共查询到20条相似文献,搜索用时 0 毫秒
1.
Raghavan V 《Journal of plant physiology》1992,140(4):434-440
Poly(A)-RNA fractions of dormant, dark-imbibed (non-germinating) and photoinduced (germinating) spores of Onoclea sensibilis were poor templates in the rabbit reticulocyte lysate protein synthesizing system, but the translational efficiency of poly(A)+RNA was considerably higher than that of unfractionated RNA. Poly(A)+RNA isolated from photoinduced spores had a consistently higher translational efficiency than poly(A)+RNA from dark-imbibed spores. Analysis of the translation products by one-dimensional polyacrylamide gel electrophoresis showed no qualitative differences in the mRNA populations of dormant, dark-imbibed, and photoinduced spores. However, poly(A)+RNA from dark-imbibed spores appeared to encode in vitro fewer detectable polypeptides at a reduced intensity than photoinduced spores. A DNA clone encoding the large subunit of maize ribulose bisphosphate carboxylase hybridized at strong to moderate intensity to RNA isolated from dark-imbibed spores, indicating the absence of mRNA degradation. Although alpha-amanitin did not inhibit the germination of spores, the drug prevented the elongation of the rhizoid and protonemal initial with a concomitant effect on the synthesis of poly(A)+RNA. These results are consistent with the view that some form of translational control involving stored mRNA operates during dark-imbibition and photoinduced germination of spores. 相似文献
2.
3.
A library of complementary DNA (cDNA) clones has been prepared from poly(A)+RNA of spores of the sensitive fern, Onoclea sensibilis L. By differential hybridization with labeled probes made to poly(A)+ RNA of spores, gametophytes and leaves, two spore-specific clones (pOSS68 and pOSS194) were selected and characterized. Northern blot analysis showed that RNA sequences homologous to the two cDNA clones first appear in the post-meiotic spore and increase in abundance during spore maturity. Both RNA sequences decay during photoinduced germination of the spores and do not reappear in the gametophytes. In spores imbibed in the dark under conditions which do not favor germination, no significant decrease in pOSS194-mRNA abundance is noted. In contrast, the decrease in pOSS68 mRNA in dark-imbibed spores parallels that observed in photoinduced spores. The predicted amino-acid sequence of pOSS194 has a striking similarity to the early light-inducible proteins expressed during the greening of etiolated pea and barley seedlings, whereas that of pOSS68 shows some homology to proteins encoded by late-embryogenesis-abundant mRNAs of angiosperm embryos.Abbreviations bp
base pairs
- cDNA
complementary DNA
- ds
double-stranded
- ELIP
early light-inducible proteins
- LEA
late embryogenesis abundant
- nt
nucleotide
- ss
single stranded
This work was partially supported by a NASA grant (NAGW-901) and by an allocation from the Research Challenge Investigators' Fund of the Ohio State University to V.R. Thanks are due to Mr. Clayton L. Rugh for sequencing our clones and to Dr. Paul A. Fuerst for help in the computer search of sequence alignments. 相似文献
4.
During spore germination in the fern, Onoclea sensibilis L., the nucleus moves from a central position to one end, and an asymmetrical cell division partitions the spore into two cells of greatly unequal size. The smaller cell differentiates directly into a rhizoid, whereas the larger cell and its derivatives give rise to the prothallus. In the presence of 5 mM caffeine, the nuclei of most of the spores undergo mitotic replication, whereas cell wall formation is blocked. Multinucleate single cells are produced, which are capable of growth, but no rhizoid differentiation occurs. In some cases a partial cell wall is produced, but the nucleus moves through the discontinuity back to the center of the spore, and the enucleate, incompletely partitioned small “cell” fails to differentiate into a rhizoid. In less than 1% of the spores a broad protuberance, whose wall is yellow-brown, is formed in a multinucleate single cell. The color, staining reaction to ruthenium red, and ultrastructural appearance of the protuberance resemble that of the rhizoid wall. It appears that infrequently in the caffeine-treated spores, a feature which is characteristic of rhizoids is expressed, in the absence of asymmetric cell division, in a cell which otherwise is unable to produce a rhizoid. The results are interpreted to mean that the spore has a highly localized, persistent differentiated region. For rhizoid differentiation to occur, a nucleus must be confined in that region – a confinement which normally is accomplished by the geometrically asymmetric first cell division of germination. 相似文献
5.
Phytochrome is confirmed to be the photoreceptor pigment in the germination response of Onoclea sensibilis L. by demonstrating red-far-red (R-FR) photoreversibility. External Ca2+ is required for this response with a threshold at a submicromolar concentration. Ethylene glycol-bis(-amino-ethyl ether)-N,N,N,N-tetraacetic acid, La3+ and Co2+ reversibly inhibit germination. Lanthanum only inhibits germination when applied before or during irradiation, indicating that the external Ca2+ requirement is transient, although in the absence of Ca2+ the R-stimulated system remains maximally poised to accept the ion for over 4 h after irradiation. The ability to respond to Ca2+ 4.1 h after R-irradiation is not reversed by FR-irradiation, indicating that Ca2+ transport has been uncoupled from phytochrome. Barium and Sr2+, but not Mg2+ can substitute for Ca2+. Artificially increasing the concentration of intracellular free Ca2+ with the ionophore A 23187 stimulates germination in the dark. The Ca2+-calmodulin antagonists, trifluoperizine and chlorpromazine, reversibly inhibit germination. Calcium is required in phytochrome-mediated fern spore germination; it may be acting as a second messenger.Abbreviations EGTA
ethylene glycol-bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid
- FR
far-red light
- R
fed light 相似文献
6.
Gene Activity during Germination of Spores of the Fern, Onoclea sensibilis: RNA and Protein Synthesis and the Role of Stored mRNA 总被引:1,自引:0,他引:1
Pattern of 3H-uridine incorporation into RNA of spores of Onocleasensibilis imbibed in complete darkness (non-germinating conditions)and induced to germinate in red light was followed by oligo-dTcellulose chromatography, gel electrophoresis coupled with fluorographyand autoradiography. In dark-imbibed spores, RNA synthesis wasinitiated about 24 h after sowing, with most of the label accumulatingin the high mol. wt. poly(A)RNA fraction. There was noincorporation of the label into poly(A) + RNA until 48 h aftersowing. In contrast, photo-induced spores began to synthesizeall fractions of RNA within 12 h after sowing and by 24 h, incorporationof 3H-uridine into RNA of irradiated spores was nearly 70-foldhigher than that into dark-imbibed spores. Protein synthesis,as monitored by 3H-arginine incorporation into the acid-insolublefraction and by autoradiography, was initiated in spores within12 h after sowing under both conditions. Autoradiographicexperiments also showed that the onset of protein synthesisin the cytoplasm of the germinating spore is independent ofthe transport of newly synthesized nuclear RNA. One-dimensionalsodium dodecyl sulphate-polyacrylamide gel electrophoresis of35S-methionine-labelled proteins revealed a good correspondencebetween proteins synthesized in a cell-free translation systemdirected by poly(A) +RNA of dormant spores and those synthesizedin vivo by dark-imbibed and photo-induced spores. These resultsindicate that stored mRNAs of O. sensibilis spores are functionallycompetent and provide templates for the synthesis of proteinsduring dark-imbibition and germination. Key words: Onoclea sensibilis, fern spore germination, gene expression, protein synthesis, sensitive fern, stored mRNA 相似文献
7.
Summary Germinating spores of the sensitive fern,Onoclea sensibilis L., undergo premitotic nuclear migration before a highly asymmetric cell division partitions each spore into a large protonemal cell and a small rhizoid initial. Nuclear movement and subsequent rhizoid formation were inhibited by the microtubule (MT) inhibitors, colchicine, isopropyl-N-3-chlorophenyl carbamate (CIPC) and griseofulvin. Colchicine prevented polar nuclear movement and cell division so that spores developed into enlarged, uninucleate single cells. CIPC and griseofulvin prevented nuclear migration, but not cell division, so that spores divided into daughter cells of approximately equal size. In colchicine-treated spores, MT were not observed at any time during germination. CIPC prevented MT formation at a time coincident with nuclear movement in the control and caused a disorientation of the spindle MT. Both colchicine and CIPC appeared to act at a time prior to the onset of normal nuclear movement. The effects of colchicine were reversible but those of CIPC were not. Cytochalasin b had no effect upon nuclear movement or rhizoid differentiation. These results suggests that MT mediate nuclear movement and that a highly asymmetric cell division is essential for rhizoid differentiation. 相似文献
8.
FRED R. GANDERS 《Botanical journal of the Linnean Society. Linnean Society of London》1972,65(2):211-221
Sporophytes from natural populations of Thelypteris palustris and Onoclea sensibilis were subjected to breeding tests to reveal the presence of recessive lethal alleles in their genotypes. All sporophytes were found to be heterozygous for recessive sporophytic lethals. Despite the capability for producing completely homozygous genotypes by intragametophytic self-fertilization, ferns in natural populations seem to retain considerable genetic loads of deleterious recessive alleles. It is suggested that natural selection operates to strongly favour heterozygous rather than homozygous sporophytes under most conditions. 相似文献
9.
Protease activities were detected in quiescent and germinating spores of the ostrich fern (Matteuccia struthiopteris [L.] Todaro). Peak endopeptidase, aminopeptidase, and carboxypeptidase activities were detected 12 to 24 hours after spores began imbibing under light. There was a correlation between activities of proteases, the onset of a decline in levels of soluble protein, and an increase in levels of free amino acids. The earliest visible event of spore germination, breakage of the spore coat and protrusion of a rhizoid cell, was observed after peak protease activity, 48 to 72 hours after the start of imbibition. Results of this study demonstrate similarities in the pattern of protease activities during germination of ostrich fern spores to those of some seeds. 相似文献
10.
11.
12.
Experiments were designed to test the effects of aflatoxin B1 (AFB1) on germination and subsequent development of the gametophytes of the sensitive fern Onoclea sensibilis. AFB1 concentrations used were 0, 2.5, 5.0, 7.5, 10.0 and 12.5 M.Preliminary studies indicated that, under all AFB1 concentrations tested, germination was maximum after 144 hrs. Additional studies revealed that during this time period protonemal growth was in the log phase.Percent germination was inhibited by increasing concentrations of AFB1; a 50% inhibition was noted at 12.5 M. In addition, increasing concentrations of AFB1 caused a reduction in the total number of cells per protonema. Preliminary analysis indicated that this was caused by a reduction of the rate of cell production rather than total inhibition of cell division. A comparison of the doseresponse curves for both of the above effects demonstrated that sensitivity to AFB1 starts at 2.5 M. This may indicate that AFB1 is acting on a process common to both phenomena.The fern spore germination system could be a simple model system in which to study the site and mode of action of AFB1. 相似文献
13.
14.
Regulation of Protein Synthesis during Photomorphogenesis of Gametophytes of the Fern Onoclea sensibilis 下载免费PDF全文
Gametophytes of the fern Onoclea sensibilis grow as filaments in the dark and in red light and become planar in blue light. Pulse-labeling 4-day-old gametophytes with [35S]methionine at different times after transfer to dark, red, and blue light environments revealed higher rates of amino acid uptake and protein synthesis in blue light than in red light or in the dark. Characterization of the extant and newly synthesized soluble proteins by one- and two-dimensional gel electrophoresis showed that the patterns of protein accumulation and synthesis in gametophytes exposed to short periods of red or blue light were qualitatively indistinguishable from those of gametophytes maintained in the dark. However, some striking increases and decreases in the levels of certain polypeptides were noted and these changes were accentuated during continued growth of gametophytes in the different environments. The results show that photomorphogenesis of gametophytes of O. sensibilis is associated with quantitative rather than qualitative changes in the population of mRNAs available for translation. 相似文献
15.
16.
17.
18.
Synthesis of protein and RNA for initiation and growth of the protonema during germination of bracken fern spore 总被引:1,自引:0,他引:1
V Raghavan 《Experimental cell research》1971,65(2):401-407
Cycloheximide inhibited initiation and elongation of the protonemal cell during germination of the spores of bracken fern. Incorporation of 14C-leucine into protein was also profoundly affected by the drug. Concentration of actinomycin D sufficient to inhibit incorporation of 3Huridine into heavy RNA fractions of spores did not prevent initiation of the protonema, but inhibited its subsequent elongation. Protein synthesis during initiation and growth of protonema was not appreciably sensitive to actinomycin D. As in the case of rhizoid initiation, protein synthesis necessary for initiation of protonema during germination appears to involve preformed messenger RNA. 相似文献
19.
Early protein synthesis during germination of barley embryos and its relationship to RNA synthesis 总被引:1,自引:0,他引:1
In barley embryo, protein synthesis as judged from the incorporationof labelled precursors, starts at about 15 min after the commencementof germination. Evidence suggests that these early proteinsare essential for germination and are programmed by a conservedpolyadenylate-containing mRNA, preserved in dry embryos. Althoughlow DNA-dependent RNA polymerase activity is present in drybarley embryos, RNA synthesis does not commence immediatelyafter water imbibition. It is initiated only after 2 hr of germinationand its synthesis requires the presence of early proteins. Furthermore,the activity of RNA polymerase increases with an increase ingermination time and after 40 hr of germination, the activityof RNA polymerase is about fivefold higher than that in dryembryo. However, cydoheximide completely blocks the enhancedactivity of RNA polymerase, suggesting a role of early proteinsin the initiation of new RNA synthesis in this developmentalsystem. (Received October 26, 1979; ) 相似文献
20.
Mikulík K Bobek J Bezousková S Benada O Kofronová O 《Biochemical and biophysical research communications》2002,299(2):335-342
Dormant aerial spores of Streptomyces granaticolor contain pre-existing pool of mRNA and active ribosomes for rapid translation of proteins required for earlier steps of germination. Activated spores were labeled for 30 min with [35S]methionine/cysteine in the presence or absence of rifamycin (400 microg/ml) and resolved by two-dimensional electrophoresis. About 320 proteins were synthesized during the first 30 min of cultivation at the beginning of swelling, before the first DNA replication. Results from nine different experiments performed in the presence of rifamycin revealed 15 protein spots. Transition from dormant spores to swollen spores is not affected by the presence of rifamycin but further development of spores is stopped. To support existence of pre-existing pool of mRNA in spores, cell-free extract of spores (S30 fraction) was used for in vitro protein synthesis. These results indicate that RNA of spores possesses mRNA functionally competent and provides templates for protein synthesis. Cell-free extracts isolated from spores, activated spores, and during spore germination were further examined for in vitro protein phosphorylation. The analyses show that preparation from dormant spores catalyzes phosphorylation of only seven proteins. In the absence of phosphatase inhibitors, several proteins were partially dephosphorylated. The activation of spores leads to a reduction in phosphorylation activity. Results from in vitro phosphorylation reaction indicate that during germination phosphorylation/dephosphorylation of proteins is a complex function of developmental changes. 相似文献