首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The extracellular domain of the mature form of ADAM12 consists of the metalloprotease, disintegrin, cysteine-rich, and epidermal growth factor (EGF)-like domains. The disintegrin, cysteine-rich, and EGF-like fragments have been shown previously to support cell adhesion via activated integrins or proteoglycans. In this study, we report that the entire extracellular domain of mouse ADAM12 produced in Drosophila S2 cells supported efficient adhesion and spreading of C2C12 myoblasts even in the absence of exogenous integrin activators. This adhesion was not mediated by beta1 integrins or proteoglycans, was myoblast-specific, and required the presence of both the metalloprotease and disintegrin/cysteine-rich domains of ADAM12. Analysis of the recombinant proteins by far-UV circular dichroism suggested that the secondary structures of the autonomously expressed metalloprotease domain and the disintegrin/cysteine-rich/EGF-like domains differ from the structures present in the intact extracellular domain. Furthermore, the intact extracellular domain (but not the metalloprotease domain or the disintegrin/cysteine-rich/EGF-like fragment alone) decreased the expression of the cell cycle inhibitor p21 and myogenin, two markers of differentiation, and inhibited C2C12 myoblast fusion. Thus, the novel protein-protein interaction reported here involving the extracellular domain of ADAM12 may have important biological consequences during myoblast differentiation.  相似文献   

2.
ADAM 23 (a disintegrin and metalloproteinase domain)/MDC3 (metalloprotease, disintegrin, and cysteine-rich domain) is a member of the disintegrin family of proteins expressed in fetal and adult brain. In this work we show that the disintegrin-like domain of ADAM 23 produced in Escherichia coli and immobilized on culture dishes promotes attachment of different human cells of neural origin, such as neuroblastoma cells (NB100 and SH-S(y)5(y)) or astrocytoma cells (U373 and U87 MG). Analysis of ADAM 23 binding to integrins revealed a specific interaction with alphavbeta3, mediated by a short amino acid sequence present in its putative disintegrin loop. This sequence lacks any RGD motif, which is a common structural determinant supporting alphavbeta3-mediated interactions of diverse proteins, including other disintegrins. alphavbeta3 also supported adhesion of HeLa cells transfected with a full-length cDNA for ADAM 23, extending the results obtained with the recombinant protein containing the disintegrin domain of ADAM 23. On the basis of these results, we propose that ADAM 23, through its disintegrin-like domain, may function as an adhesion molecule involved in alphavbeta3-mediated cell interactions occurring in normal and pathological processes, including progression of malignant tumors from neural origin.  相似文献   

3.
ADAMs (a disintegrin and metalloprotease domains) are metalloprotease and disintegrin domain-containing transmembrane glycoproteins with proteolytic, cell adhesion, cell fusion, and cell signaling properties. ADAM8 was originally cloned from monocytic cells, and its distinct expression pattern indicates possible roles in both immunology and neuropathology. Here we describe our analysis of its biochemical properties. In transfected COS-7 cells, ADAM8 is localized to the plasma membrane and processed into two forms derived either by prodomain removal or as remnant protein comprising the extracellular region with the disintegrin domain at the N terminus. Proteolytic removal of the ADAM8 propeptide was completely blocked in mutant ADAM8 with a Glu(330) to Gln exchange (EQ-A8) in the Zn(2+) binding motif (HE(330)LGHNLGMSHD), arguing for autocatalytic prodomain removal. In co-transfection experiments, the ectodomain but not the entire MP domain of ADAM8 was able to remove the prodomain from EQ-ADAM8. With cells expressing ADAM8, cell adhesion to a substrate-bound recombinant ADAM8 disintegrin/Cys-rich domain was observed in the absence of serum, blocked by an antibody directed against the ADAM8 disintegrin domain. Soluble ADAM8 protease, consisting of either the metalloprotease domain or the complete ectodomain, cleaved myelin basic protein and a fluorogenic peptide substrate, and was inhibited by batimastat (BB-94, IC(50) approximately 50 nm) but not by recombinant tissue inhibitor of matrix metalloproteinases 1, 2, 3, and 4. Our findings demonstrate that ADAM8 processing by autocatalysis leads to a potential sheddase and to a form of ADAM8 with a function in cell adhesion.  相似文献   

4.
Skeletal myoblasts grown in vitro and induced to differentiate either form differentiated multinucleated myotubes or give rise to quiescent, undifferentiated "reserve cells" that share several characteristics with muscle satellite cells. The mechanism of determination of reserve cells is poorly understood. We find that the expression level of the metalloprotease disintegrin ADAM12 is much higher in proliferating C2C12 myoblasts and in reserve cells than in myotubes. Inhibition of ADAM12 expression in differentiating C2C12 cultures by small interfering RNA is accompanied by lower expression levels of both quiescence markers (retinoblastoma-related protein p130 and cell cycle inhibitor p27) and differentiation markers (myogenin and integrin alpha7A isoform). Overexpression of ADAM12 in C2C12 cells under conditions that promote cell cycle progression leads to upregulation of p130 and p27, cell cycle arrest, and downregulation of MyoD. Thus, enhanced expression of ADAM12 induces a quiescence-like phenotype and does not stimulate differentiation. We also show that the region extending from the disintegrin to the transmembrane domain of ADAM12 and containing cell adhesion activity as well as the cytoplasmic domain of ADAM12 are required for ADAM12-mediated cell cycle arrest, while the metalloprotease domain is not essential. Our results suggest that ADAM12-mediated adhesion and/or signaling may play a role in determination of the pool of reserve cells during myoblast differentiation.  相似文献   

5.
ADAMs (a disintegrin and metalloprotease) comprise a family of cell surface proteins with protease and cell-binding activities. Using different forms and fragments of ADAM12 as substrates in cell adhesion and spreading assays, we demonstrated that alpha9beta1 integrin is the main receptor for ADAM12. However, when alpha9beta1 integrin is not expressed--as in many carcinoma cells--other members of the beta1 integrin family can replace its ligand binding activity. In attachment assays, the recombinant disintegrin domain of ADAM12 only supported alpha9 integrin-dependent tumor cell attachment, whereas full-length ADAM12 supported attachment via alpha9 integrin and other integrin receptors. Cells that attached to full-length ADAM12 in an alpha9 integrin-dependent manner also attached to ADAM12 in which the putative alpha9beta1 integrin-binding motif in the disintegrin domain had been mutated. This attachment was mediated through use of an alternate beta1 integrin. We also found that cell spreading in response to ADAM12 is dependent on the apparent level of integrin activation. Binding of cells to ADAM12 via the alpha9beta1 integrin was Mn(2+)-independent and resulted in attachment of cells with a rounded morphology; attachment of cells with a spread morphology required further activation of the alpha9beta1 integrin. We demonstrated that phosphoinositide-3-kinase appears to be central in regulating alpha9beta1 integrin cell spreading activity in response to ADAM12.  相似文献   

6.
We describe a novel interaction between the disintegrin and cysteine-rich (DC) domains of ADAM12 and the integrin alpha7beta1. Integrin alpha7beta1 extracted from human embryonic kidney 293 cells transfected with alpha7 cDNA was retained on an affinity column containing immobilized DC domain of ADAM12. 293 cells stably transfected with alpha7 cDNA adhered to DC-coated wells, and this adhesion was partially inhibited by 6A11 integrin alpha7 function-blocking antibody. The X1 and the X2 extracellular splice variants of integrin alpha7 supported equally well adhesion to the DC protein. Integrin alpha7beta1-mediated cell adhesion to DC had different requirements for Mn2+ than adhesion to laminin. Furthermore, integrin alpha7beta1-mediated cell adhesion to laminin, but not to DC, resulted in efficient cell spreading and phosphorylation of focal adhesion kinase (FAK) at Tyr397. We also show that adhesion of L6 myoblasts to DC is mediated in part by the endogenous integrin alpha7beta1 expressed in these cells. Since integrin alpha7 plays an important role in muscle cell growth, stability, and survival, and since ADAM12 has been implicated in muscle development and regeneration, we postulate that the interaction between ADAM12 and integrin alpha7beta1 may be relevant to muscle development, function, and disease. We also conclude that laminin and the DC domain of ADAM12 represent two functional ligands for integrin alpha7beta1, and adhesion to each of these two ligands via integrin alpha7beta1 triggers different cellular responses.  相似文献   

7.
ADAM13 is a member of the disintegrin and metalloprotease protein family that is expressed on cranial neural crest cells surface and is essential for their migration. ADAM13 is an active protease that can cleave fibronectin in vitro and remodel a fibronectin substrate in vivo. Using a recombinant secreted protein containing both disintegrin and cysteine-rich domains of ADAM13, we show that this "adhesive" region of the protein binds directly to fibronectin. Fibronectin fusion proteins corresponding to the various functional domains were used to define the second heparin-binding domain as the ADAM13 binding site. Mutation of the syndecan-binding site (PPRR --> PPTM) within this domain abolishes binding of the recombinant disintegrin and cysteine-rich domains of ADAM13. We further show that the adhesive disintegrin and cysteine-rich domain of ADAM13 can promote cell adhesion via beta(1) integrins. This adhesion requires integrin activation and can be prevented by antibodies to the cysteine-rich domain of ADAM13 and beta(1) integrin. Finally, wild type, but not the E/A mutant of ADAM13 metalloprotease domain, can be shed from the cell surface, releasing the metalloprotease domain associated with the disintegrin and cysteine-rich domains. This suggests that ADAM13 shedding may involve its own metalloprotease activity and that the released protease may interact with both integrins and extracellular matrix proteins.  相似文献   

8.
ADAM12 belongs to the transmembrane metalloprotease ADAM ("a disintegrin and metalloprotease") family. ADAM12 has been implicated in muscle cell differentiation and fusion, but its precise function remains unknown. Here, we show that ADAM12 is dramatically up-regulated in regenerated, newly formed fibers in vivo. In C2C12 cells, ADAM12 is expressed at low levels in undifferentiated myoblasts and is transiently up-regulated at the onset of differentiation when myoblasts fuse into multinucleated myotubes, whereas other ADAMs, such as ADAMs 9, 10, 15, 17, and 19, are expressed at all stages of differentiation. Using the yeast two-hybrid screen, we found that the muscle-specific alpha-actinin-2 strongly binds to the cytoplasmic tail of ADAM12. In vitro binding assays with GST fusion proteins confirmed the specific interaction. The major binding site for alpha-actinin-2 was mapped to a short sequence in the membrane-proximal region of ADAM12 cytoplasmic tail; a second binding site was identified in the membrane-distal region. Co-immunoprecipitation experiments confirm the in vivo association of ADAM12 cytoplasmic domain with alpha-actinin-2. Overexpression of the entire cytosolic ADAM12 tail acted in a dominant negative fashion by inhibiting fusion of C2C12 cells, whereas expression of a cytosolic ADAM12 lacking the major alpha-actinin-2 binding site had no effect on cell fusion. Our results suggest that interaction of ADAM12 with alpha-actinin-2 is important for ADAM12 function.  相似文献   

9.
ADAMs (a disintegrin and metalloprotease) are a family of proteins that possess functional adhesive and proteolytic domains. ADAM 28 (MDC-L) is expressed by human lymphocytes and contains a disintegrin-like domain that serves as a ligand for the leukocyte integrin, alpha4beta1. To elucidate which residues comprise the alpha4beta1 binding site in the ADAM 28 disintegrin domain, a charge-to-alanine mutagenesis strategy was utilized. Each alanine substitution mutant was evaluated and compared to the native sequence for its ability to support cell adhesion of the T-lymphoma cell line, Jurkat. This approach identified ADAM 28 residues Lys(437), Lys(442), Lys(455), Lys(459), Lys(460), Lys(469), and Glu(476) as being essential for alpha4beta1-dependent cell adhesion. The epitope for a function-blocking monoclonal antibody, Dis 1-1, was localized to the N-terminal end of the ADAM 28 disintegrin domain using these same charge-to-alanine mutants. Three distinct molecular models based upon the known structures of snake venom disintegrins suggested that residues contributing to alpha4beta1 recognition are aligned on one face of the domain. This study demonstrates that residues located outside of the disintegrin loop participate in integrin recognition of mammalian disintegrins.  相似文献   

10.
ADAM 9 is a member of the cellular metalloprotease/disintegrin/cysteine-rich (MDC) gene family, related to soluble snake venom metalloproteases (SVMP). ADAMs may play important roles in cell-cell fusion, cell-matrix interaction, and other cellular functions. To investigate catalytic activity of human ADAM 9 we have cloned and expressed the metalloprotease domain of human ADAM 9 in Pichia pastoris. The recombinant protein was purified in a three-step purification procedure and activity was detected against gelatin, beta-casein, and fibronectin. In addition we identified five normal and cancer cell lines expressing mRNA of human ADAM 9.  相似文献   

11.
Little is yet known about the biological and biochemical properties of the disintegrin-like domains of ADAM (a disintegrin and metalloprotease) proteins. Mouse ADAM 2 (mADAM 2; fertilin beta) is a sperm surface protein involved in murine fertilization. We produced recombinant proteins containing the disintegrin-like domain of mADAM 2 in both insect cells and in bacteria. The protein produced in insect cells (baculo D+C) contained a signal sequence followed by the disintegrin-like and cysteine-rich domains; it was purified from the medium of recombinant baculovirus-infected cells. A bacterial construct containing the disintegrin-like domain was produced in Escherichia coli as a glutathione S-transferase chimera. Baculo D+C, as well as the D domain of the bacterial construct (released with thrombin), bound to the microvillar surface of murine eggs. Using concentrations in the range of 1 to 5 microM, both recombinant proteins strongly inhibited sperm-egg binding and fusion; the baculovirus-produced protein exhibited a somewhat greater extent of inhibition (approximately 75 versus approximately 55% maximal inhibition). Substitution of alanine for each of the five charged residues within the disintegrin loop of mADAM 2 revealed a critical importance for the aspartic acid at position nine. Binding of both recombinant proteins to the egg was inhibited by the function blocking anti-alpha(6) monoclonal antibody, GoH3, but not by a nonfunction-blocking anti-alpha(6) monoclonal antibody. Binding was also inhibited by a peptide analogue of, and with an antibody against, the disintegrin loop of mADAM 2.  相似文献   

12.
The ADAMs (a disintegrin and metalloprotease) family of proteins is involved in a variety of cellular interactions, including cell adhesion and ecto- domain shedding. Here we show that ADAM 12 binds to cell surface syndecans. Three forms of recombinant ADAM 12 were used in these experiments: the cys-teine-rich domain made in Escherichia coli (rADAM 12-cys), the disintegrin-like and cysteine-rich domain made in insect cells (rADAM 12-DC), and full-length human ADAM 12-S tagged with green fluorescent protein made in mammalian cells (rADAM 12-GFP). Mesenchymal cells specifically and in a dose-dependent manner attach to ADAM 12 via members of the syndecan family. After binding to syndecans, mesenchymal cells spread and form focal adhesions and actin stress fibers. Integrin beta1 was responsible for cell spreading because function-blocking monoclonal antibodies completely inhibited cell spreading, and chondroblasts lacking beta1 integrin attached but did not spread. These data suggest that mesenchymal cells use syndecans as the initial receptor for the ADAM 12 cysteine-rich domain-mediated cell adhesion, and then the beta1 integrin to induce cell spreading. Interestingly, carcinoma cells attached but did not spread on ADAM 12. However, spreading could be efficiently induced by the addition of either 1 mM Mn(2+) or the beta1 integrin-activating monoclonal antibody 12G10, suggesting that in these carcinoma cells, the ADAM 12-syndecan complex fails to modulate the function of beta1 integrin.  相似文献   

13.
14.
ADAM 3 is a sperm surface glycoprotein that has been implicated in sperm-egg adhesion. Because little is known about the adhesive activity of ADAMs, we investigated the interaction of ADAM 3 disintegrin domains, made in bacteria and in insect cells, with murine eggs. Both recombinant proteins inhibited sperm-egg binding and fusion with potencies similar to that which we recently reported for the ADAM 2 disintegrin domain. Alanine scanning mutagenesis revealed a critical importance for the glutamine at position 7 of the disintegrin loop. Fluorescent beads coated with the ADAM 3 disintegrin domain bound to the egg surface. Bead binding was inhibited by an authentic, but not by a scrambled, peptide analog of the disintegrin loop. Bead binding was also inhibited by the function-blocking anti-alpha6 monoclonal antibody (mAb) GoH3, but not by a nonfunction blocking anti-alpha6 mAb, or by mAbs against either the alphav or beta3 integrin subunits. We also present evidence that in addition to the tetraspanin CD9, two other beta1-integrin-associated proteins, the tetraspanin CD81 as well as the single pass transmembrane protein CD98 are expressed on murine eggs. Antibodies to CD9 and CD98 inhibited in vitro fertilization and binding of the ADAM 3 disintegrin domain. Our findings are discussed in terms of the involvement of multiple sperm ADAMs and multiple egg beta1 integrin-associated proteins in sperm-egg binding and fusion. We propose that an egg surface "tetraspan web" facilitates fertilization and that it may do so by fostering ADAM-integrin interactions.  相似文献   

15.
ADAM disintegrin domains can support integrin-mediated cell adhesion. However, the profile of which integrins are employed for adhesion to a given disintegrin domain remains unclear. For example, we suggested that the disintegrin domains of mouse sperm ADAMs 2 and 3 can interact with the alpha6beta1 integrin on mouse eggs. Others concluded that these disintegrin domains interact instead with the alpha9beta1 integrin. To address these differing results, we first studied adhesion of mouse F9 embryonal carcinoma cells and human G361 melanoma cells to the disintegrin domains of mouse ADAMs 2 and 3. Both cell lines express alpha6beta1 and alpha9beta1 integrins at their surfaces. Antibodies to the alpha6 integrin subunit inhibited adhesion of both cell lines. An antibody that recognizes human alpha9 integrin inhibited adhesion of G361 cells. VLO5, a snake disintegrin that antagonizes alpha4beta1 and alpha9beta1 integrins, potently inhibited adhesion of both cell lines. We next explored expression of the alpha9 integrin subunit in mouse eggs. In contrast to our ability to detect alpha6beta1, we were unable to convincingly detect alpha9beta1 integrin on the surface of mouse eggs. Moreover, treatment of mouse eggs with 250 nm VLO5, which is 250 fold over its approximately IC(50) for inhibition of somatic cell adhesion, had minimal effect on sperm-egg binding or fusion. We did detect alpha9 integrin protein on epithelial cells of the oviduct. Additional studies showed that antibodies to the alpha6 and alpha7 integrins additively inhibited adhesion of mouse trophoblast stem cells and that an antibody to the alpha4 integrin inhibited adhesion of MOLT-3 cells to these disintegrin domains: Our data suggest that multiple integrins (on the same cell) can participate in adhesion to a given ADAM disintegrin domain and that interactions between ADAMs and integrins may be important for sperm transit through the oviduct.  相似文献   

16.
The interaction of lymphocytes with other cells is critical for normal immune surveillance and response. MDC-L (ADAM 28), a member of the ADAM (a disintegrin and metalloprotease) protein family, is expressed on the surface of human lymphocytes. ADAMs possess a disintegrin-like domain similar in sequence to small non-enzymatic snake venom peptides that act as integrin antagonists. We report here that the disintegrin domain of MDC-L is recognized by the leukocyte integrin alpha(4)beta(1). Recombinant Fc fusion proteins possessing the disintegrin domain of MDC-L supported adhesion of the T-lymphoma cell line, Jurkat, in a concentration- and divalent cation-dependent manner. Adhesion of Jurkat cells to the disintegrin domain of MDC-L was inhibited by an anti-MDC-L monoclonal antibody (mAb), Dis1-1. The epitope for mAb Dis1-1 was localized within 59 residues of the disintegrin domain. Recombinant expression of this 59-residue fragment of the disintegrin domain also supported cell adhesion. Adhesion of Jurkat cells to the MDC-L disintegrin domain was specifically inhibited by anti-alpha(4) and anti-beta(1) function-blocking mAbs. Furthermore, adhesion of various cell lines to MDC-L correlated with expression of the integrin alpha(4)-subunit. Transfected K562 cells expressing alpha(4)beta(1) adhered to the disintegrin domain in contrast to non-transfected K562 cells. We further investigated the binding of recombinant MDC-L disintegrin domain (rDis-Fc) in solution. The rDis-Fc was found to bind to Jurkat cells in solution in a concentration-dependent and saturable manner. Both adhesion and solution binding of rDis-Fc was inhibited by the alpha(4)beta(1) ligand mimetic CS-1 peptide. Additionally, recognition of the MDC-L disintegrin domain required "activation" of lymphocyte beta(1) integrins. The interaction of MDC-L with alpha(4)beta(1) may potentially regulate metalloprotease function by targeting or sequestering the active protease on the cell surface. These results suggest a potential role for the lymphocyte ADAM, MDC-L, in the interaction of lymphocytes with alpha(4)beta(1)-expressing leukocytes.  相似文献   

17.
Satellite cells are myogenic precursor cells, participating in growth, and regeneration of skeletal muscles. The proteins that play a role in myogenesis are integrins. In this report, we show that the integrin alpha3 subunit is expressed in quiescent satellite cells and activated myoblasts. We also find that in myoblasts the integrin alpha3 subunit is localized at cell-cell and cell-extracellular matrix contacts. We notice that increase in protein and mRNA encoding the integrin alpha3 subunit accompanies myoblast differentiation. Using double immunofluorescence and immunoprecipitation experiments, we demonstrate that the integrin alpha3 subunit co-localizes with actin, and binds the integrin beta1 subunit and ADAM12, suggesting that the complex alpha3beta1/ADAM12 is probably involved in myoblast fusion. Importantly, overexpression of the full-length integrin alpha3 subunit increases myoblast fusion whereas an antibody against its extracellular domain inhibits fusion. These data demonstrate that the integrin alpha3 subunit may contribute to satellite cell activation and then myoblast adhesion and fusion.  相似文献   

18.
Insulin-like growth factor-binding protein (IGFBP)-3 binds the insulin-like growth factors with high affinity and modulates their actions. Proteolytic cleavage of IGFBP-3 may regulate insulin-like growth factor bioavailability. IGFBP-3 is extensively degraded in serum during pregnancy; however, as yet the pregnancy-specific protease, or proteases, have not been identified. We utilized a yeast two-hybrid assay and a human placental cDNA library to investigate IGFBP-3-interacting proteins. A disintegrin and metalloprotease-12 (ADAM 12), a member of a family of metalloprotease disintegrins that is highly expressed in placental tissue, was identified as interacting with IGFBP-3. This interaction involved the cysteine-rich domain of ADAM 12. Unlike other members of this family of disintegrin metalloproteases that are membrane proteins, ADAM 12 exists as an alternatively spliced soluble secreted protein. To verify the interaction between ADAM 12 and IGFBP-3, an expression construct containing an ADAM 12-S cDNA was transfected into COS-1 cells. Co-precipitation was observed when conditioned medium was analyzed by immunoprecipitation with an antibody against either ADAM 12 or IGFBP-3 followed by Western blotting with anti-IGFBP-3 or anti-ADAM 12. Although minimal proteolysis of IGFBP-3 was observed in conditioned medium from control cells, this was increased approximately 4-fold in conditioned medium from ADAM 12-S-transfected cells. Recombinant ADAM 12-S partially purified from conditioned medium on a heparin-Sepharose column also proteolyzed IGFBP-3. The degradation pattern was similar to that seen with pregnancy serum, and the presence of ADAM 12-S in serum during pregnancy was confirmed. The data suggest that ADAM 12-S has IGFBP-3 protease activity, and it may contribute to the IGFBP-3 protease activity present in pregnancy serum.  相似文献   

19.
The ADAMs (a disintegrin and metalloprotease) comprise a large family of multidomain proteins with cell-binding and metalloprotease activities. The ADAM12 cysteine-rich domain (rADAM12-cys) supports cell attachment using syndecan-4 as a primary cell surface receptor that subsequently triggers beta(1) integrin-dependent cell spreading, stress fiber assembly, and focal adhesion formation. This process contrasts with cell adhesion on fibronectin, which is integrin-initiated but syndecan-4-dependent. In the present study, we investigated ADAM12/syndecan-4 signaling leading to cell spreading and stress fiber formation. We demonstrate that syndecan-4, when present in significant amounts, promotes beta(1) integrin-dependent cell spreading and stress fiber formation in response to rADAM12-cys. A mutant form of syndecan-4 deficient in protein kinase C (PKC)alpha activation or a different member of the syndecan family, syndecan-2, was unable to promote cell spreading. GF109203X and G?6976, inhibitors of PKC, completely inhibited ADAM12/syndecan-4-induced cell spreading. Expression of syndecan-4, but not syn4DeltaI, resulted in the accumulation of activated beta(1) integrins at the cell periphery in Chinese hamster ovary beta1 cells as revealed by 12G10 staining. Further, expression of myristoylated, constitutively active PKCalpha resulted in beta(1) integrin-dependent cell spreading, but additional activation of RhoA was required to induce stress fiber formation. In summary, these data provide novel insights into syndecan-4 signaling. Syndecan-4 can promote cell spreading in a beta(1) integrin-dependent fashion through PKCalpha and RhoA, and PKCalpha and RhoA likely function in separate pathways.  相似文献   

20.
Sperm–egg plasma membrane fusion is preceded by sperm adhesion to the egg plasma membrane. Cell–cell adhesion frequently involves multiple adhesion molecules on the adhering cells. One sperm surface protein with a role in sperm–egg plasma membrane adhesion is fertilin, a transmembrane heterodimer (α and β subunits). Fertilin α and β are the first identified members of a new family of membrane proteins that each has the following domains: pro-, metalloprotease, disintegrin, cysteine-rich, EGF-like, transmembrane, and cytoplasmic domain. This protein family has been named ADAM because all members contain a disintegrin and metalloprotease domain. Previous studies indicate that the disintegrin domain of fertilin β functions in sperm–egg adhesion leading to fusion. Full length cDNA clones have been isolated for five ADAMs expressed in mouse testis: fertilin α, fertilin β, cyritestin, ADAM 4, and ADAM 5. The presence of the disintegrin domain, a known integrin ligand, suggests that like fertilin β, other testis ADAMs could be involved in sperm adhesion to the egg membrane. We tested peptide mimetics from the predicted binding sites in the disintegrin domains of the five testis-expressed ADAMs in a sperm–egg plasma membrane adhesion and fusion assay. The active site peptide from cyritestin strongly inhibited (80–90%) sperm adhesion and fusion and was a more potent inhibitor than the fertilin β active site peptide. Antibodies generated against the active site region of either cyritestin or fertilin β also strongly inhibited (80–90%) both sperm–egg adhesion and fusion. Characterization of these two ADAM family members showed that they are both processed during sperm maturation and present on mature sperm. Indirect immunofluorescence on live, acrosome-reacted sperm using antibodies against either cyritestin or fertilin β showed staining of the equatorial region, a region of the sperm membrane that participates in the early steps of membrane fusion. Collectively, these data indicate that a second ADAM family member, cyritestin, functions with fertilin β in sperm–egg plasma membrane adhesion leading to fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号