首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Small lakes in northern latitudes represent a significant source of CH4 to the atmosphere that is predicted to increase with warming in the Arctic. Yet, whole-lake CH4 budgets are lacking as are measurements of δ13C-CH4 and δ2H-CH4. In this study, we quantify spatial variability of diffusive and ebullitive fluxes of CH4 and corresponding δ13C-CH4 and δ2H-CH4 in a small, Arctic lake system with fringing wetland in southwestern Greenland during summer. Net CH4 flux was highly variable, ranging from an average flux of 7 mg CH4 m?2 d?1 in the deep-water zone to 154 mg CH4 m?2 d?1 along the lake margin. Diffusive flux accounted for ~8.5 % of mean net CH4 flux, with plant-mediated and ebullitive flux accounting for the balance of the total net flux. Methane content of emitted ebullition was low (mean ± SD 10 ± 17 %) compared to previous studies from boreal lakes and wetlands. Isotopic composition of net CH4 emissions varied widely throughout the system, with δ13C-CH4 ranging from ?66.2 to ?55.5 ‰, and δ2H-CH4 ranging from ?345 to ?258 ‰. Carbon isotope composition of CH4 in ebullitive flux showed wider variation compared to net flux, ranging from ?69.2 to ?49.2 ‰. Dissolved CH4 concentrations were highest in the sediment and decreased up the water column. Higher concentrations of CH4 in the hypoxic deep water coincided with decreasing dissolved O2 concentrations, while methanotrophic oxidation dominated in the epilimnion based upon decreasing concentrations and increasing values of δ13C-CH4 and δ2H-CH4. The most depleted 13C- and 2H-isotopic values were observed in profundal bottom waters and in subsurface profundal sediments. Based upon paired δ13C and δ2H observations of CH4, acetate fermentation was likely the dominant production pathway throughout the system. However, isotopic ratios of CH4 in deeper sediments were consistent with mixing/transition between CH4 production pathways, indicating a higher contribution of the CO2 reduction pathway. The large spatial variability in fluxes of CH4 and in isotopic composition of CH4 throughout a single lake system indicates that the underlying mechanisms controlling CH4 cycling (production, consumption and transport) are spatially heterogeneous. Net flux along the lake margin dominated whole-lake flux, suggesting the nearshore littoral area dominates CH4 emissions in these systems. Future studies of whole-lake CH4 budgets should consider this significant spatial heterogeneity.  相似文献   

2.
Dzyuban  A. N. 《Microbiology》2002,71(1):98-104
The intensity of the microbiological processes of methane formation (MF) and methane oxidation (MO) was determined in the sediments and water of different types of Baltic lakes. The emission of methane from the lake sediments and methane distribution in the water column of the lakes were studied as functions of the lake productivity and hydrologic conditions. During summers, the intensity of MF in the lake sediments and waters varied from 0.001 to 106 ml CH4/(dm3 day) and from 0 to 3.2 ml CH4/(l day), respectively, and the intensity of MO in the sediments and water varied from 0 to 11.2 ml CH4/(dm3 day) and from 0 to 1.1 ml CH4/(l day), respectively. The total methane production (MP) in the lakes varied from 15 to 5000 ml CH4/(m2 day). In anoxic waters, the MP comprised 9–18% of the total PM in the lakes. The consumption of organic carbon for methanogenesis varied from 0.03 to 9.7 g/(m2 day). The role of the methane cycle in the degradation of organic matter in the lakes increased with their productivity.  相似文献   

3.
杨乐 《生态学杂志》2020,39(4):1338-1348
传统观点认为,甲烷(CH4)产生于严格的厌氧环境,在有氧环境中容易被氧化,但许多湖泊表层有氧水体出现了CH4过饱和现象,这种现象被称为"甲烷悖论"现象。为了解释湖泊"甲烷悖论"现象,本文根据湖泊表层CH4的来源,归纳出"外来假说"和"自产假说"。"外来假说"假说认为,岸边浅水区底泥或消落区土壤产生CH4向湖心表层水体横向扩散传输(FL),这种假说适应于岸边富含有机质的小型浅水湖泊。"自产假说"认为,湖心表层水体中产甲烷古生菌原位产生CH4(P),这种假说适应于山区大型深水湖泊。此外,湖泊表层有氧水体中CH4的来源还有湖泊周围河流的输入(FR)、沉淀物或次表层水体的CH4垂直向上湍流扩散(FZ)、气泡CH4溶解在表层水体中(FD)等,而湖泊表层有氧水体中CH4的损耗有"水-气"界面上气体排放(E)、CH4氧化(O)等。在厘清湖泊表层水体中CH4收支的基础上,建立CH4质量收支平衡模型,有助于客观认识湖泊表层水体中CH4的来源。实际上,湖泊表层水体中过饱和甲烷的来源与湖泊的环境特性有关,但数据分析方法、取样时段、湖泊环境条件等差异,容易造成"外来假说"和"自产假说"之争。  相似文献   

4.
This study evaluates rates and pathways of methane (CH4) oxidation and uptake using 14C‐based tracer experiments throughout the oxic and anoxic waters of ferruginous Lake Matano. Methane oxidation rates in Lake Matano are moderate (0.36 nmol L?1 day?1 to 117 μmol L?1 day?1) compared to other lakes, but are sufficiently high to preclude strong CH4 fluxes to the atmosphere. In addition to aerobic CH4 oxidation, which takes place in Lake Matano's oxic mixolimnion, we also detected CH4 oxidation in Lake Matano's anoxic ferruginous waters. Here, CH4 oxidation proceeds in the apparent absence of oxygen (O2) and instead appears to be coupled to some as yet uncertain combination of nitrate (), nitrite (), iron (Fe) or manganese (Mn), or sulfate () reduction. Throughout the lake, the fraction of CH4 carbon that is assimilated vs. oxidized to carbon dioxide (CO2) is high (up to 93%), indicating extensive CH4 conversion to biomass and underscoring the importance of CH4 as a carbon and energy source in Lake Matano and potentially other ferruginous or low productivity environments.  相似文献   

5.
Methane efflux was studied in stands of three emergent macrophyte species (Equisetum fluviatile, Schoenoplectus lacustris and Phragmites australis) commonly found in the littoral zone of boreal lakes. In vegetation stands with relatively low methane (CH4) emissions (<0.3 mol m?2 (ice‐free period)?1), the seasonal variation of CH4 efflux was better correlated with the dynamics of plant growth than variation in sediment temperature. In dense and productive vegetation stands that released high amounts of CH4 (2.3–7.7 mol m?2 (ice‐free period)?1), the seasonal variation in CH4 efflux was correlated with sediment temperature, indicating that methanogens were more limited by temperature than substrate supply. The bottom type at the growth site of the emergent plants significantly influenced the ratio of CH4 efflux to aboveground biomass of plants (Eff : B). The lowest Eff : B ratio was found in E. fluviatile stands growing on sand bottom under experimental conditions and the highest in P. australis‐dominated littoral areas accumulating detritus from external sources. The future changes expected in the hydrology of boreal lakes and rivers because of climatic warming may impact the growth conditions of aquatic macrophytes as well as decomposition and accumulation of detritus and, thus, CH4 effluxes from boreal lakes.  相似文献   

6.

Northern lakes are a source of greenhouse gases to the atmosphere and contribute substantially to the global carbon budget. However, the sources of methane (CH4) to northern lakes are poorly constrained limiting our ability to the assess impacts of future Arctic change. Here we present measurements of the natural groundwater tracer, radon, and CH4 in a shallow lake on the Yukon-Kuskokwim Delta, AK and quantify groundwater discharge rates and fluxes of groundwater-derived CH4. We found that groundwater was significantly enriched (2000%) in radon and CH4 relative to lake water. Using a mass balance approach, we calculated average groundwater fluxes of 1.2 ± 0.6 and 4.3 ± 2.0 cm day−1, respectively as conservative and upper limit estimates. Groundwater CH4 fluxes were 7—24 mmol m−2 day−1 and significantly exceeded diffusive air–water CH4 fluxes (1.3–2.3 mmol m−2 day−1) from the lake to the atmosphere, suggesting that groundwater is an important source of CH4 to Arctic lakes and may drive observed CH4 emissions. Isotopic signatures of CH4 were depleted in groundwaters, consistent with microbial production. Higher methane concentrations in groundwater compared to other high latitude lakes were likely the source of the comparatively higher CH4 diffusive fluxes, as compared to those reported previously in high latitude lakes. These findings indicate that deltaic lakes across warmer permafrost regions may act as important hotspots for CH4 release across Arctic landscapes.

  相似文献   

7.
Among predicted impacts of climate change in the Arctic are greater thaw depth and shifts in vegetation patterns and hydrology that are likely to increase organic carbon and nutrient loading to lakes. We measured substrate limitation of sediment methane (CH4) flux, examined pathways of methanogenesis, and potential CH4 oxidation using stable isotope labeled acetate in intact sediment cores from arctic lake GTH 112 (68°40′20″N, 149°14′57″W). We hypothesized that the acetoclastic pathway would dominate methanogenesis, reflecting dissolved organic carbon supply from the surrounding landscape, and that sediment CH4 flux would be stimulated by addition of acetate. Experiments demonstrated acetate limitation of sediment CH4 flux with short-term CH4 flux response to availability of acetate, high rates of CH4 oxidation, and strong dominance of the acetoclastic over the hydrogenotrophic methanogenic pathway. The experiments also indicated that isotopic fractionation effects during isotope enrichment experiments are large during methanogenesis and can alter the methanogenic pathways being investigated. Under oxic conditions, CH4 oxidation at the sediment–water interface or in the water column is likely to account for much of diffusive CH4 flux, but under anoxic hypolimnetic conditions and increased substrate availability, conditions that are likely to occur with climate change, sediment CH4 flux will likely increase, with oxidation utilizing a smaller portion of sediment CH4 production.  相似文献   

8.
1. We studied the spatial and temporal patterns of change in a suite of twenty‐one chemical and biological variables in a lake district in arctic Alaska, U.S.A. The study included fourteen stream sites and ten lake sites, nine of which were in a direct series of surface drainage. All twenty‐four sites were sampled between one and five times a year from 1991 to 1997. 2. Stream sites tended to have higher values of major anions and cations than the lake sites, while the lake sites had higher values of particulate carbon, nitrogen, phosphorous and chlorophyll a. There were consistent and statistically significant differences in concentrations of variables measured at the inlet versus the outlet of lakes, and in variables measured at upstream versus downstream sites in the stream reaches which connect the lakes. In‐lake processing tended to consume alkalinity, conductivity, H+, DIC, Ca2+, Mg2+, CO2, CH4, and NO3, and produce K+ and dissolved organic carbon (DOC). In‐stream processing resulted in the opposite trends (e.g. consumption of K+ and DOC), and the magnitudes of change were often similar to those measured in the lakes but with the opposite sign. 3. Observed spatial patterns in the study lakes included mean concentrations of variables which increased, decreased or were constant along the lake chain from high to low altitude in the catchment (stream sites showed no spatial patterns with any variables). The strongest spatial patterns were of increasing conductivity, Ca2+, Mg2+, alkalinity, dissolved inorganic carbon and pH with lake chain number (high to low altitude in the basin). These patterns were partly determined by the effect of increasing catchment area feeding into lakes further downslope, and partly by the systematic processing of materials in lakes and in the stream segments between lakes. 4. Synchrony (the temporal coherence or correlation of response) of variables across all lakes ranged from 0.18 for particulate phosphorus to 0.90 for Mg2+ the average synchrony for all twenty‐one variables was 0.50. The synchronous behaviour of lake pairs was primarily related to the spatial location or proximity of the lakes for all variables taken together and for many individual variables, and secondarily, to the catchment to lake area ratio and the water residence time. 5. These results illustrate that, over small geographic areas, and somewhat independent of lake or stream morphometry, the consistent and directional (downslope) processing of materials helps produce spatial patterns which are coherent over time for many limnological variables. We combine concepts from stream, lake and landscape ecology, and develop a conceptual view of landscape mass balance. This view highlights that the integration of material processing in both lakes and rivers is critical for understanding the structure and function of surface waters, especially from a landscape perspective.  相似文献   

9.
Inland waters (lakes, rivers and reservoirs) are now understood to contribute large amounts of methane (CH4) to the atmosphere. However, fluxes are poorly constrained and there is a need for improved knowledge on spatiotemporal variability and on ways of optimizing sampling efforts to yield representative emission estimates for different types of aquatic ecosystems. Low-latitude floodplain lakes and wetlands are among the most high-emitting environments, and here we provide a detailed investigation of spatial and day-to-day variability in a shallow floodplain lake in the Pantanal in Brazil over a five-day period. CH4 flux was dominated by frequent and ubiquitous ebullition. A strong but predictable spatial variability (decreasing flux with increasing distance to the shore or to littoral vegetation) was found, and this pattern can be addressed by sampling along transects from the shore to the center. Although no distinct day-to-day variability were found, a significant increase in flux was identified from measurement day 1 to measurement day 5, which was likely attributable to a simultaneous increase in temperature. Our study demonstrates that representative emission assessments requires consideration of spatial variability, but also that spatial variability patterns are predictable for lakes of this type and may therefore be addressed through limited sampling efforts if designed properly (e.g., fewer chambers may be used if organized along transects). Such optimized assessments of spatial variability are beneficial by allowing more of the available sampling resources to focus on assessing temporal variability, thereby improving overall flux assessments.  相似文献   

10.
Aerobic methane (CH4) oxidation mitigates CH4 release and is a significant pathway for carbon and energy flow into aquatic food webs. Arctic lakes are responsible for an increasing proportion of global CH4 emissions, but CH4 assimilation into the aquatic food web in arctic lakes is poorly understood. Using stable isotope probing (SIP) based on phospholipid fatty acids (PLFA‐SIP) and DNA (DNA‐SIP), we tracked carbon flow quantitatively from CH4 into sediment microorganisms from an arctic lake with an active CH4 seepage. When 0.025 mmol CH4 g?1 wet sediment was oxidized, approximately 15.8–32.8% of the CH4‐derived carbon had been incorporated into microorganisms. This CH4‐derived carbon equated to up to 5.7% of total primary production estimates for Alaskan arctic lakes. Type I methanotrophs, including Methylomonas, Methylobacter and unclassified Methylococcaceae, were most active at CH4 oxidation in this arctic lake. With increasing distance from the active CH4 seepage, a greater diversity of bacteria incorporated CH4‐derived carbon. Actinomycetes were the most quantitatively important microorganisms involved in secondary feeding on CH4‐derived carbon. These results showed that CH4 flows through methanotrophs into the broader microbial community and that type I methanotrophs, methylotrophs and actinomycetes are important organisms involved in using CH4‐derived carbon in arctic freshwater ecosystems.  相似文献   

11.
Thermokarst lagoons represent the transition state from a freshwater lacustrine to a marine environment, and receive little attention regarding their role for greenhouse gas production and release in Arctic permafrost landscapes. We studied the fate of methane (CH4) in sediments of a thermokarst lagoon in comparison to two thermokarst lakes on the Bykovsky Peninsula in northeastern Siberia through the analysis of sediment CH4 concentrations and isotopic signature, methane-cycling microbial taxa, sediment geochemistry, lipid biomarkers, and network analysis. We assessed how differences in geochemistry between thermokarst lakes and thermokarst lagoons, caused by the infiltration of sulfate-rich marine water, altered the microbial methane-cycling community. Anaerobic sulfate-reducing ANME-2a/2b methanotrophs dominated the sulfate-rich sediments of the lagoon despite its known seasonal alternation between brackish and freshwater inflow and low sulfate concentrations compared to the usual marine ANME habitat. Non-competitive methylotrophic methanogens dominated the methanogenic community of the lakes and the lagoon, independent of differences in porewater chemistry and depth. This potentially contributed to the high CH4 concentrations observed in all sulfate-poor sediments. CH4 concentrations in the freshwater-influenced sediments averaged 1.34 ± 0.98 μmol g−1, with highly depleted δ13C-CH4 values ranging from −89‰ to −70‰. In contrast, the sulfate-affected upper 300 cm of the lagoon exhibited low average CH4 concentrations of 0.011 ± 0.005 μmol g−1 with comparatively enriched δ13C-CH4 values of −54‰ to −37‰ pointing to substantial methane oxidation. Our study shows that lagoon formation specifically supports methane oxidizers and methane oxidation through changes in pore water chemistry, especially sulfate, while methanogens are similar to lake conditions.  相似文献   

12.
Arctic lakes are a significant source of the greenhouse gas methane (CH4), but the role that methane oxidizing bacteria (methanotrophs) play in limiting the overall CH4 flux is poorly understood. Here, we used stable isotope probing (SIP) techniques to identify the metabolically active aerobic methanotrophs in upper sediments (0–1 cm) from an arctic lake in northern Alaska sampled during ice‐free summer conditions. The highest CH4 oxidation potential was observed in the upper sediment (0–1 cm depth) with 1.59 µmol g wet weight?1 day?1 compared with the deeper sediment samples (1–3 cm, 3–5 cm and 5–10 cm), which exhibited CH4 oxidation potentials below 0.4 µmol g wet weight?1 day?1. Both type I and type II methanotrophs were directly detected in the upper sediment total communities using targeted primer sets based on 16S rRNA genes. Sequencing of 16S rRNA genes and functional genes (pmoA and mxaF) in the 13C‐DNA from the upper sediment indicated that type I methanotrophs, mainly Methylobacter, Methylosoma, Methylomonas and Methylovulum miyakonense, dominated the assimilation of CH4. Methylotrophs, including the genera Methylophilus and/or Methylotenera, were also abundant in the 13C‐DNA. Our results show that a diverse microbial consortium acquired carbon from CH4 in the sediments of this arctic lake.  相似文献   

13.
This paper investigates the molecular and stable isotope compositions of sediment gases from seven coastal lakes along the southern Baltic coast in Poland. The aim is to extend the knowledge of the genesis and distribution of microbial gases in the zone of mixing of fresh and salt waters with special attention to the effect of salinity, climate-related seasonality, and vertical sediment mixing. We found differences in the compositions of gas between the studied lakes and within each lake. These differences are mainly controlled by lake water depth and the presence of macrophytes. Due to the dissolution of rising bubbles in highly oxygenated water, the concentrations of CH4 and CO2 show up to 67% decline along the water column in favor of N2 and O2. On the other hand, in vegetated parts of the lakes, the CH4 is depleted in favor of CO2, and the residual CH4 and CO2 are enriched in 13C. Despite the fact that the coastal lakes display highly oxidizing conditions in the water column and that the bottom sediments are mixed by wind waves the CH4 reveals rather low oxidation. On the basis of the CH4/N2 ratio we established that there are differences in the intensity of ebullition throughout the lakes. Higher intensities of ebullition were found in shallower parts of the lakes. Salinity has no effect on the stable C and H isotope composition of sediment gas. It seems, however, that salinity affects the molecular composition of hydrocarbons via preferential oxidation of CH4 under higher salinity conditions.  相似文献   

14.
Lake methane (CH4) emissions are largely controlled by aerobic methane-oxidizing bacteria (MOB) which mostly belong to the classes Alpha- and Gammaproteobacteria (Alpha- and Gamma-MOB). Despite the known metabolic and ecological differences between the two MOB groups, their main environmental drivers and their relative contribution to CH4 oxidation rates across lakes remain unknown. Here, we quantified the two MOB groups through CARD-FISH along the water column of six temperate lakes and during incubations in which we measured ambient CH4 oxidation rates. We found a clear niche separation of Alpha- and Gamma-MOB across lake water columns, which is mostly driven by oxygen concentration. Gamma-MOB appears to dominate methanotrophy throughout the water column, but Alpha-MOB may also be an important player particularly in well-oxygenated bottom waters. The inclusion of Gamma-MOB cell abundance improved environmental models of CH4 oxidation rate, explaining part of the variation that could not be explained by environmental factors alone. Altogether, our results show that MOB composition is linked to CH4 oxidation rates in lakes and that information on the MOB community can help predict CH4 oxidation rates and thus emissions from lakes.  相似文献   

15.
Rates of organic matter mineralization in peatlands, and hence production of the greenhouse gases CH4 and CO2, are highly dependent on the distribution of oxygen in the peat. Using laboratory incubations of peat, we investigated the sensitivity of the anoxic production of CH4 and CO2 to a transient oxic period of a few weeks’ duration. Production rates during 3 successive anoxic periods were compared with rates in samples incubated in the presence of oxygen during the second period. In surface peat (5–10‐cm depth), with an initially high level of CH4 production, oxic conditions during period 2 did not result in a lower potential CH4 production rate during period 3, although production was delayed ~1 week. In permanently anoxic, deep peat (50–55‐cm depth) with a comparatively low initial production of CH4, oxic conditions during period 2 resulted in zero production of CH4 during period 3. Thus, the methanogens in surface peal—but not in deep peat—remained viable after several weeks of oxic conditions. In contrast to CH4 production, the oxic period had a negligible effect on anoxic CO2 production during period 3, in surface as well as deep peat. In both surface and deep peat, CO2 production was several times higher under oxic than under anoxic conditions. However, for the first 2 weeks of oxic conditions, CO2 production in the deep peat was very low. Still, deep peat obviously contained facultative microorganisms that, after a relatively short period, were able to maintain a considerably higher rate of organic matter mineralization under oxic than under anoxic conditions.  相似文献   

16.
Dynamics of greenhouse gases, CH4, CO2 and N2O, and nutrients, NO 2 + NO 3 , NH 4 + and P, were studied in the sediments of the eutrophic, boreal Lake Kevätön in Finland. Undisturbed sediment cores taken in the summer, autumn and winter from the deep and shallow profundal and from the littoral were incubated in laboratory microcosms under aerobic and anaerobic water flow conditions. An increase in the availability of oxygen in water overlying the sediments reduced the release of CH4, NH 4 + and P, increased the flux of N2O and NO 2 + NO 3 , but did not affect CO2 production. The littoral sediments produced CO2 and CH4 at high rates, but released only negligible amounts of nutrients. The deep profundal sediments, with highest carbon content, possessed the greatest release rates of CO2, CH4, NH 4 + and P. The higher fluxes of these gases in summer and autumn than in winter were probably due to the supply of fresh organic matter from primary production. From the shallow profundal sediments fluxes of CH4, NH4 + and P were low, but, in contrast, production of N2O was the highest among the different sampling sites. Due to the large areal extension, the littoral and shallow profundal zones had the greatest importance in the overall gas and nutrient budgets in the lake. Methane emissions, especially the ebullition of CH4 (up to 84% of the total flux), were closely related to the sediment P and NH 4 + release. The high production and ebullition of CH4, enhances the internal loading of nutrients, lake eutrophication status and the impact of boreal lakes to trophospheric gas budgets.  相似文献   

17.
18.

Large uncertainties in estimates of methane (CH4) emissions from tropical inland waters reflect the paucity of information at appropriate temporal and spatial scales. CH4 concentrations, diffusive and ebullitive fluxes, and environmental parameters in contrasting aquatic habitats of Lake Janauacá, an Amazon floodplain lake, measured for two years revealed patterns in temporal and spatial variability related to different aquatic habitats and environmental conditions. CH4 concentrations ranged from below detection to 96 µM, CH4 diffusive fluxes from below detection to 2342 µmol m−2 h−1, and CH4 ebullitive fluxes from 0 to 190 mmol m−2 d−1. Vegetated aquatic habitats had higher surface CH4 concentrations than open water habitats, and no significant differences in diffusive CH4 fluxes, likely due to higher k values measured in open water habitats. CH4 emissions were enhanced after a prolonged low water period, when the exposed sediments were colonized by herbaceous plants that decomposed after water levels rose, possibly fueling CH4 production. Statistical models indicated the importance of variables related to CH4 production (temperature, dissolved organic carbon) and consumption (dissolved nitrogen, oxygenated water column), as well as maximum depth, in controlling surface water CH4 concentrations.

  相似文献   

19.
陆地生态系统甲烷产生和氧化过程的微生物机理   总被引:8,自引:0,他引:8  
张坚超  徐镱钦  陆雅海 《生态学报》2015,35(20):6592-6603
陆地生态系统存在许多常年性或季节性缺氧环境,如:湿地、水稻土、湖泊沉积物、动物瘤胃、垃圾填埋场和厌氧生物反应器等。每年有大量有机物质进入这些环境,在缺氧条件下发生厌氧分解。甲烷是有机质厌氧分解的最终产物。产生的甲烷气体可通过缺氧-有氧界面释放到大气,产生温室效应,是重要的温室气体。产甲烷过程是缺氧环境中有机质分解的核心环节,而甲烷氧化是缺氧-有氧界面的重要微生物过程。甲烷的产生和氧化过程共同调控大气甲烷浓度,是全球碳循环不可分割的组成部分。对陆地生态系统甲烷产生和氧化过程的微生物机理研究进展进行了概要回顾和综述。主要内容包括:新型产甲烷古菌即第六和第七目产甲烷古菌和嗜冷嗜酸产甲烷古菌的发现;短链脂肪酸中间产物互营氧化过程与直接种间电子传递机制;新型甲烷氧化菌包括厌氧甲烷氧化菌和疣微菌属好氧甲烷氧化菌的发现;甲烷氧化菌生理生态与环境适应的新机制。这些研究进展显著拓展了人们对陆地生态系统甲烷产生和氧化机理的认识和理解。随着新一代土壤微生物研究技术的发展与应用,甲烷产生和氧化微生物研究领域将面临更多机遇和挑战,对未来发展趋势做了展望。  相似文献   

20.
The effects of oxygen conditions and temperature on dynamics of greenhousegases (CH4, CO2, N2O) and nutrients(NH4 +, NO2 +NO3 , tot-P) were studied in sediment of hyper-eutrophic LakeKevätön, Finland. Undisturbed sediment cores were incubated at 6, 11,16, and 23 °C in a laboratory microcosm using a continuouswater flowtechnique with an oxic or anoxic water flow. The production of CO2increased with increasing temperature in both oxic (Q10 3.2 ±0.6) and anoxic (Q10 2.3 ± 0.4) flows. The release ofCH4 increased with temperature in anoxic conditions (Q102.3 ± 0.2), but was negligible with the oxic flow at all temperatures.The release of NH4 + increased with temperature with the oxic and anoxic flows(Q10 2.4 ± 0.1). There was a net production of NO2 , NO3 and N2O with the oxic flow at temperatures below16 °C. The release of phosphorus was greater from the anoxicsediments and increased with temperature with both the anoxic (Q102.9 ± 0.5) and oxic (Q10 1.9 ± 0.1) flows. It isprobable that the temperature of boreal lakes and the associated oxygendeficiency will increase as the climate becomes warmer. Our experiments showedthat this change would increase the global warming potential of greenhousegasesreleased from sediments of eutrophic lakes predominately attributable to theincrease in the CH4 production. Furthermore, warming would alsoaccelerate the eutrophication of lakes by increasing release of phosphorus andmineral nitrogen from sediments, which further enhance CH4productionin sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号