首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 99 毫秒
1.
The vinegar flies Drosophila subobscura and D. obscura frequently serve as study organisms for evolutionary biology. Their high morphological similarity renders traditional species determination difficult, especially when living specimens for setting up laboratory populations need to be identified. Here we test the usefulness of cuticular chemical profiles collected via the non-invasive method near-infrared spectroscopy for discriminating live individuals of the two species. We find a classification success for wild-caught specimens of 85%. The species specificity of the chemical profiles persists in laboratory offspring (87–92% success). Thus, we conclude that the cuticular chemistry is genetically determined, despite changes in the cuticular fingerprints, which we interpret as due to laboratory adaptation, genetic drift and/or diet changes. However, because of these changes, laboratory-reared specimens should not be used to predict the species-membership of wild-caught individuals, and vice versa. Finally, we demonstrate that by applying an appropriate cut-off value for interpreting the prediction values, the classification success can be immensely improved (to up to 99%), albeit at the cost of excluding a considerable portion of specimens from identification.  相似文献   

2.
《Fly》2013,7(4):284-289
The vinegar flies Drosophila subobscura and D. obscura frequently serve as study organisms for evolutionary biology. Their high morphological similarity renders traditional species determination difficult, especially when living specimens for setting up laboratory populations need to be identified. Here we test the usefulness of cuticular chemical profiles collected via the non-invasive method near-infrared spectroscopy for discriminating live individuals of the two species. We find a classification success for wild-caught specimens of 85%. The species specificity of the chemical profiles persists in laboratory offspring (87–92% success). Thus, we conclude that the cuticular chemistry is genetically determined, despite changes in the cuticular fingerprints, which we interpret as due to laboratory adaptation, genetic drift and/or diet changes. However, because of these changes, laboratory-reared specimens should not be used to predict the species-membership of wild-caught individuals, and vice versa. Finally, we demonstrate that by applying an appropriate cut-off value for interpreting the prediction values, the classification success can be immensely improved (to up to 99%), albeit at the cost of excluding a considerable portion of specimens from identification.  相似文献   

3.
Laticifers and the classification of Euphorbia: the chemotaxonomy of Euphorbia esula L. Articulated and non-articulated laticifer cells represent distinctive cell types of relatively recent origin and occur in only a few families. Both types are of separate phylogenetic origin, reflecting independent evolutionary trends in the Euphorbiaceae. Supra-generic groupings of this family can be segregated into three taxonomic units using the laticifer character; with either articulated laticifers, non-articulated laticifers, or no laticifers. Such units may reflect more natural assemblages than now represented in the classification of this family. Laticifers possess chemical and morphological features of potential application as taxonomic characters to aid in delimiting species and interpreting evolutionary trends. The triterpenoid profile from latex of Euphorbia species has been shown to be diagnostic for a taxon. The qualitative and quantitative composition show a high level of stability under diverse environmental and physiological conditions indicating a genetic basis for triterpenoid synthesis. Triterpenoid profiles of known accessions of European E. esula L. and related presumptive taxa from North America readily separated them into distinctive chemotaxa that include one for E. esula L., whereas morphological features were found inadequate for separating accessions to presumptive taxa. Identification of adventive spurges in North America requires diagnostic analyses of Eurasian leafy spurges for comparison. Laticifer characters used in conjunction with relevant morphological features will provide a broadened insight into phylogenetic relationships with the Euphorbiaceae.  相似文献   

4.
The evolutionary sequence of events in the evolution of reproductive barriers between species is at the core of speciation biology. Where premating barriers fail, post-mating barriers, such as conspecific sperm precedence (CSP), gamete incompatibility (GI) and hybrid inviability (HI) may evolve to prevent the production of (often) costly hybrid offspring with reduced fitness. We tested the role of post-mating mechanisms for the reproductive isolation between two sunfish species [bluegill (BG) Lepomis macrochirus and pumpkinseed (PS) Lepomis gibbosus] and their first-generation hybrids. Performing in vitro sperm competition experiments, we observed asymmetric CSP as main post-mating isolation mechanism when BG and PS sperm were competing for PS eggs, whereas when sperm from both species were competing for BG eggs it was HI. Furthermore, hybrid sperm--although fertile in the absence of competition--were outcompeted by sperm of either parental species. This result may at least partly explain previous observations that natural hybridization in the study system is unidirectional.  相似文献   

5.
Plants of the seagrass Zostera noltii were cultured in the laboratory (mesocosms) for two weeks to assess the effect of above:below-ground (AG/BG) biomass ratios and light on growth, photosynthesis and chemical composition. Experimental plant units (EPUs) with different proportions between AG and BG biomass were obtained from plants of the same size (containing 6 shoots and 5 internodes) by excising 0-5 shoots. The EPUs maintained the proportions in AG/BG biomass ratios during the experiment. While growth rate was unaffected by biomass partitioning at high light, maximum growth at low light was recorded in plants with low AG/BG ratios. The production of shoots and rhizomes showed a compensatory morphological response depending on the initial AG/BG proportions regardless of the light level. While shoot production, estimated as shoot appearance rate, was high at low AG/BG ratios and minimal under high AG/BG values, rhizome production, estimated as internode appearance rate and internode elongation rate, was maximal under high AG/BG proportions and decreased towards lower AG/BG ratios. This rhizomatic response was observed for secondary rhizomes and not for primary ones. In contrast to morphological response, no significant differences were detected in maximum electron transport rates (ETRm) among the different shoots in the plant. However, mean values of ETRm in plants were affected by biomass partitioning and light. EPUs grown in low light increased the sucrose stored in shoots as the AG/BG biomass ratios decreased; however, EPUs grown at high light showed no effect of biomass partitioning on sucrose levels. In conclusion, shoots excision by experimental manipulation caused a compensatory morphological response in plants while photosynthetic performance remained almost unaffected.  相似文献   

6.
以福建近海出现过的13属23种石首鱼(Sciaenidae)作为分类单元(OperationalTaxonomic Units)及其量化数据取值依据,选取39个特征指标,采用系统聚类分析法(HierarchicalCluster)对其进行数值分类,得出了福建近海石首鱼类的聚类分类结果.结果表明:聚类分析法的分类结果与传统的形态分类结果基本吻合,可将福建近海出现过的石首鱼类分成13类(属).证明了朱元鼎教授等对我国石首鱼类的分类是比较科学、合理的.研究结果支持把鮸状黄姑鱼(Nibea.miichthioides)归到黄鳍牙鱼(鱼或)属(Chrysochir),这一点与传统的形态分类法观点不同.另外,本研究结果对大头白姑鱼(Argyrosomus macrocephalus)和勒氏短须石首鱼(Umbrina.russelli)的分类存有分歧,并提出了一些具有参考价值和值得重视的观点,有待将来进一步的探讨.  相似文献   

7.
Parmelioid lichens comprise about 1500 species and have a worldwide distribution. Numerous species are widely distributed and well known, including important bioindicators for atmospheric pollution. The phylogeny and classification of parmelioid lichens has been a matter of debate for several decades. Previous studies using molecular data have helped to establish hypotheses of the phylogeny of certain clades within this group. In this study, we infer the phylogeny of major clades of parmelioid lichens using DNA sequence data from two nuclear loci and one mitochondrial locus from 145 specimens (117 species) that represent the morphological and chemical diversity in these taxa. Parmelioid lichens are not monophyletic; however, a core group is strongly supported as monophyletic, excluding Arctoparmelia and Melanelia s. str., and including Parmeliopsis and Parmelaria. Within this group, seven well-supported clades are found, but the relationships among them remain unresolved. Stochastic mapping on a MC/MCMC tree sampling was employed to infer the evolution of two morphological and two chemical traits believed to be important for the evolutionary success of these lichens, and have also been used as major characters for classification. The results suggest that these characters have been gained and lost multiple times during the diversification of parmelioid lichens.  相似文献   

8.
The relevance of the Modern Evolutionary Synthesis to the foundations of taxonomy (the construction of groups, both taxa and phyla) is reexamined. The nondimensional biological species concept, and not the multidimensional, taxonomic, species notion which is based on it, represents a culmination of an evolutionary understanding. It demonstrates how established evolutionary mechanisms acting on populations of sexually reproducing organisms provide the testable ontological basis of the species category. We question the ontology and epistemology of the phylogenetic or evolutionary species concept, and find it to be a fundamentally untenable one. We argue that at best, the phylogenetic species is a taxonomic species notion which is not a theoretical concept, and therefore should not serve as foundation for taxonomic theory in general, phylogenetics, and macroevolutionary reconstruction in particular. Although both evolutionary systematists and cladists are phylogeneticists, the reconstruction of the history of life is fundamentally different in these two approaches. We maintain that all method, including taxonomic ones, must fall out of well corroborated theory. In the case of taxonomic methodology the theoretical base must be evolutionary. The axiomatic assumptions that all phena, living and fossil, must be holophyletic taxa (species, and above), resulting from splitting events, and subsequently that evaluation of evolutionary change must be based on a taxic perspective codified by the Hennig ian taxonomic species notion, are not testable premises. We discuss the relationship between some biologically, and therefore taxonomically, significant patterns in nature, and the process dependence of these patterns. Process-free establishment of deductively tested “genealogies” is a contradiction in terms; it is impossible to “recover” phylogenetic patterns without the investment of causal and processual explanations of characters to establish well tested taxonomic properties of these (such as homologies, apomorphies, synapomorphies, or transformation series). Phylogenies of either characters or of taxa are historical-narrative explanations (H-N Es), based on both inductively formulated hypotheses and tested against objective, empirical evidence. We further discuss why construction of a “genealogy”, the alleged framework for “evolutionary reconstruction”, based on a taxic, cladistic outgroup comparison and a posteriori weighting of characters is circular. We define how the procedure called null-group comparison leads to the noncircular testing of the taxonomic properties of characters against which the group phylogenies must be tested. This is the only valid rooting procedure for either character or taxon evolution. While the Hennig -principle is obviously a sound deduction from the theory of descent, cladistic reconstruction of evolutionary history itself lacks a valid methodology for testing transformation hypotheses of both characters and species. We discuss why the paleontological method is part of comparative biology with a critical time dimension ana why we believe that an “ontogenetic method” is not valid. In our view, a merger of exclusive (causal and interactive, but best described as levels of organization) and inclusive (classificatory) hierarchies has not been accomplished by a taxic scheme of evolution advocated by some. Transformational change by its very nature is not classifiable in an inclusive hierarchy, and therefore no classification can fully reflect the causal and interactive chains of events constituting phylogeny, without ignoring and contradicting large areas of corroborated evolutionary theory. Attempts to equate progressive evolutionary change with taxic schemes by Haeckel were fundamentally flawed. His ideas found 19th century expression in a taxic perception of the evolutionary process (“phylogenesis”), a merger of typology, hierarchic and taxic notions of progress, all rooted in an ontogenetic view of phylogeny. The modern schemes of genealogical hierarchies, based on punctuation and a notion of “species” individuality, have yet to demonstrate that they hold promise beyond the Haeckel ian view of progressive evolution.  相似文献   

9.
A phenetic classification based on overall morphological similarity between the species in the family Plectonemertidae (genera Plectonemertes, Campbellonemertes, Potamonemertes, Leptonemertes, Katechonemertes, Argonemertes, Anliponemertes, and Acteonemertes ) was undertaken and the result compared with a cladistic and an evolutionary classification. Similarity between species was computed by Gower's general coefficient of similarity and various techniques were used to find patterns in the similarity matrix: single-linkage, average-linkage, and complete-linkage clustering, together with principal coordinate analysis. Although the explicit aim of phenetics is not to estimate the phylogeny, the classification based on overall similarity still portrays phylogeny better than an intuitive assessment of morphological similarity, as judged by the cladistic analysis. The classification does not support the previously proposed hypothesis that the two freshwater genera Campbellonemertes and Potamonemertes have descended from a terrestrial ancestor.  相似文献   

10.
Lineages that exhibit little morphological change over time provide a unique opportunity to explore whether nonadaptive or adaptive processes explain the conservation of morphology over evolutionary time scales. We provide the most comprehensive evaluation to date of the evolutionary processes leading to morphological similarity among species in a cryptic species complex, incorporating two agamid lizard species (Diporiphora magna and D. bilineata). Phylogenetic analysis of mitochondrial (ND2) and nuclear (RAG-1) gene regions revealed the existence of eight deeply divergent clades. Analysis of morphological data confirmed the presence of cryptic species among these clades. Alternative evolutionary hypotheses for the morphological similarity of species were tested using a combination of phylogenetic, morphological, and ecological data. Likelihood model testing of morphological data suggested a history of constrained phenotypic evolution where lineages have a tendency to return to their medial state, whereas ecological data showed support for both Brownian motion and constrained evolution. Thus, there was an overriding signature of constrained evolution influencing morphological divergence between clades. Our study illustrates the utility of using a combination of phylogenetic, morphological, and ecological data to investigate evolutionary mechanisms maintaining cryptic species.  相似文献   

11.
Adaptive convergence in morphological characters has not been thoroughly investigated, and the processes by which phylogenetic relationships may be misled by morphological convergence remains unclear. We undertook a case study on the morphological evolution of viverrid-like feliformians (Nandinia, Cryptoprocta, Fossa, Eupleres, Prionodon) and built the largest morphological matrix concerning the suborder Feliformia to date. A total of 349 characters grouped into four anatomical partitions were used for all species of Viverridae and viverrid-like taxa plus representatives of the Felidae, Hyaenidae, Herpestidae, and one Malagasy mongoose. Recent molecular phylogenetic analyses suggest that viverrid-like morphotypes appeared independently at least three times during feliformian evolution. We thus used a synthetic molecular tree to assess morphological evolutionary patterns characterizing the viverrid-like taxa. We examined phylogenetic signal, convergence and noise in morphological characters using (a) tree-length distribution (g1), (b) partitioned Bremer support, (c) RI values and their distribution, (d) respective contributions of diagnostic synapomorphies at the nodes for each partition, (e) patterns of shared convergences among viverrid-like taxa and other feliformian lineages, (f) tree-length differences among alternative hypotheses, and (g) the successive removal of convergent character states from the original matrix. In addition, the lability of complex morphological structures was assessed by mapping them onto the synthetic molecular tree. The unconstrained morphological analysis yielded phylogenetic groupings that closely reflected traditional classification. The use of a synthetic molecular tree (constraint) combined with our thorough morphological investigations revealed the mosaics of convergences likely to have contributed to part of the historical uncertainty over viverrid classification. It also showed that complex morphological structures could be subjected to reversible evolutionary trends. The morphological matrix proved useful in characterizing several feliformian clades with diagnostic synapomorphies. These results support the removal from the traditionally held Viverridae of several viverrid-like taxa into three distinct families: Nandiniidae (Nandinia), Prionodontidae (Prionodon), and the newly defined Eupleridae (including Cryptoprocta, Fossa, Eupleres plus all "mongoose-like" Malagasy taxa). No clearly "phylogenetically misleading" data subsets could be identified, and the great majority of morphological convergences appeared to be nonadaptive. The multiple approaches used in this study revealed that the most disruptive element with regards to morphological phylogenetic reconstruction was noise, which blured the expression of phylogenetic signal. This study demonstrates the crucial need to consider independent (molecular) phylogenies in order to produce reliable evolutionary hypotheses and should promote a new approach to the definition of morphological characters in mammals. [Constrained analysis; convergence; evolutionary scenario; Feliformia; morphology; noise; phylogenetic signal; phylogeny; Viverridae.].  相似文献   

12.
The cuticle covers the aerial epidermis of land plants and plays a primary role in water regulation and protection from external stresses. Remarkable species diversity in the structure and composition of its components, cutin and wax, have been catalogued, but few functional or genetic correlations have emerged. Tomato (Solanum lycopersicum) is part of a complex of closely related wild species endemic to the northern Andes and the Galapagos Islands (Solanum Sect. Lycopersicon). Although sharing an ancestor <7 million years ago, these species are found in diverse environments and are subject to unique selective pressures. Furthermore, they are genetically tractable, since they can be crossed with S. lycopersicum, which has a sequenced genome. With the aim of evaluating the relationships between evolution, structure and function of the cuticle, we characterized the morphological and chemical diversity of fruit cuticles of seven species from Solanum Sect. Lycopersicon. Striking differences in cuticular architecture and quantities of cutin and waxes were observed, with the wax coverage of wild species exceeding that of S. lycopersicum by up to seven fold. Wax composition varied in the occurrence of wax esters and triterpenoid isomers. Using a Solanum habrochaites introgression line population, we mapped triterpenoid differences to a genomic region that includes two S. lycopersicum triterpene synthases. Based on known metabolic pathways for acyl wax compounds, hypotheses are discussed to explain the appearance of wax esters with atypical chain lengths. These results establish a model system for understanding the ecological and evolutionary functional genomics of plant cuticles.  相似文献   

13.
Morphological integration describes the degree to which sets of organismal traits covary with one another. Morphological covariation may be evaluated at various levels of biological organization, but when characterizing such patterns across species at the macroevolutionary level, phylogeny must be taken into account. We outline an analytical procedure based on the evolutionary covariance matrix that allows species-level patterns of morphological integration among structures defined by sets of traits to be evaluated while accounting for the phylogenetic relationships among taxa, providing a flexible and robust complement to related phylogenetic independent contrasts based approaches. Using computer simulations under a Brownian motion model we show that statistical tests based on the approach display appropriate Type I error rates and high statistical power for detecting known levels of integration, and these trends remain consistent for simulations using different numbers of species, and for simulations that differ in the number of trait dimensions. Thus, our procedure provides a useful means of testing hypotheses of morphological integration in a phylogenetic context. We illustrate the utility of this approach by evaluating evolutionary patterns of morphological integration in head shape for a lineage of Plethodon salamanders, and find significant integration between cranial shape and mandible shape. Finally, computer code written in R for implementing the procedure is provided.  相似文献   

14.
Compared with Hennig's phylogenetical systematics which has as its aim the retracing of genealogical relations between taxonomic groups, evolutionary morphological systematics is equally justified. Classifications of basic plans, morphological types, and morphofunctional systems of organisms serve as the foundation of evolutionary morphological systems. They are constructed on the basis of thorough understanding and further iteration of morphological transformation in phylogenetical branches based on the constructional pecularities of the morphofunctional systems. The evolutionary morphological approach in systematics is important especially for elaborating macrosystems dealing with vastly divergant groups where it is impossible to trace their real genealogy. The general principles of evolutionary morphological systematics are considered. A variant of the classification system of the Plathelminthes is suggested.  相似文献   

15.

Background  

The classification of the Musaceae (banana) family species and their phylogenetic inter-relationships remain controversial, in part due to limited nucleotide information to complement the morphological and physiological characters. In this work the evolutionary relationships within the Musaceae family were studied using 13 species and DNA sequences obtained from a set of 19 unlinked nuclear genes.  相似文献   

16.
17.
A phenetic classification based on overall morphological similarity between the species in the family Plectonemertidae (genera Plectonemertes, Campbellonemertes, Potamonemertes, Leptonemertes, Katechonemertes, Argonemertes, Anliponemertes, and Acteonemertes) was undertaken and the result compared with a cladistic and an evolutionary classification. Similarity between species was computed by Gower's general coefficient of similarity and various techniques were used to find patterns in the similarity matrix: single-linkage, average-linkage, and complete-linkage clustering, together with principal coordinate analysis. Although the explicit aim of phenetics is not to estimate the phylogeny, the classification based on overall similarity still portrays phylogeny better than an intuitive assessment of morphological similarity, as judged by the cladistic analysis. The classification does not support the previously proposed hypothesis that the two freshwater genera Campbellonemertes and Potamonemertes have descended from a terrestrial ancestor.  相似文献   

18.
Vignon, M. (2011) Inference in morphological taxonomy using collinear data and small sample sizes: Monogenean sclerites (Platyhelminthes) as a case study. —Zoologica Scripta, 40, 306–316. Taxonomists and evolutionary biologists frequently use a combination of morphological measurements to distinguish between species and investigate local adaptation. However, the entire set of characters often displays various degrees of collinearity. This paper discusses the effect of using collinear data in morphological taxonomy and ways to handle multicollinearity in a classification context, with special consideration for small sample size. In addition, I propose a robust and easy‐to‐use combination of dimension reduction using partial least squares (PLS) with traditional discriminant methods for morphological data. To do this, I investigated morphological variation patterns among four monogenean populations from the Pacific Ocean using the correlated morphological features of the sclerotized attachment organ. The new approach yielded better prediction results (lower classification error rates) than the traditional dimension reduction method based on principle component analysis (PCA) and is also much more robust for small sample size. This emphasizes that PLS may be more efficient than PCA in dealing with correlated data and extracting the most relevant morphological differences among groups.  相似文献   

19.
The Gobioidei is a large suborder in the order Perciformes and consists of more than 2000 species belonging to about 270 genera. The vast number of species and their morphological specialization adapted to diverse habits and habitats makes the classification of the gobioid fishes very difficult.A comprehensive estimation of the evolutionary scenario of all gobioid fishes using only morphological information is difficult for two major reasons: first, in addition to wide ecological diversification, there is a trend towards specialization and degeneration of morphological characters among these species; second, an appropriate outgroup of gobioid fishes has not been recognized.Based upon nucleotide sequence comparisons of gobioid mitochondrial cytochrome b genes, we established the phylogenetic relationships of their differentiation into many groups of morphological and ecological diversity. The phylogenetic trees obtained show that most species examined have diverged from each other almost simultaneously or during an extremely short period of time.  相似文献   

20.
Mosquito‐borne infectious diseases are emerging in many regions of the world. Consequently, surveillance of mosquitoes and concomitant infectious agents is of great importance for prediction and prevention of mosquito‐borne infectious diseases. Currently, morphological identification of mosquitoes is the traditional procedure. However, sequencing of specified genes or standard genomic regions, DNA barcoding, has recently been suggested as a global standard for identification and classification of many different species. Our aim was to develop a genetic method to identify mosquitoes and to study their relationship. Mosquitoes were captured at collection sites in northern Sweden and identified morphologically before the cytochrome c oxidase subunit I (COI) gene sequences of 14 of the most common mosquito species were determined. The sequences obtained were then used for phylogenetic placement, for validation and benchmarking of phenetic classifications and finally to develop a hierarchical PCR‐based typing scheme based on single nucleotide polymorphism sites (SNPs) to enable rapid genetic identification, circumventing the need for morphological characterization. The results showed that exact phylogenetic relationships between mosquito taxa were preserved at shorter evolutionary distances, but at deeper levels, they could not be inferred with confidence using COI gene sequence data alone. Fourteen of the most common mosquito species in Sweden were identified by the SNP/PCR‐based typing scheme, demonstrating that genetic typing using SNPs of the COI gene is a useful method for identification of mosquitoes with potential for worldwide application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号