首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
BACKGROUND: The centrosome is composed of a centriole pair and pericentriolar material (PCM). By marking the site of PCM assembly, the centrioles define the number of centrosomes present in the cell. The PCM, in turn, is responsible for the microtubule (MT) nucleation activity of centrosomes. Therefore, in order to assemble a functional bipolar mitotic spindle, a cell needs to control both centriole duplication and PCM recruitment. To date, however, the molecular mechanisms that govern these two processes still remain poorly understood. RESULTS: Here we show that SPD-2 is a novel component of the C. elegans centrosome. SPD-2 localizes to the centriole throughout the cell cycle and accumulates on the PCM during mitosis. We show that SPD-2 requires SPD-5 for its accumulation on the PCM and that in the absence of SPD-2, centrosome assembly fails. We further show that centriole duplication is also defective in spd-2(RNAi) embryos, but not in spd-5(RNAi) embryos, where PCM recruitment is efficiently blocked. CONCLUSIONS: Taken together, our results suggest that SPD-2 may link PCM recruitment and centriole duplication in C. elegans. SPD-2 shares homology with a human centrosome protein, suggesting that this key component of the C. elegans centrosome is evolutionarily conserved.  相似文献   

3.
Centrioles play a crucial role in mitotic spindle assembly and duplicate precisely once per cell cycle. In worms, flies, and humans, centriole assembly is dependent upon a key regulatory kinase (ZYG-1/Sak/Plk4) and its downstream effectors SAS-5 and SAS-6. Here we report a role for protein phosphatase 2A (PP2A) in centriole duplication. We find that the PP2A catalytic subunit LET-92, the scaffolding subunit PAA-1, and the B55 regulatory subunit SUR-6 function together to positively regulate centriole assembly. In PP2A-SUR-6-depleted embryos, the levels of ZYG-1 and SAS-5 are reduced and the ZYG-1- and SAS-5-dependent recruitment of SAS-6 to the nascent centriole fails. We show that PP2A physically associates with SAS-5 in vivo and that inhibiting proteolysis can rescue SAS-5 levels and the centriole duplication defect of PP2A-depleted embryos. Together, our findings indicate that PP2A-SUR-6 promotes centriole assembly by protecting ZYG-1 and SAS-5 from degradation.  相似文献   

4.
Most microtubule arrays in animal cells, including the bipolar spindle required for cell division, are organized by centrosomes. Thus, strict control of centrosome numbers is crucial for accurate chromosome segregation. Each centrosome comprises two centrioles, which need to be duplicated exactly once in every cell cycle. Recent work has begun to illuminate the mechanisms that regulate centriole duplication. First, genetic and structural studies concur to delineate a centriole assembly pathway in Caenorhabditis elegans. Second, the protease Separase, previously known to trigger sister chromatid separation, has been implicated in a licensing mechanism that restricts centrosome duplication to a single occurrence per cell cycle. Finally, Plk4 (also called Sak), a member of the Polo kinase family, has been identified as a novel positive regulator of centriole formation.  相似文献   

5.
Centrosomes, the major microtubule-organizing centres (MTOCs) of animal cells, are comprised of a pair of centrioles surrounded by pericentriolar material (PCM). Early in the cell cycle, there is a single centrosome, which duplicates during S-phase to direct bipolar spindle assembly during mitosis. Although crucial for proper cell division, the mechanisms that govern centrosome duplication are not fully understood. Here, we identify the Caenorhabditis elegans gene sas-5 as essential for daughter-centriole formation. SAS-5 is a coiled-coil protein that localizes primarily to centrioles. Fluorescence recovery after photobleaching (FRAP) experiments with green fluorescent protein (GFP) fused to SAS-5 (GFP-SAS-5) demonstrated that the protein shuttles between centrioles and the cytoplasm throughout the cell cycle. Analysis of mutant alleles revealed that the presence of SAS-5 at centrioles is crucial for daughter-centriole formation and that ZYG-1, a kinase that is also essential for this process, controls the distribution of SAS-5 to centrioles. Furthermore, partial RNA-interference (RNAi)-mediated inactivation experiments suggest that both sas-5 and zyg-1 are dose-dependent regulators of centrosome duplication.  相似文献   

6.
The cell cycle is an intricate process of DNA replication and cell division thatconcludes with the formation of two genetically equivalent daughter cells. In thisprogression, the centrosome is duplicated once and only once during the G1/S transitionto produce the bipolar spindle and ensure proper chromosome segregation. The presenceof multiple centrosomes in cancer cells suggests that this process is mis-regulated duringcarcinogenesis. This suggests that certain factors exist that license the progression ofcentrosome duplication and serve to inhibit further duplications during a single cell cycle.Recent studies suggest that the Ran/Crm1 complex not only regulates nucleocytoplasmictransport but is also independently involved in mitotic spindle assembly. Factors that arecapable of interacting with Ran/Crm1 through their nuclear export sequences, such ascyclins/cdks, p53 and Brca1/2, may potentially function as centrosome checkpoints akinto the G1/S and G2/M checkpoints of the cell cycle. Our recent findings indicate thatnucleophosmin, a protein whose trafficking is mediated by the Ran/Crm1 network, is oneof such checkpoint factors for maintaining proper centrosome duplication. We proposethat Ran/Crm1 may act as a ‘loading dock’ to coordinate various checkpoint factors inregulating the fidelity of centrosome duplication during cell cycle progression, and thedisruption of these processes may lead to genomic instability and an acceleration ofoncogenesis.  相似文献   

7.
In mammalian cells, the centrosome consists of a pair of centrioles and amorphous pericentriolar material. The pair of centrioles, which are the core components of the centrosome, duplicate once per cell cycle. Centrosomes play a pivotal role in orchestrating the formation of the bipolar spindle during mitosis. Recent studies have linked centrosomal activity on centrioles or centriole-associated structures to cytokinesis and cell cycle progression through G1 into the S phase. In this study, we have identified centrobin as a centriole-associated protein that asymmetrically localizes to the daughter centriole. The silencing of centrobin expression by small interfering RNA inhibited centriole duplication and resulted in centrosomes with one or no centriole, demonstrating that centrobin is required for centriole duplication. Furthermore, inhibition of centriole duplication by centrobin depletion led to impaired cytokinesis.  相似文献   

8.
The centrosome plays a fundamental role in organizing the interphase cytoskeleton and the mitotic spindle, and its protein complexity is modulated to support these functions. The centrosome must also duplicate itself once during each cell cycle, thus ensuring the formation of a bipolar spindle and its continuity through successive cell divisions. In this study, we have used a battery of antibodies directed against centrosomal components to study the general organization of the centrosome during the cell cycle and during the centrosome duplication process. We demonstrate that a subset of centrosomal proteins are arranged together to form a tubular pattern within the centrosome. The tubular conformation defined by these proteins has a polarity and is closed at one end. The centriole complement of the centrosome is normally placed near this end. We show that the "wall" of the tube is enriched in proteins such as CDC2, ninein, and pericentrin as well as gamma-tubulin. In addition, a subset of gamma-tubulin is localized to the "lumen" of the tube. We also demonstrate, for the first time, that antibody staining can be used to detect centrosome duplication allowing the identification of duplication intermediates. We show that one product of centrosome duplication is the replication of the tubular structure found within the centrosome. The position of the centriole duplexes prior to and during centrosome duplication is documented and a model of the morphogenesis of the centrosome during the duplication process is proposed.  相似文献   

9.
The mammalian SPD-2 ortholog Cep192 regulates centrosome biogenesis   总被引:2,自引:0,他引:2  
Centrosomes are the major microtubule-organizing centers of mammalian cells. They are composed of a centriole pair and surrounding microtubule-nucleating material termed pericentriolar material (PCM). Bipolar mitotic spindle assembly relies on two intertwined processes: centriole duplication and centrosome maturation. In the first process, the single interphase centrosome duplicates in a tightly regulated manner so that two centrosomes are present in mitosis. In the second process, the two centrosomes increase in size and microtubule nucleation capacity through PCM recruitment, a process referred to as centrosome maturation. Failure to properly orchestrate centrosome duplication and maturation is inevitably linked to spindle defects, which can result in aneuploidy and promote cancer progression. It has been proposed that centriole assembly during duplication relies on both PCM and centriole proteins, raising the possibility that centriole duplication depends on PCM recruitment. In support of this model, C. elegans SPD-2 and mammalian NEDD-1 (GCP-WD) are key regulators of both these processes. SPD-2 protein sequence homologs have been identified in flies, mice, and humans, but their roles in centrosome biogenesis until now have remained unclear. Here, we show that Cep192, the human homolog of C. elegans and D. melanogaster SPD-2, is a major regulator of PCM recruitment, centrosome maturation, and centriole duplication in mammalian cells. We propose a model in which Cep192 and Pericentrin are mutually dependent for their localization to mitotic centrosomes during centrosome maturation. Both proteins are then required for NEDD-1 recruitment and the subsequent assembly of gamma-TuRCs and other factors into fully functional centrosomes.  相似文献   

10.
The mechanisms that ensure centrosome duplication are poorly understood. In Caenorhabditis elegans, ZYG-1, SAS-4, SAS-5 and SPD-2 are required for centriole formation. However, it is unclear whether these proteins have functional homologues in other organisms. Here, we identify SAS-6 as a component that is required for daughter centriole formation in C. elegans. SAS-6 is a coiled-coil protein that is recruited to centrioles at the onset of the centrosome duplication cycle. Our analysis indicates that SAS-6 and SAS-5 associate and that this interaction, as well as ZYG-1 function, is required for SAS-6 centriolar recruitment. SAS-6 is the founding member of an evolutionarily conserved protein family that contains the novel PISA motif. We investigated the function of the human homologue of SAS-6. GFP-HsSAS-6 localizes to centrosomes and its overexpression results in excess foci-bearing centriolar markers. Furthermore, siRNA-mediated inactivation of HsSAS-6 in U2OS cells abrogates centrosome overduplication following aphidicolin treatment and interferes with the normal centrosome duplication cycle. Therefore, HsSAS-6 is also required for centrosome duplication, indicating that the function of SAS-6-related proteins has been widely conserved during evolution.  相似文献   

11.
The establishment of bipolar spindles during meiotic divisions ensures faithful chromosome segregation to prevent gamete aneuploidy. We analyzed centriole duplication, as well as centrosome maturation and separation during meiosis I and II using mouse spermatocytes. The first round of centriole duplication occurs during early prophase I, and then, centrosomes mature and begin to separate by the end of prophase I to prime formation of bipolar metaphase I spindles. The second round of centriole duplication occurs at late anaphase I, and subsequently, centrosome separation coordinates bipolar segregation of sister chromatids during meiosis II. Using a germ cell‐specific conditional knockout strategy, we show that Polo‐like kinase 1 and Aurora A kinase are required for centrosome maturation and separation prior to metaphase I, leading to the formation of bipolar metaphase I spindles. Furthermore, we show that PLK1 is required to block the second round of centriole duplication and maturation until anaphase I. Our findings emphasize the importance of maintaining strict spatiotemporal control of cell cycle kinases during meiosis to ensure proficient centrosome biogenesis and, thus, accurate chromosome segregation during spermatogenesis.  相似文献   

12.
The pericentriolar material (PCM) that accumulates around the centriole expands during mitosis and nucleates microtubules. Here, we show the cooperative roles of the centriole and PCM scaffold proteins, pericentrin and CDK5RAP2, in the recruitment of CEP192 to spindle poles during mitosis. Systematic depletion of PCM proteins revealed that CEP192, but not pericentrin and/or CDK5RAP2, was crucial for bipolar spindle assembly in HeLa, RPE1, and A549 cells with centrioles. Upon double depletion of pericentrin and CDK5RAP2, CEP192 that remained at centriole walls was sufficient for bipolar spindle formation. In contrast, through centriole removal, we found that pericentrin and CDK5RAP2 recruited CEP192 at the acentriolar spindle pole and facilitated bipolar spindle formation in mitotic cells with one centrosome. Furthermore, the perturbation of PLK1, a critical kinase for PCM assembly, efficiently suppressed bipolar spindle formation in mitotic cells with one centrosome. Overall, these data suggest that the centriole and PCM scaffold proteins cooperatively recruit CEP192 to spindle poles and facilitate bipolar spindle formation.  相似文献   

13.
Early cell biologists perceived centrosomes to be permanent cellular structures. Centrosomes were observed to reproduce once each cycle and to orchestrate assembly a transient mitotic apparatus that segregated chromosomes and a centrosome to each daughter at the completion of cell division. Centrosomes are composed of a pair of centrioles buried in a complex pericentriolar matrix. The bulk of microtubules in cells lie with one end buried in the pericentriolar matrix and the other extending outward into the cytoplasm. Centrioles recruit and organize pericentriolar material. As a result, centrioles dominate microtubule organization and spindle assembly in cells born with centrosomes. Centrioles duplicate in concert with chromosomes during the cell cycle. At the onset of mitosis, sibling centrosomes separate and establish a bipolar spindle that partitions a set of chromosomes and a centrosome to each daughter cell at the completion of mitosis and cell division. Centriole inheritance has historically been ascribed to a template mechanism in which the parental centriole contributed to, if not directed, assembly of a single new centriole once each cell cycle. It is now clear that neither centrioles nor centrosomes are essential to cell proliferation. This review examines the recent literature on inheritance of centrioles in animal cells.Key words: centrosome, centriol, spindle, mitosis, microtubule, cell cycle, checkpoints  相似文献   

14.
Centrosomes contain a pair of centrioles that duplicate once during the cell cycle togive rise to two mitotic spindle poles, each containing one old and one newcentriole. Centrosome duplication initiates at the G1/S transition in mammaliancells, and is completed during S and G2 phase. The localization of a number ofprotein kinases to the centrosome has revealed the importance of proteinphosphorylation in controlling the centrosome duplication cycle. Recent studieshave shown that polo-like kinase-2 is required for centriole duplication inmammalian cells. In this article I discuss the implication of these findings to ourcurrent understanding of centrosome duplication.  相似文献   

15.
The centrosome, an organelle comprising centrioles and associated pericentriolar material, is the major microtubule organizing center in animal cells. For the cell to form a bipolar mitotic spindle and ensure proper chromosome segregation at the end of each cell cycle, it is paramount that the cell contains two and only two centrosomes. Because the number of centrosomes in the cell is determined by the number of centrioles, cells have evolved elaborate mechanisms to control centriole biogenesis and to tightly coordinate this process with DNA replication. Here we review key proteins involved in centriole assembly, compare two major modes of centriole biogenesis, and discuss the mechanisms that ensure stringency of centriole number.  相似文献   

16.
Formation of the microtubule-based centriole is a poorly understood process that is crucial for duplication of the centrosome, the principal microtubule-organizing center of animal cells . Five proteins have been identified as being essential for centriole formation in Caenorhabditis elegans: the kinase ZYG-1, as well as the coiled-coil proteins SAS-4, SAS-5, SAS-6, and SPD-2 . The relationship between these proteins is incompletely understood, limiting understanding of how they contribute to centriole formation. In this study, we established the order in which these five proteins are recruited to centrioles, and we conducted molecular epistasis experiments expanding on earlier work. We find that SPD-2 is loaded first and is needed for the centriolar localization of the four other proteins. ZYG-1 recruitment is required thereafter for the remaining three proteins to localize to centrioles. SAS-5 and SAS-6 are recruited next and are needed for the presence of SAS-4, which is incorporated last. Our results indicate in addition that the presence of SAS-5 and SAS-6 allows diminution of centriolar ZYG-1. Moreover, astral microtubules appear dispensable for the centriolar recruitment of all five proteins. Several of these proteins have homologs in other metazoans, and we expect the assembly pathway that stems from our work to be conserved.  相似文献   

17.
Duplication of centrosomes once per cell cycle is essential for bipolar spindle formation and genome maintenance and is controlled in part by cyclin-dependent kinases (Cdks). Our study identifies Sfi1, a conserved component of centrosomes, as the first Cdk substrate required to restrict centrosome duplication to once per cell cycle. We found that reducing Cdk1 phosphorylation by changing Sfi1 phosphorylation sites to nonphosphorylatable residues leads to defects in separation of duplicated spindle pole bodies (SPBs, yeast centrosomes) and to inappropriate SPB reduplication during mitosis. These cells also display defects in bipolar spindle assembly, chromosome segregation, and growth. Our findings lead to a model whereby phosphoregulation of Sfi1 by Cdk1 has the dual function of promoting SPB separation for spindle formation and preventing premature SPB duplication. In addition, we provide evidence that the protein phosphatase Cdc14 has the converse role of activating licensing, likely via dephosphorylation of Sfi1.  相似文献   

18.
In vertebrate somatic cells, the centrosome functions as the major microtubule-organizing center (MTOC), which splits and separates to form the poles of the mitotic spindle. However, the role of the centriole-containing centrosome in the formation of bipolar mitotic spindles continues to be controversial. Cells normally containing centrosomes are still able to build bipolar spindles after their centrioles have been removed or ablated. In naturally occurring cellular systems that lack centrioles, such as plant cells and many oocytes, bipolar spindles form in the complete absence of canonical centrosomes. These observations have led to the notion that centrosomes play no role during mitosis. However, recent work has re-examined spindle assembly in the absence of centrosomes, both in cells that naturally lack them and those that have had them experimentally removed. The results of these studies suggest that an appreciation of microtubule network organization, both before and after nuclear envelope breakdown (NEB), is the key to understanding the mechanisms that regulate spindle assembly and the generation of bipolarity.Key words: centrosome, centriole, mitosis, spindle, cell cycle, meiosis, plant cell, microsurgery  相似文献   

19.
Centrosome duplication occurs under strict spatiotemporal regulation once per cell cycle, and it begins with cartwheel assembly and daughter centriole biogenesis at the lateral sites of the mother centrioles. However, although much of this process is understood, how centrosome duplication is initiated remains unclear. Here, we show that cartwheel assembly followed by daughter centriole biogenesis is initiated on the NEDD1-containing layer of the pericentriolar material (PCM) by the recruitment of SAS-6 to the mother centriole under the regulation of PLK4. We found that PLK4-mediated phosphorylation of NEDD1 at its S325 amino acid residue directly promotes both NEDD1 binding to SAS-6 and recruiting SAS-6 to the centrosome. Overexpression of phosphomimicking NEDD1 mutant S325E promoted cartwheel assembly and daughter centriole biogenesis initiations, whereas overexpression of nonphosphorylatable NEDD1 mutant S325A abolished the initiations. Collectively, our results demonstrate that PLK4-regulated NEDD1 facilitates initiation of the cartwheel assembly and of daughter centriole biogenesis in mammals.  相似文献   

20.
The centrosome, which consists of two centrioles and the surrounding pericentriolar material, is the primary microtubule-organizing center (MTOC) in animal cells. Like chromosomes, centrosomes duplicate once per cell cycle and defects that lead to abnormalities in the number of centrosomes result in genomic instability, a hallmark of most cancer cells. Increasing evidence suggests that the separation of the two centrioles (disengagement) is required for centrosome duplication. After centriole disengagement, a proteinaceous linker is established that still connects the two centrioles. In G2, this linker is resolved (centrosome separation), thereby allowing the centrosomes to separate and form the poles of the bipolar spindle. Recent work has identified new players that regulate these two processes and revealed unexpected mechanisms controlling the centrosome cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号