首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mRNA of genes le20, lcyP2, lhcll, and asr1 was quantified in leaves and roots of tomato plants (Lycopersicon esculentum Mill. L.) during three day/night cycles and 48 h constant illumination. lcyp2 and lhcll are known to exhibit diurnal or circadian rhythms in leaf tissue while asr1 has shown no evidence of diurnal fluctuations. Previously reported diurnal fluctuations of le20 mRNA in leaves could have been due to either changes in plant water status and abscisic acid concentration (le20 is a drought- and ABA-inducible gene) or changes in climate variables. Plants were grown hydroponically and at constant temperature (20.6 0.5C) and humidity (66 1%) such that no changes in plant water status or tissue ABA concentration were detectable. le20 and lcyP2 and lhcll mRNAs all fluctuated diurnally in leaf tissue and all reached a maximum during the light period. Surprisingly, le20 and lcyPs mRNA showed diurnal cycles in root tissue. There was no evidence for diurnal trends in asr1 mRNA, but levels increased steadily during constant light in both leaves and roots. le20, lcyP2 and lhcll mRNA showed only one cycle during 48h illumination and while carbon assimilation remained high and constant during this period, stomatal conductance decreased after 6 h light and then remained low. Photosystem II efficiency decreased during illumination, recovered during dark periods and showed a weak rhythm during constant light. It was concluded that le20 and lcyP2 have a diurnal component controlling their expression in leaves and roots, responding to light/dark cycles independently of water status or ABA concentration.Keywords: Tomato, histone H1, le20, lcyP2, diurnal trends.   相似文献   

2.
3.
Drought control over conductance and assimilation was assessed using eddy flux and meteorological data monitored during four summer periods from 1998 to 2001 above a closed canopy of the Mediterranean evergreen oak tree Quercus ilex. Additional discrete measurements of soil water content and predawn leaf water potential were used to characterize the severity of the drought. Canopy conductance was estimated through the big‐leaf approach of Penman–Monteith by inverting latent heat fluxes. The gross primary production ( GPP ) was estimated by adding ecosystem respiration to net ecosystem exchange. Ecosystem respiration was deduced from night flux when friction velocity ( u *) was greater than 0.35 m s?1. Empirical equations were identified that related maximal canopy conductance and daily ecosystem GPP to relative soil water content ( RWC) , the ratio of current soil water content to the field capacity, and to the predawn leaf water potential. Both variables showed a strong decline with soil RWC for values lower than 0.7. The sharpest decline was observed for GPP . The curves reached zero for RWC =0.41 and 0.45 for conductance and GPP , respectively. When the predawn leaf water potential was used as a surrogate for soil water potential, both variables showed a hyperbolic decline with decreasing water potential. These results were compared with already published literature values obtained at leaf level from the same tree species. Scaling up from the leaf to ecosystem highlighted the limitation of two big‐leaf representations: Penman–Monteith and Sellers' Π factor. Neither held completely for comparing leaf and canopy fluxes. Tower measurements integrate fluxes from foliage elements clumped at several levels of organization: branch, tree, and ecosystem. The Q. ilex canopy exhibited non‐random distribution of foliage, emphasizing the need to take into account a clumping index, the factor necessary to apply the Lambert–Beer law to natural forests. Our results showed that drought is an important determinant in water losses and CO2 fluxes in water‐limited ecosystems. In spite of the limitations inherent to the big‐leaf representation of the canopy, the equations are useful for predicting the influence of environmental factors in Mediterranean woodlands and for interpreting ecosystem exchange measurements.  相似文献   

4.
Abstract The lignotuberous mallee Eucalyptus behriana F. Muell, had much lower predawn leaf water potentials (not higher than – 1.2MPa) than other eucalypts (as high as – 0.2MPa), even after extended rain. This led to the expectation that the lignotuber of E. behriana might have specific hydraulic characteristics. Keeping the soil around partially defoliated mallces for several days underwater did not raise the water status above the maximum leaf water potential observed under natural conditions. Digging a plant out and placing its roots in water after removal of the soil rapidly increased the water status to a level consistant with other eucalypts. This indicated that the major impedance to water uptake was a component of the soil rather than in the roots or in the lignotuber. Some of the individual mallces had only two major stems or branches. One stem or branch was kept covered throughout the experiments to prevent transpiration. The other stem was subjected to a variety of different conditions in order to modify water loss from it. The transpiring branch affected the water status of the non-transpiring plant parts. Hydraulic resistances in the shoot and root/lignotuber were determined from differences in the leaf water potential of covered and uncovered branches, at high water flow rates through the plant. Resistances in branches, including the liquid phase component of the leaf, were significantly larger than in root or lignotuber. The total plant hydraulic resistance of E. behriana was similar to that of other eucalypts, such as E. pauciflora Sieb. ex Spreng. or E. delegatensis R. T. Bak., even though its growth form was different and its natural leaf water potentials were much lower. An osmotic adjustment at the leaf level was observed in the mallee, keeping its bulk leaf turgor in the same range as compared to the other eucalypt species.  相似文献   

5.
Summary Water and nitrogen regimes of Larrea tridentata shrubs growing in the field were manipulated during an annual cycle. Patterns of leaf water status, leaf water relations characteristics, and stomatal behavior were followed concurrently. Large variations in leaf water status in both irrigated and nonirrigated individuals were observed. Predawn and midday leaf water potentials of nonirrigated shrubs were lowest except when measurements had been preceded by significant rainfall. Despite the large seasonal variation in leaf water status, reasonably constant, high levels of turgor were maintained. Pressure-volume curve analysis suggested that changes in the bulk leaf osmotic potential at full turgor were small and that nearly all of the turgor adjustment was due to tissue elastic adjustment. The increase in tissue elasticity with increasing water deficit manifested itself as a decrease in the relative water content at zero turgor and as a decrease in the tissue bulk elastic modulus. Because of large hydration-induced displacement in the osmotic potential and relative water content at zero turgor, it was necessary to use shoots in their natural state of hydration for pressure-volume curve determinations. Large diurnal and seasonal differences in maximum stomatal conductance were observed, but could not easily be attributed to variations in leaf water potential or leaf water relations characteristics such as the turgor loss point. The single factor which seemed to account for most of the diurnal and seasonal differences in maximum stomatal conductance between individual shrubs was an index of soil/root/ shoot hydraulic resistance. Daily maximum stomatal conductance was found to decrease with increasing soil/root/ shoot hydraulic resistance. This pattern was most consistent if the hydraulic resistance calculation was based on an estimate of total canopy transpiration rather than the more commonly used transpiration per unit leaf area. The reasons for this are discussed. It is suggested that while stomatal aperture necessarily represents a major physical resistance controlling transpiration, plant hydraulic resistance may represent the functional resistance through its effects on stomatal aperture.  相似文献   

6.
The responses of leaf conductance, leaf water potential and rates of transpiration and net photosynthesis at different vapour pressure deficits ranging from 10 to 30 Pa kPa-1 were followed in the sclerophyllous woody shrub Nerium oleander L. as the extractable soil water content decreased. When the vapour pressure deficit around a plant was kept constant at 25 Pa kPa-1 as the soil water content decreased, the leaf conductance and transpiration rate showed a marked closing response to leaf water potential at-1.1 to-1.2 MPa, whereas when the vapour pressure deficit around the plant was kept constant at 10 Pa kPa-1, leaf conductance decreased almost linearly from-0.4 to-1.1 MPa. Increasing the vapour pressure deficit from 10 to 30 Pa kPa-1 in 5 Pa kPa-1 steps, decreased leaf conductance at all exchangeable soil water contents. Changing the leaf water potential in a single leaf by exposing the remainder of the plant to a high rate of transpiration decreased the water potential of that leaf, but did not influence leaf conductance when the soil water content was high. As the soil water content was decreased, leaf conductances and photosynthetic rates were higher at equal levels of water potential when the decrease in potential was caused by short-term increases in transpiration than when the potential was decreased by soil drying.As the soil dried and the stomata closed, the rate of photosynthesis decreased with a decrease in the internal carbon dioxide partial pressure, but neither the net photosynthetic rate nor the internal CO2 partial pressure were affected by low water potentials resulting from short-term increases in the rate of transpiration. Leaf conductance, transpiration rate and net photosynthetic rate showed no unique relationship to leaf water potential, but in all experiments the leaf gas exchange decreased when about one half of the extractable soil water had been utilized. We conclude that soil water status rather than leaf water status controls leaf gas exchange in N. oleander.  相似文献   

7.
8.
Effect of salt and soil water status on transpiration of Salsola kali L.   总被引:1,自引:1,他引:0  
Abstract Transpiration of Salsola kali L. plants, grown in small pots under controlled environmental conditions, was followed through a drying cycle of the soil. Three different nutrient solutions were used during the preconditioning growth period: control (C), half-strength Hoagland's nutrient solution; C plus 150mol m−3 NaCl; and C plus 150mol m−3 KCl. Soil water content at saturation at the beginning of the drying cycle was 20% (w/w). Both NaCl and KCl treatments modified the plants' response to changes in soil water status. The control plants transpired twice as much (per unit leaf dry weight) as the salt-treated plants, even when the soil was at maximal water capacity. Transpiration of the control plants remained high, until the soil water content declined to 5%. After that stage the stomata of these plants closed abruptly. Transpiration of the salt-treated plants started decreasing when the soil water content was approximately 16%, and did so gradually until all the available water was depleted. When transpiration was plotted against soil water potential a sharp decline in the transpiration of control plants was observed with the soil water potential decreasing from -0.04 to -1.2MPa. Transpiration of the salt-treated plants decreased gradually over a wide range of soil water potential (−0.8 to −7.0MPa).  相似文献   

9.
Measurements with a pressure chamber were made of the xylem water potential of leaves, shoots and roots from bean plants (Pkaseolus vulgaris L. cv. Processor) grown with a 12 hour dark period and natural or artificial light conditions during the day. The water potentials were measured at the end of a dark period and during the light period. Measurements taken at the end of the dark period indicated normal potential gradients within the soil/plant system (leaf < shoot < root < soil), when the matric potential of soil water was relatively high (above ?0.02 bar), and the gradients then also remained normal during the day (natural light). When the soil water potential was ?1 bar or lower in the morning, however, the root xylem water potential was higher than the soil water potential; at very low soil water potentials (< ?4 bar) it remained higher during most of the day. In this case also leaf and shoot xylem water potentials were higher than the soil water potential in the early morning, although decreasing rapidly in daylight. Under artificial light, both leaf and root water potentials were higher than the soil water potential throughout the whole diurnal cycle when the latter potential was below ?4 bar. From measurements of stomatal diffusion resistance, transpiration, relative water content of leaves and of changes in the matric potential of soil water, it was concluded that when the matric potential of soil water was low, water could be taken up by the plant against a water potential gradient. Because leaf xylem water potential was always lower than root xylem water potential, the mechanism involved in the inversion of water potential gradient must be localized in the roots, and probably related to ion uptake. Symbols and abbreviations used in the text: Ψ: Plant water potential (thermocouple psychrometer); Ψx: Xylem water potential (pressure chamber); Ψs: Osmotic potential of xylem sap; Ψm: Matric potential of soil water; RWC: Relative water content.  相似文献   

10.
Gmelina arborea L. seedling growth and diurnal stomatal opening (as measured by stomatal resistance) were studied at soil matric potential 0, -0.1 and -0.72 × 10?5 Pa. Leaf area, leaf number, plant height and dry weights of the vegetative parts were significantly reduced as soil matric potential decreased from 0 to -0.72 × 10?5 Pa. The growth responses followed the same trend as net assimilation rate and relative growth rate. The highest moisture stress induced leaf senescence and leaf fall. Leaf water potential decreased from - 2 × 10?5 Pa to - 20 × 10?5 Pa with increasing soil moisture stress. Results indicate that the diurnal stomatal opening is controlled by photon flux density when this species is grown at soil matrio potential 0 Pa. However, with decreasing soil matrio potential (- 0.10 and -0.72 × 10?5 Pa) the internal plant water deficit appears to oontrol the stomatal opening.  相似文献   

11.
R. E. Redmann 《Oecologia》1976,23(4):283-295
Summary Seasonal and diurnal patterns of osmotic and leaf water potential of several mixed grassland species were studied. The osmotic potential (OP) of Agropyron dasystachyum ranged from about-15 bars early in the growing season to about-30 bars during late summer droughts. Seasonal trends in A. smithii and Koeleria cristata were similar. Minimum osmotic potentials of Eurotia lanata and Artemisia frigida were-42 and-35 bars, respectively. The mesophytes Geum triflorum and Lomatium foeniculaceum did not exhibit OP below-20 bars. Soil water, particularly in the 0–15 cm layer, strongly influenced OP and leaf water potential (WP). Seasonal trends in WP were similar to OP. Under low stress, WP was about 10 bars greater than OP; under high stress WP was equal or even lower then OP (negative turgor). Diurnal fluctuations in WP were greater than those of OP when low stress conditions existed. Diurnal changes in potential were related to global radiation which was an index of atmospheric evaporative demand. Ecological implications of water status are discussed.  相似文献   

12.
Two summer annual C4 grasses with different trampling susceptibilities were grown as potted plants, and diurnal leaf gas exchange and leaf water potential in each grass were compared. The maximum net photosynthetic rate, leaf conductance and transpiration rate were higher in the trampling-tolerant Eleusine indica (L.) Gaertn. than in trampling sensitive Digitaria adscendens (H. B. K.) Henr. Leaf water potential was much lower in E. indica than in D. adscendens. There were no differences in soil-to-leaf hydraulic conductance and leaf osmotic potential at full turgor as obtained by pressure–volume analysis. However, the bulk modulus of elasticity in cell walls was higher in E. indica leaves than in D. adscendens leaves. This shows that the leaves of E. indica are less elastic. Therefore, the rigid cell walls of E. indica leaves reduced leaf water potential rapidly by decreasing the leaf water content, supporting a high transpiration rate with high leaf conductance. In trampled habitats, such lowering of leaf water potential in E. indica might play a role in water absorption from the compacted soil. In contrast, the ability of D. adscendens to colonize dry habitats such as coastal sand dunes appears to be due to its lower transpiration rate and its higher leaf water potential which is not strongly affected by decreasing leaf water content.  相似文献   

13.
Uptake of soil water by plants may result in significant gradients between bulk soil and soil in the vicinity of roots. Few experimental studies of water potential gradients in close proximity to roots, and no studies on the relationship of water potential gradients to the root and leaf water potentials, have been conducted. The occurrence and importance of pre-dawn gradients in the soil and their relation to the pre-dawn root and leaf water potentials were investigated with seedlings of four species. Pre-germinated seeds were grown without watering for 7 and lid in a silt loam soil with initial soil matric potentials of -0.02, -0.1 and -0.22 MPa. Significant gradients, independent of the species, were observed only at pre-dawn soil matric potentials lower than -0.25 MPa; the initial soil matric potentials were -0.1 MPa. At an initial bulk soil matric potential of -0.22 MPa, a steep gradient between bulk and rhizoplane soil was observed after 7 d for maize (Zea mays L. cv. Issa) and sunflower (Helianthus annuus L. cv. Nanus), in contrast to barley (Hordeum vulgare L. cv. Athos) and wheat (Triticum aestivum L. cv. Kolibri). Pre-dawn root water potentials were usually about the same as the bulk soil matric potential and were higher than the rhizoplane soil matric potential. Pre-dawn root and leaf water potentials tended to be much higher than rhizoplane soil matric potentials when the latter were lower than -0.5 MPa. It is concluded that plants tend to become equilibrated overnight with the wetter bulk soil or with wetter zones in the bulk soil. Plants can thus circumvent negative effects of localized steep pre-dawn soil matric potential gradients. This may be of considerable importance for water uptake and growth in drying soil.  相似文献   

14.
Water use patterns of four co-occurring chaparral shrubs   总被引:9,自引:0,他引:9  
Summary Mixed stands of chaparral in California usually contain several species of shrubs growing close to each other so that aerial branches and subterranean roots overlap. There is some evidence that roots are stratified relative to depth. It may be that root stratification promotes sharing of soil moisture resources. We examined this possibility by comparing seasonal water use patterns in a mixed stand of chaparral dominated by four species of shrubs: Quercus durata, Heteromeles arbutifolia, Adenostoma fasciculatum, and Rhamnus californica. We used a neutron probe and soil phychrometers to follow seasonal depletion and recharging of soil moisture and compared these patterns to seasonal patterns of predawn water potentials, diurnal leaf conductances, and diurnal leaf water potentials. Our results indicated that 1) Quercus was deeply rooted, having high water potentials and high leaf conductances throughout the summer drought period, 2) Heteromeles/Adenostoma were intermediate in rooting depth, water potentials, and leaf conductances, and 3) Rhamnus was shallow rooted, having the lowest water potentials and leaf conductances. During the peak of the drought, predawn water potentials for Quercus corresponded to soil water potentials at or below a depth of 2 m, predawn water potentials of Heteromeles/ Adenostoma corresponded to a depth of 0.75 m, and predawn water potentials of Rhamnus corresponded to a depth of 0.5 m. This study supports the concept that co-occurring shrubs of chaparral in California utilize a different base of soil moisture resources.  相似文献   

15.
《Acta Oecologica》1999,20(1):15-23
The adaptive strategies to high radiation and water stress of the drought tolerant evergreen sclerophylls Quercus coccifera and Arbutus unedo are compared to those of the semi-deciduous Cistus spp. (C. albidus and C. monspeliensis). Cistus spp. partially avoided drought by a marked reduction of their transpirational surface through leaf abscission during summer, when predawn water potential declined below -5.5 MPa. Chlorophyll fluorescence measurements revealed a reversible diurnal decrease of maximum photochemical efficiency of PSII (Fv/Fm), which became more accentuated during summer drought in all species. An important strategy to avoid damage by excessive radiation levels in Cistus spp. was the structural regulation of light interception through leaf angle changes, from a more horizontal orientation in spring (< 35°) to a more vertical orientation in summer (> 70°). Horizontal orientated leaves were highly susceptible to photoinhibition, and excessive radiation often resulted in irreversible photodamage followed by leaf abscission during summer, whereas vertical leaf orientation appeared to protect the leaf from severe photoinhibition. Still, these mechanisms were not fully successful in avoiding chronic photoinhibition, and predawn Fv/Fm values remained low in Cistus spp. during summer (only exhibiting a partial overnight recovery). Evergreen sclerophylls were less susceptible to photoinhibition, and the diurnal decline in Fv/Fm remained fully reversible during drought. Structural regulation of light interception was not found to be an important strategy in these species, and only small, though significant changes in leaf angle occurred. The ecological importance of the adaptive strategies of each functional group is discussed.  相似文献   

16.
The temperature dependence of mesophyll conductance (gm) was measured in well‐watered red raspberry (Rubus idaeus L.) plants acclimated to leaf‐to‐air vapour pressure deficit (VPDL) daytime differentials of contrasting amplitude, keeping a fixed diurnal leaf temperature (Tleaf) rise from 20 to 35 °C. Contrary to the great majority of gm temperature responses published to date, we found a pronounced reduction of gm with increasing Tleaf irrespective of leaf chamber O2 level and diurnal VPDL regime. Leaf hydraulic conductance was greatly enhanced during the warmer afternoon periods under both low (0.75 to 1.5 kPa) and high (0.75 to 3.5 kPa) diurnal VPDL regimes, unlike stomatal conductance (gs), which decreased in the afternoon. Consequently, the leaf water status remained largely isohydric throughout the day, and therefore cannot be evoked to explain the diurnal decrease of gm. However, the concerted diurnal reductions of gm and gs were well correlated with increases in leaf abscisic acid (ABA) content, thus suggesting that ABA can induce a significant depression of gm under favourable leaf water status. Our results challenge the view that the temperature dependence of gm can be explained solely from dynamic leaf anatomical adjustments and/or from the known thermodynamic properties of aqueous solutions and lipid membranes.?  相似文献   

17.
土层厚度对刺槐旱季水分状况和生长的影响   总被引:8,自引:0,他引:8       下载免费PDF全文
该研究测定了旱季和雨季刺槐(Robinia pseudoacacia)林不同土层厚度的土壤含水量, 刺槐的树高、胸径、小枝凌晨水势、叶片碳稳定同位素组成(δ13C)、叶面积、比叶重和气体交换指标; 分析了刺槐旱季和雨季的水分状况和土层厚度之间的关系; 通过刺槐对季节性干旱胁迫的反应, 估计华北石质山区不同土层厚度土壤水分对刺槐的承载能力; 并求证近年来该地区刺槐衰败和水分因素的关系。结果显示: 随着土层厚度减小, 旱季土壤含水量下降、凌晨小枝水势降低; 气孔导度和最大光合速率都减小, 而瞬时水分利用效率增加, 雨季上述指标无显著性差异, 旱季土壤含水量只有雨季的60%左右。随着土层变薄, 刺槐叶片δ13C增高, 叶面积减小, 比叶重增加; 刺槐树高和胸径减小。以上结果表明: 刺槐在不同季节下的水分状况综合反映土壤的供水能力, 土层浅薄导致土壤水分承载力不足, 致使刺槐在旱季受到较严重的水分胁迫, 这可能是刺槐出现衰败的重要原因。  相似文献   

18.
A coupled model of stomatal conductance, photosynthesis and transpiration   总被引:18,自引:1,他引:17  
A model that couples stomatal conductance, photosynthesis, leaf energy balance and transport of water through the soil–plant–atmosphere continuum is presented. Stomatal conductance in the model depends on light, temperature and intercellular CO2 concentration via photosynthesis and on leaf water potential, which in turn is a function of soil water potential, the rate of water flow through the soil and plant, and on xylem hydraulic resistance. Water transport from soil to roots is simulated through solution of Richards’ equation. The model captures the observed hysteresis in diurnal variations in stomatal conductance, assimilation rate and transpiration for plant canopies. Hysteresis arises because atmospheric demand for water from the leaves typically peaks in mid‐afternoon and because of uneven distribution of soil matric potentials with distance from the roots. Potentials at the root surfaces are lower than in the bulk soil, and once soil water supply starts to limit transpiration, root potentials are substantially less negative in the morning than in the afternoon. This leads to higher stomatal conductances, CO2 assimilation and transpiration in the morning compared to later in the day. Stomatal conductance is sensitive to soil and plant hydraulic properties and to root length density only after approximately 10 d of soil drying, when supply of water by the soil to the roots becomes limiting. High atmospheric demand causes transpiration rates, LE, to decline at a slightly higher soil water content, θs, than at low atmospheric demand, but all curves of LE versus θs fall on the same line when soil water supply limits transpiration. Stomatal conductance cannot be modelled in isolation, but must be fully coupled with models of photosynthesis/respiration and the transport of water from soil, through roots, stems and leaves to the atmosphere.  相似文献   

19.
Lowland dry forests are unique in Hawaii for their high diversity of tree species compared with wet forests. We characterized spatial and temporal partitioning of soil water resources among seven indigenous and one invasive dry forest species to determine whether the degree of partitioning was consistent with the relatively high species richness in these forests. Patterns of water utilization were inferred from stable hydrogen isotope ratios (δD) of soil and xylem water, zones of soil water depletion, plant water status, leaf phenology, and spatial patterns of species distribution. Soil water δD values ranged from –20‰ near the surface to –48‰ at 130 cm depth. Metrosideros polymorpha, an evergreen species, and Reynoldsia sandwicensis, a drought-deciduous species, had xylem sap δD values of about –52‰, and appeared to obtain their water largely from deeper soil layers. The remaining six species had xylem δD values ranging from –33 to –42‰, and apparently obtained water from shallower soil layers. Xylem water δD values were negatively correlated with minimum annual leaf water potential and positively correlated with leaf solute content, an integrated measure of leaf water deficit. Seasonal patterns of leaf production ranged from dry season deciduous at one extreme to evergreen with near constant leaf expansion rates at the other. Species tapping water more actively from deeper soil layers tended to exhibit larger seasonality of leaf production than species relying on shallower soil water sources. Individuals of Myoporum sandwicense were more spatially isolated than would be expected by chance. Even though this species apparently extracted water primarily from shallow soil layers, as indicated by its xylem δD values, its nearly constant growth rates across all seasons may have been the result of a larger volume of soil water available per individual. The two dominant species, Diospyros sandwicensis and Nestegis sandwicensis, exhibited low leaf water potentials during the dry season and apparently drew water mostly from the upper portion of the soil profile, which may have allowed them to exploit light precipitation events more effectively than the more deeply rooted species. Character displacement in spatial and temporal patterns of soil water uptake was consistent with the relatively high diversity of woody species in Hawaiian dry forests. Received: 20 May 1999 / Accepted: 2 March 2000  相似文献   

20.
Alarcón  J.J.  Domingo  R.  Green  S.R.  Sánchez-Blanco  M.J.  Rodríguez  P.  Torrecillas  A. 《Plant and Soil》2000,227(1-2):77-85
The relationship between water loss via transpiration and stem sap flow in young apricot trees was studied under different environmental conditions and different levels of soil water status. The experiment was carried out in a greenhouse over a 2-week period (November 2–14, 1997) using three-year-old apricot trees (Prunus armeniaca cv. Búlida) growing in pots. Diurnal courses of leaf water potential, leaf conductance and leaf turgor potential also were recorded throughout the experiment. Data from four days of different enviromental conditions and soil water availability have been selected for analysis. On each of the selected days the leaf water potential and the mean transpiration rates were well correlated. The slope of the linear regression of this correlation, taken to indicate the total hydraulic resistance of the tree, confirmed an increasing hydraulic resistance under drought conditions. When the trees were not drought stressed the diurnal courses of sap flow and transpiration were very similar. However, when the trees were droughted, measured of sap flow slightly underestimated actual transpiration. Our heat-pulse measurements suggest the amount of readily available water stored in the stem and leaf tissues of young apricot trees is sufficient to sustain the peak transpiration rates for about 1 hour. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号