006) 相似文献
2.
The role of wild birds in the spread of influenza H5N1 virus remains speculative and the ecology of influenza A viruses in nature is largely unstudied. There is an urgent need for multidisciplinary studies to explore the ecology of avian influenza viruses in wild birds and the environment to support ecological interpretation of the source of disease outbreaks in poultry. 相似文献
3.
4.
Muramoto Y Ozaki H Takada A Park CH Sunden Y Umemura T Kawaoka Y Matsuda H Kida H 《Microbiology and immunology》2006,50(1):73-81
Severe hemorrhage at multiple organs is frequently observed in chickens infected with highly pathogenic avian influenza (HPAI) A viruses. In this study we examined whether HPAI virus infection leads to coagulation disorder in chickens. Pathological examinations showed that the fibrin thrombi were formed in arterioles at the lung, associated with the viral antigens in endothelial cells of chickens infected intravenously with HPAI virus. Hematological analyses of peripheral blood collected from the chickens revealed that coagulopathy was initiated at early stage of infection when viral antigens were detected only in the endothelial cells and monocytes/macrophages. Furthermore, gene expression of the tissue factor, the main initiator of blood coagulation, was upregulated in the spleen, lung, and brain of HPAI virus-infected chickens. These results suggest that dysfunction of endothelial cells and monocytes/macrophages upon HPAI virus infection may induce hemostasis abnormalities represented by the excessive blood coagulation and consumptive coagulopathy in chickens. 相似文献
5.
6.
《Microbes and infection / Institut Pasteur》2015,17(1):54-61
In early 2013, a Bengal tiger (Panthera tigris) in a zoo died of respiratory distress. All specimens from the tiger were positive for HPAI H5N1, which were detected by real-time PCR, including nose swab, throat swab, tracheal swab, heart, liver, spleen, lung, kidney, aquae pericardii and cerebrospinal fluid. One stain of virus, A/Tiger/JS/1/2013, was isolated from the lung sample. Pathogenicity experiments showed that the isolate was able to replicate and cause death in mice. Phylogenetic analysis indicated that HA and NA of A/Tiger/JS/1/2013 clustered with A/duck/Vietnam/OIE-2202/2012 (H5N1), which belongs to clade 2.3.2.1. Interestingly, the gene segment PB2 shared 98% homology with A/wild duck/Korea/CSM-28/20/2010 (H4N6), which suggested that A/Tiger/JS/1/2013 is a novel reassortant H5N1 subtype virus. Immunohistochemical analysis also confirmed that the tiger was infected by this new reassortant HPAI H5N1 virus. Overall, our results showed that this Bengal tiger was infected by a novel reassortant H5N1, suggesting that the H5N1 virus can successfully cross species barriers from avian to mammal through reassortment. 相似文献
7.
SHI WeiFeng Mark J. GIBBS ZHANG YanZhou ZHUANG DongMing DUN AiShe YU GuangFu YANG NaNa Robert W. MURPHY & ZHU ChaoDong 《中国科学:生命科学英文版》2008,51(11):987-993
We investigated the selection pressures on the haemagglutinin genes of H5N1 avian influenza viruses using fixed effects likelihood models. We found evidence of positive selection in the sequences from isolates from 1997 to 2007, except viruses from 2000. The haemagglutinin sequences of viruses from southeast Asia, Hong Kong and mainland China were the most polymorphic and had similar nonsyn-onymous profiles. Some sites were positively selected in viruses from most regions and a few of these sites displayed different amino acid patterns. Selection appeared to produce different outcomes in vi-ruses from Europe, Africa and Russia and from different host types. One position was found to be positively selected for human isolates only. Although the functions of some positively selected posi-tions are unknown, our analysis provided evidence of different temporal, spatial and host adaptations for H5N1 avian influenza viruses. 相似文献
8.
目的对构建的H5N1重组禽流感病毒样颗粒(VLPs)进行初步免疫原性探讨,并与H5N1全病毒灭活疫苗(WIV)进行体液免疫和细胞免疫的比较。方法在0周和3周分别以纯化H5N1重组禽流感病毒样颗粒、H5N1全病毒灭活疫苗及pH7.2 PBS腿部肌肉注射BALB/c小鼠,于不同时间收集血清,以血凝抑制试验(HI)和血清IgG抗体酶联免疫吸附试验(ELISA)评估体液免疫,CD4+、CD8+T细胞亚群及酶联免疫斑点试验(ELISPOT)评估细胞免疫,并以同型毒株滴鼻攻击,观察小鼠存活率。结果病毒样颗粒各组和全病毒灭活疫苗免疫后小鼠血清ELISA IgG效价均有升高;中和抗体效价除病毒样颗粒120 ng/只免疫剂量外其他免疫小鼠HI效价均达1︰40;小鼠脾CD4+T淋巴细胞亚群分类:全病毒灭活疫苗组(600μg/只)为36.56%;病毒样颗粒组(120 ng/只,600 ng/只,2 500 ng/只)分别为26.58%,32.20%,29.25%;PBS组为26.65%;CD8+T淋巴细胞亚群分类:全病毒灭活疫苗组(600 ng/只)为10.78%;病毒样颗粒组(120 ng/只,600 ng/只,2 500 ng/只)分别为1 3.53%,14.24%,1 3.35%;PBS组为10.69%。ELISPOT试验统计学数据显示,病毒样颗粒和全病毒灭活疫苗的小鼠脾单个核细胞分泌IFN-γ细胞与PBS组有显著性差异;小鼠保护性试验结果显示,除病毒样颗粒120 ng/只免疫剂量小鼠的存活率为87.5%外,其他病毒样颗粒实验组小鼠均为100%,PBS对照组为12.5%。结论 H5N1重组禽流感病毒样颗粒能诱导体液免疫和细胞免疫,并能抵御同型病毒株的攻击,可作为H5N1人用禽流感的候选疫苗。 相似文献
9.
重组毕赤酵母高密度发酵表达H5N1禽流感病毒糖蛋白 总被引:3,自引:0,他引:3
在10L发酵罐中,对高致病性禽流感病毒H5N1糖蛋白HA1在重组毕赤酵母中的表达发酵工艺进行了研究。通过分批补料培养方法探讨不同培养温度、诱导温度、补料方式、微量元素等因素对菌体的生长以及重组蛋白表达和活性的影响。结果表明,菌种培养和诱导温度均为25oC时,菌体的生长、分泌表达量和与广谱中和抗体的反应活性较好;微量元素是影响重组HA1蛋白生物活性的重要因素;通过优化高密度发酵工艺,H5N1病毒糖蛋白HA1在发酵罐中的表达量比摇瓶培养提高10.5倍,达到约120mg/L,为大规模制备高致病性禽流感病毒的HA1蛋白奠定了基础。 相似文献
10.
Comparison of nucleic acid-based detection of avian influenza H5N1 with virus isolation 总被引:10,自引:0,他引:10
Shan S Ko LS Collins RA Wu Z Chen J Chan KY Xing J Lau LT Yu AC 《Biochemical and biophysical research communications》2003,302(2):377-383
Nucleic acid sequence-based amplification with electrochemiluminescent detection (NASBA/ECL) of avian influenza virus was compared with viral culture in embryonated chicken eggs. Virus was isolated from blood or anal swabs of chickens artificially infected with highly pathogenic avian influenza A/Chicken/Hong Kong/1000/97 (H5N1). Viral nucleic acid was detected in blood samples by NASBA/ECL immediately prior to death, whilst nucleic acid extracted from anal swabs was detected from the day following artificial infection until death. Thus, blood and/or anal swabs are a suitable source of material for the detection of avian influenza in dead birds, but anal swabs are more suitable for detection of viral genetic material in live birds. Dilution of a known viral standard was used to determine the limit of sensitivity for both NASBA/ECL and egg culture detection methods. The NASBA/ECL method was equivalent in sensitivity to egg culture. The NASBA/ECL results agreed with egg culture data in 71/94 (75.5%) tissue samples obtained from artificially infected birds. 相似文献
11.
由H5N1流感病毒引起的高致病性禽流感,在禽类之间广泛传播。当人类接触这些禽类时,可能会被感染并产生严重的呼吸道症状,且死亡率高达60%。血凝素(hemagglutinin,HA)是H5N1病毒中和抗体的主要抗原,为了便于对病毒的HA突变进行研究,根据HA遗传基因的差异远近,所有的H5病毒株都被划分在20个分支内。对于H5N1病毒进化的研究在禽流感疫苗的研制、禽流感大流行的预防等方面均具有重要意义。现对禽流感、H5N1病毒特征、血凝素的结构功能、H5N1病毒的分支以及病毒进化的研究进行概述。 相似文献
12.
目的探讨人、禽流感病毒在哺乳动物体内的遗传兼容性,为下一步研究H6亚型禽流感病毒重配和致病性变异的分子机制奠定基础。方法野鸭源A/H6N1亚型禽流感病毒A/Mallard/SanJiang/275/2007以101EID50~106EID50的攻毒剂量经鼻内途径感染小鼠,通过临床症状观察、病毒滴定和病理切片观察进行病毒学和组织学两方面检测对小鼠的致病性;同时,将此病毒与2009年A/H1N1流感病毒A/Changchun/01/2009(H1N1)混合感染豚鼠,分析两株病毒在哺乳动物体内的遗传兼容性。每天采集豚鼠鼻洗液并用噬斑纯化技术获得重配病毒,对获得的重配病毒进行全基因组序列的测定。结果 H6N1亚型禽流感病毒能直接感染小鼠,但对小鼠不致死。106EID50的攻毒剂量可有效感染小鼠,攻毒后第5天,小鼠表现出被毛较粗乱、活动减少、体重下降、呼吸急促的临床症状,但至攻毒后第10天开始康复,而对照组(MOCK)小鼠在14 d的观察期内无明显临床症状。病毒滴定结果表明,该病毒主要在小鼠肺脏和鼻甲骨中复制,病毒滴度可达104.5EID50/mL。病理学观察发现感染小鼠肺泡壁增厚,有大量炎性细胞浸润,纤维蛋白渗出并伴有轻微出血;在A/H6N1和A/H1N1混合感染豚鼠的重配实验中,经过三轮噬斑纯化从豚鼠鼻洗液中分离到6株重配病毒,说明A/H6N1亚型禽流感病毒与A/H1N1亚型流感病毒具有很好的遗传兼容性,能在豚鼠体内能发生重配。结论野鸭源A/H6N1亚型流感病毒无需适应就能够感染哺乳动物;该病毒与A/H1N1流感病毒具有很好的遗传兼容性,在哺乳动物体内能够发生基因重配,产生新的重配病毒,其公共卫生意义应引起高度关注。 相似文献
13.
14.
Poetranto ED Yamaoka M Nastri AM Krisna LA Rahman MH Wulandari L Yudhawati R Ginting TE Makino A Shinya K Kawaoka Y 《Microbiology and immunology》2011,55(9):666-672
The isolation of an H5N1 influenza A virus from a tree sparrow (Passer montanus) captured in East Java, Indonesia in 2010 is reported here. Its hemagglutinin and neuraminidase were genetically similar to those of human isolates from 2006-2007 in Indonesia. The finding of a tree sparrow H5N1 virus that possesses genetically similar surface molecules to those of human viruses highlights the importance of monitoring resident wild birds, as well as migratory birds, for pandemic preparedness. 相似文献
15.
Liping Chen Zonghai Sheng Anding Zhang Xuebo Guo Jiakui Li Heyou Han Meilin Jin 《Luminescence》2010,25(6):419-423
The continuous spread of highly pathogenic avian influenza virus (AIV) subtype H5N1 is threatening the poultry industry and human health worldwide. Rapid and sensitive diagnostic methods are required for the H5N1 surveillance. In this study, the fluorescent (FL) probe of CdTe quantum dots (QDs) was designed using covalently linked rabbit anti‐AIV H5N1 antibody. Based on these QD–antibody conjugates, a novel sandwich FL‐linked immunosorbent assay (sFLISA) was developed for H5N1 viral antigen detection. The sFLISA allowed for H5N1 viral antigen determination in a linear range of 8.0 × 10?3 to 5.1 × 10?1 μg mL?1 with the limit of detection (LOD) of 1.5 × 10?4 μg mL?1. In comparison with virus isolation for 103 clinic samples, the sensitivity and specificity of sFLISA were found to be 93.6 and 91.1% respectively. The sFLISA supplied a novel approach to rapid and sensitive detection of AIV subtype H5N1 and showed great potential for biological applications in immunoassays. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
16.
GAO George Fu 《中国科学:生命科学英文版》2009,52(5):428-438
Long-term endemicity of avian H5N1 influenza virus in poultry and continuous sporadic human infections in several countries
has raised the concern of another potential pandemic influenza. Suspicion of the avian origin of the previous pandemics results
in the close investigation of the mechanism of interspecies transmission. Entry and fusion is the first step for the H5N1
influenza virus to get into the host cells affecting the host ranges. Therefore receptor usage study has been a major focus
for the last few years. We now know the difference of the sialic acid structures and distributions in different species, even
in the different parts of the same host. Many host factors interacting with the influenza virus component proteins have been
identified and their role in the host range expansion and interspecies transmission is under detailed scrutiny. Here we review
current progress in the receptor usage and host factors.
Supported by the National Basic Research Program of China (Grant Nos. 2005CB523001, 2005CB523002), National Key Technologies
Research & Development Program (Grant 2006BAD06A01/2006BAD06A04); US National Institutes of Health (NIH) (Grant 3 U19 AI051915-05S1),
the National Natural Science Foundation of China (Grant 30599434). GAO FG is a distinguished young investigator of the NSFC
(Grant No. 30525010). 相似文献
17.
Epidemiological consequences of an incursion of highly pathogenic H5N1 avian influenza into the British poultry flock 总被引:1,自引:0,他引:1
Sharkey KJ Bowers RG Morgan KL Robinson SE Christley RM 《Proceedings. Biological sciences / The Royal Society》2008,275(1630):19-28
Highly pathogenic avian influenza and in particular the H5N1 strain has resulted in the culling of millions of birds and continues to pose a threat to poultry industries worldwide. The recent outbreak of H5N1 in the UK highlights the need for detailed assessment of the consequences of an incursion and of the efficacy of control strategies. Here, we present results from a model of H5N1 propagation within the British poultry industry. We find that although the majority of randomly seeded incursions do not spread beyond the initial infected premises, there is significant potential for widespread infection. The efficacy of the European Union strategy for disease control is evaluated and our simulations emphasize the pivotal role of duck farms in spreading H5N1. 相似文献
18.
O. I. Kiselev V. M. Blinov M. M. Pisareva V. A. Ternovoy A. P. Agafonov D. V. Saraev M. Ju. Eropkin T. G. Lobova V. A. Grigorieva M. P. Grudinin 《Molecular Biology》2008,42(1):70-78
In the second half of 2005, a large-scale outbreak of influenza in poultry and wild birds was caused by a highly pathogenic H5N1 influenza virus in Russia. The level of pathogenicity is a polygenic trait, and most individual genes contribute to the influenza A virus pathogenicity in birds, animals, and humans. The full-length nucleotide sequences were determined for H5N1 strains isolated in the Kurgan region (Western Siberia). The structure of viral proteins was analyzed using the deduced amino acid sequences. The receptor-binding site of hemagglutinin (HA) in strains A/chicken/Kurgan/05/2005 and A/duck/Kurgan/08/2005 was typical for avian influenza viruses and contained Glu and Gly at positions 226 and 228, respectively. The structure of the basic amino acid cluster located within the HA cleavage site was identical in all isolates: QGERRRKKR. According to the neuraminidase structure, all H5N1 isolates from the Kurgan region were assigned to the Z genotype. Amino acid residues typical for the avian influenza virus were revealed in 30 out of 32 positions of M1, M2, NP, PA, and PB2, determining the host range specificity. One of the strains contained Lys at position 627 of PB2. Isolates from the Kurgan region were shown to have a remantadine-sensitive genotype. Both strains contained Glu at position 92 of NS1, indicating that the virus is interferon-resistant. Phylogenetic analysis related the Kurgan isolates to subclade 2 of clade 2 of highly pathogenic H5N1 influenza viruses. 相似文献
19.
为明确广东地区分离的一株禽流感病毒H5N1的遗传背景,建立流感病毒反向遗传的平台。对该株禽流感病毒进行了空斑纯化与组织细胞培养,检测其在MDCK细胞中的增殖特性;利用H5N1病毒通用引物,通过RT-PCR对该病毒全基因组的8条片段进行全长克隆及测序分析;将H5N1的8条全长基因组片段分别插入反向遗传通用载体中,构建禽流感病毒H5N1的感染性克隆。结果表明,该H5N1毒株在MDCK细胞中可不依赖胰酶进行有效增殖与复制,可使MDCK细胞出现典型细胞病变,具有高致病性禽流感病毒的细胞增殖特征。RT-PCR克隆得到该H5N1毒株的PB2、PB1、PA、HA、NP、NA、M和NS八条全长片段,经测序分析确认该毒株的基因序列,其内部编码序列出现多处突变,其中HA连接肽为多个连续碱性氨基酸,表明该毒株可不依赖胰酶进行有效复制,与细胞培养结果一致,未出现抗药性的遗传突变。PCR与测序证明,插入H5N1八个全长基因组片段的载体序列完全正确,表明成功构建了该毒株的感染性克隆。为明确病毒遗传信息,建立流感病毒反向遗传的平台,为进一步研究禽流感病毒相关疫苗提供了研究基础。 相似文献
20.
【背景】H5N1禽流感病毒可以感染人类导致重症呼吸道感染,致死率高。【目的】研究我中心确认的一例人感染高致病性禽流感H5N1病毒A/Nanjing/1/2015的可能起源及基因组分子特征。【方法】对病人痰液样本中的H5N1病毒进行全基因组测序,使用CLC Genomics Workbench 9.0对序列进行拼接,使用BLAST和MEGA 5.22软件进行同源性比对和各片段分子特征分析。【结果】该株禽流感病毒属于H5亚型的2.3.2.1c家系,其8个片段均与江浙地区禽类中分离的病毒高度同源,未发现有明显的重配。分子特征显示,该病毒血凝素(Hemagglutinin,HA)蛋白裂解位点为PQRERRRR/G,受体结合位点呈现禽类受体特点,但出现D94N、S133A和T188I氨基酸置换增强了病毒对人类受体的亲和性。神经氨酸酶(Neuraminidase,NA)蛋白颈部在49-68位缺失20个氨基酸,非结构蛋白1 (Non-structure protein,NS1)存在P42S置换和80-84位氨基酸的缺失。其他蛋白中也存在多个增强病毒致病力和对人类细胞亲和力的氨基酸突变。对耐药位点分析发现存在对奥司他韦的耐药突变H_274Y,病毒对金刚烷胺仍旧敏感。【结论】人感染高致病性禽流感H5N1病毒A/Nanjing/1/2015属于2.3.2.1c家系,禽类来源,关键位点较保守,但仍出现了多个氨基酸的进化与变异使其更利于感染人类。H5N1禽流感病毒进化活跃,持续动态监测不能放松。 相似文献