首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Introduction  

To examine the natural history of subchondral bone cysts and to determine whether knee cartilage loss and risk of joint replacement is higher in knees with cysts, compared with those with bone marrow lesions (BMLs) only or those with neither BMLs nor cysts.  相似文献   

2.
Osteoarthritis (OA) is a major cause of disability in the adult population. As a progressive degenerative joint disorder, OA is characterized by cartilage damage, changes in the subchondral bone, osteophyte formation, muscle weakness, and inflammation of the synovium tissue and tendon. Although OA has long been viewed as a primary disorder of articular cartilage, subchondral bone is attracting increasing attention. It is commonly reported to play a vital role in the pathogenesis of OA. Subchondral bone sclerosis, together with progressive cartilage degradation, is widely considered as a hallmark of OA. Despite the increase in bone volume fraction, subchondral bone is hypomineralized, due to abnormal bone remodeling. Some histopathological changes in the subchondral bone have also been detected, including microdamage, bone marrow edema-like lesions and bone cysts. This review summarizes basic features of the osteochondral junction, which comprises subchondral bone and articular cartilage. Importantly, we discuss risk factors influencing subchondral bone integrity. We also focus on the microarchitectural and histopathological changes of subchondral bone in OA, and provide an overview of their potential contribution to the progression of OA. A hypothetical model for the pathogenesis of OA is proposed.  相似文献   

3.
Osteochondrosis (OC) is the most important developmental orthopaedic disease in the horse. Despite some decades of research, much of the pathogenesis of the disorder remains obscure. Increasing knowledge of articular cartilage development in juvenile animals led to the presumption that the role of collagen in OC might be more important than previously thought. To study collagen characteristics of both cartilage and subchondral bone in young (5 and 11 months of age) horses, samples were taken of subchondral bone and articular cartilage from a group of 43 Dutch Warmblood foals and yearlings that suffered from varying degrees of OC. Based on a histological classification, lesions were graded as early, middle and end stage. Collagen content and some posttranslational modifications (lysyl hydroxylation, hydroxylysylpyridinoline (HP) and lysylpyridinoline (LP) cross-links) were determined, as was proteoglycan content. Data were compensated for site effects and analysed for differences due to the stage of the lesion. In early lesions total collagen was significantly decreased in both cartilage and subchondral bone of 5- and 11-month-old foals. Also in cartilage, HP cross-linking was reduced in the early lesions of 5- and 11-month-old foals, while LP cross-linking was decreased in subchondral bone of the end-stage lesions of both 5- and 11-month-old foals. Hydroxylysine content was unaffected. Collagen content remained reduced in cartilage from middle- and end-stage lesions, but returned to normal in subchondral bone. In cartilage there was a decrease in proteoglycan content in the end-stage lesions of both age groups. Thus, alterations of the collagen component, but not of the proteoglycan component, of the extracellular matrix might play a role in early OC. More severe lesions show a more general picture of an unspecific repair reaction. Biomarkers of collagen metabolism can be expected to be good candidates for early detection of OC.  相似文献   

4.
Factors in the synovial fluid that maintain healthy articular cartilage, such as hyaluronic acid and lubricin, come from above. Is it possible that factors which lead to the destruction of cartilage come from below in the subchondral bone? The recent acquisition of tools to probe early events in osteoarthritis is shedding new light on possible contributions from this compartment on the initiation and progression of the disease. Tanamas and co-workers now provide evidence that bone marrow lesions in the subchondral bone are predictive, both of loss of cartilage and of formation of subchondral cysts. These data provoke questions about the nature and role of bone marrow lesions.Finding the factors that initiate, or the mechanisms that lead to progression of, osteoarthritis (OA) has proven frustrating and largely unproductive. Identification of risk factors for the condition - such as prior trauma to the joint, elevated body weight and female sex - may have helped with management of OA but has done little to progress understanding of the underlying factors that drive it. OA research has been more difficult than research for some other diseases of the skeleton, for several important reasons. Early OA, at the level of symptoms, can be episodic, making it difficult to identify the disease and to follow it longitudinally. Since the main early symptom is pain, clinical trials of new therapies have been problematic. Animal experiments have been bedevilled by a lack of models that accurately replicate the human disease. And perhaps, as argued by a minority of workers in the field, disease initiators have been sought in the wrong place; that is, cartilage versus bone.The recent study of Tanamas and colleagues highlights the way in which new-generation imaging holds the promise of shedding new light on this old problem [1]. In particular, high-resolution magnetic resonance imaging (MRI) can now deliver objective, measurable information about all structures of the joint, including the amount and quality of articular cartilage, and is also a powerful tool to investigate the subchondral bone. The holy grail of clinical investigation, namely longitudinal study with quantitative endpoints, is now accessible for OA. What Tanamas and colleagues'' study shows is important because it adds to emerging evidence that processes in the subchondral bone relate strongly to changes in the volumetric amount of articular cartilage. Specifically, bone marrow lesions (BMLs), the mysterious MRI-bright regions in the subchondral bone that occur more commonly in OA, were shown to be predictive of loss of cartilage and of formation of subchondral cysts. In turn, cysts were more likely than BMLs to occur in association with loss of cartilage.These data pose the intriguing question of whether BMLs encode key clues to the aetiology of OA. Longitudinal studies have shown that the presence of BMLs constitutes a potent risk factor for structural deterioration in knee OA [2]. BML enlargement has been strongly associated with increased cartilage loss, and Tanamas and colleagues'' data further suggest that their conversion into cysts is even more predictive of cartilage loss. Significantly, a reduction in the extent of BMLs on MRI has been shown to associate with a decrease in cartilage degradation [3]. Since the origin of BMLs is not known, its investigation needs to be prioritised as an important research topic. Current informed guesses are that BMLs comprise regions of oedema, perhaps secondary to episodes of local ischaemia. Although it is not possible to biopsy BMLs in patients with early OA, several studies have sought to correlate the MRI findings with histology in more severe disease. Regions of BMLs in end-stage OA patients at knee replacement were more likely to exhibit oedema, bone necrosis and trabecular abnormalities than were control sites [4].If BMLs are secondary to local ischaemia in the subchondral bone, there are several possible consequences. Firstly, the supply of nutrients and oxygen from regions of ischaemic subchondral bone, to the overlying articular cartilage, might be reduced. Cartilage nutrition has been considered to derive from the synovial fluid. The work of Imhof and colleagues, however, suggested that more than 50% of the glucose, oxygen and water requirements of cartilage are provided by perfusion from the subchondral vessels [5]. They described the dense subchondral vasculature in close proximity to the cartilage, and the micro-channels that penetrate the subchondral mineralisation zone and permit communication between the bone and the cartilage. More recent work indicates that small molecules can diffuse, in healthy joints, bidirectionally from the synovial compartment into the cartilage and underlying bone and from the subchondral bone into the overlying cartilage [6]. Inspection of the osteochondral junction of long bones reveals that osteocytes and osteocyte canaliculi, which are also probable conduits of nutrients, are intimately associated with the articular cartilage. Experimental interruption of contact between articular cartilage and subchondral bone results in degeneration of the cartilage, and osteoblasts from OA subchondral bone conferred catabolic changes in articular chondrocytes [7].Secondly, osteocyte death in bone is becoming recognised as a signalling event for osteoclastic removal of the nonviable bone and its replacement in a remodelling episode [8]. Although subchondral bone is constantly being remodelled, concentration of this activity in a particular region of the bone could alter its mechanical integrity and its ability to properly support the overlying cartilage.Tanamas and colleagues conclude that cysts (and BMLs) may provide therapeutic targets for the treatment of knee OA [1]. Certainly, the recent acquisition of tools to probe early events in subchondral bone in OA should deliver rapid advances in our understanding of the natural history of this condition.  相似文献   

5.
6.
K Yamasaki 《Jikken dobutsu》1986,35(3):245-248
Degenerative osteoarthrosis was observed in the thoracic vertebrae in specific pathogen-free Sprague-Dawley rats at the ages of eight and 19 weeks. Histological changes seen in the lesions were degenerated matrix intermixed with collagen fibers, erosion or ulceration, and formation of cysts in the articular cartilage, and degeneration and necrosis in the subchondral bone.  相似文献   

7.

Background

Chronic pain is the most prominent and disabling symptom of osteoarthritis (OA). Clinical data suggest that subchondral bone lesions contribute to the occurrence of joint pain. The present study investigated the effect of the inhibition of subchondral bone lesions on joint pain.

Methods

Osteoarthritic pain was induced by an injection of monosodium iodoacetate (MIA) into the rat knee joint. Zoledronic acid (ZOL), a third generation of bisphosphonate, was used to inhibit subchondral bone lesions. Joint histomorphology was evaluated using X-ray micro computed tomography scanning and hematoxylin-eosin staining. The activity of osteoclast in subchondral bone was evaluated using tartrate-resistant acid phosphatase staining. Joint pain was evaluated using weight-bearing asymmetry, the expression of calcitonin gene-related peptide (CGRP) in the dorsal root ganglion (DRG), and spinal glial activation status using glial fibrillary acidic protein (GFAP) and ionized calcium binding adaptor molecule-1 (Iba-1) immunofluorescence. Afferent neurons in the DRGs that innervated the joints were identified using retrograde fluorogold labeling.

Results

MIA injections induced significant histomorphological alterations and joint pain. The inhibition of subchondral bone lesions by ZOL significantly reduced the MIA-induced weight-bearing deficit and overexpression of CGRP in DRG neurons, GFAP and Iba-1 in the spinal dorsal horn at 3 and 6 weeks after MIA injection; however, joint swelling and synovial reaction were unaffected.

Conclusions

The inhibition of subchondral bone lesions alleviated joint pain. Subchondral bone lesions should be a key target in the management of osteoarthritic joint pain.  相似文献   

8.
Background A focal hypointense intracranial lesion was detected by magnetic resonance imaging in the right caudal occipital lobe of the cerebrum in an asymptomatic cynomolgus macaque (Macaca fascicularis). Results Following euthanasia, gross evaluation of the lesion revealed a 1 cm diameter, wedge‐shaped intracranial cavitation without apparent communication with the ventricles. Histologically, the lesion was lined by ciliated cuboidal to low columnar epithelium that showed immunopositivity for cytokeratin, S‐100, and GFAP. Conclusion Based upon the gross, histologic, and immunohistochemical findings, this lesion was classified as an ependymal cyst. In the human patients, ependymal cysts are benign, non‐infectious, non‐inflammatory lesions of the central nervous system that are believed to originate from aberrant migration of ependymal cells during development. To our knowledge, this is the first report of an ependymal cyst in a non‐rodent veterinary species and the first report of a benign intracranial cyst of any classification in a non‐human primate.  相似文献   

9.
A histopathological study on the development of spontaneous osteochondrosis in the humeral head and medial femoral condyle of rats (6-20 weeks old) was carried out. Findings were classified into three types: normal, transitional and osteochondrotic. In the normal type, the articular cartilage at the caudal region of the humeral head and medial femoral condyle was significantly thinned between 6 and 10 weeks of age (generally the caudal region was thicker than elsewhere at all ages). In the transitional type, the thinning of the cartilage was delayed. In the third type, osteochondrotic lesions were detected in the humeral head from 6 weeks of age and in the medial femoral condyle from 10 weeks of age. The thickness of the cartilage had slightly decreased or had not changed at 20 weeks of age. In the early stages, viable chondrocytes and small destructive foci of cartilage were observed in the basal layer of the thick deep zone. These cells were present in pairs or clusters surrounded by matrix in the large lacunae. Cells and destructive foci were also seen in the surface layer of the deep zone as the rats aged. In the advanced stage, a necrotic area or cleft was formed in the basal layer of the articular cartilage and fibrosis was observed in the subchondral bone.  相似文献   

10.
Osteochondrosis is a growth disorder in the cartilage of young animals and is characterised by lesions found in the cartilage and bone. This study identified quantitative trait loci (QTLs) associated with six osteochondrosis lesion traits in the elbow joint of finishing pigs. The traits were: thickening of the cartilage, lesion in the subchondral bone, irregular cartilage surface, fissure under the cartilage, an irregular sagittal central groove and depression of the proximal edge of the radius. The study comprised 7172 finishing pigs from crossing 12 Duroc boars with 600 crossbred Landrace × Large White sows and included 462 single nucleotide polymorphism markers. The results showed 18 QTLs exceeding the 5% genome-wide threshold. The QTLs associated with lesions in the medial part of the condylus humeri (assumed to be the four main osteochondrosis traits) were, in most cases, at common locations, whereas the QTLs associated with depression of the proximal edge of the radius in general were on the same chromosomes but at separate locations. The detected QTLs explain a large part of the genetic variation, which is promising for incorporating osteochondrosis into a breeding programme using marker-assisted selection.  相似文献   

11.
To identify the effects of running on articular cartilage and subchondral bone remodeling, C57BL/6 mice were randomly divided into three groups: control, moderate-, and strenuous running. Magnetic resonance imaging showed bone marrow lesions in the knee subchondral bone in the strenuous-running group in contrast with the other two groups. The microcomputed tomography analysis showed promoted bone formation in the subchondral bone in mice subjected to strenuous running. Histological and immunohistochemistry results indicated that terminal differentiation of chondrocytes and degeneration of articular cartilage were enhanced but, synthesis of platelet-derived growth factor-AA (PDGF-AA) in the subchondral bone was suppressed after strenuous running. In vitro, excessive mechanical treatments suppressed the expression of PDGF-AA in osteoblasts, and the condition medium from mechanical-treated osteoblasts stimulated maturation and terminal differentiation of chondrocytes. These results indicate that strenuous running suppresses the synthesis of PDGF-AA in subchondral bone, leading to downregulated PDGF/Akt signal in articular cartilage and thus cartilage degeneration.  相似文献   

12.
T. Torok  G. Tick  M. Alvarado    I. Kiss 《Genetics》1993,135(1):71-80
A single P-element insertional mutagenesis experiment was carried out for the second chromosome of Drosophila melanogaster using the P-lacW transposon. Out of 15,475 insertions on the second chromosome, 2,308 lethal and 403 semilethal mutants (altogether 2,711) were recovered. After eliminating clusters, 72% of the mutants represent independent insertions. Some of the mutants with larval, prepupal or pupal lethal phases have a prolonged larval period and show gradual overgrowth of the imaginal discs, brain and/or the hematopoietic organs (lymph glands). In this paper, 16 overgrowth mutants are described. As revealed by in situ hybridization, none of the mutations corresponds to any of the previously known overgrowth mutations on the second chromosome.  相似文献   

13.
富血小板血浆(platelet-rich plasma,PRP)由于富含多种活性生长因子,能够刺激软骨细胞增殖,促进软骨前体细胞增殖、迁移、向软骨细胞分化,促进胶原蛋白合成以及抑制软骨的炎性反应和退变,提供有利于组织修复的内环境,延缓病情进展。近年来PRP注射治疗已成为治疗与骨关节炎(osteoarthritis,OA)相关疾病的新型选择,并且疗效显著。为了进一步提高其效用,PRP注射治疗不仅在关节腔内进行,还可在软骨下骨内进行注射。软骨下骨的病变会加速软骨损耗,故有必要将软骨下骨也当作OA众多发病机制和病理过程的关键因素之一。根据PRP的生物特效以及PRP注射治疗在膝骨关节炎(knee osteoarthritis,KOA)中应用的研究进展进行了综述,同时对软骨下骨内PRP注射治疗KOA的研究进行了展望,以期为KOA的治疗提供更加有效的方法。  相似文献   

14.
In this study we examine the extracellular role of galectin-3 (gal-3) in joint tissues. Following intra-articular injection of gal-3 or vehicle in knee joints of mice, histological evaluation of articular cartilage and subchondral bone was performed. Further studies were then performed using human osteoarthritic (OA) chondrocytes and subchondral bone osteoblasts, in which the effect of gal-3 (0 to 10 μg/ml) was analyzed. Osteoblasts were incubated in the presence of vitamin D3 (50 nM), which is an inducer of osteocalcin, encoded by an osteoblast terminal differentiation gene. Genes of interest mainly expressed in either chondrocytes or osteoblasts were analyzed with real-time RT-PCR and enzyme immunoassays. Signalling pathways regulating osteocalcin were analyzed in the presence of gal-3. Intra-articular injection of gal-3 induced knee swelling and lesions in both cartilage and subchondral bone. On human OA chondrocytes, gal-3 at 1 μg/ml stimulated ADAMTS-5 expression in chondrocytes and, at higher concentrations (5 and 10 μg/ml), matrix metalloproteinase-3 expression. Experiments performed with osteoblasts showed a weak but bipolar effect on alkaline phosphatase expression: stimulation at 1 μg/ml or inhibition at 10 μg/ml. In the absence of vitamin D3, type I collagen alpha 1 chain expression was inhibited by 10 μg/ml of gal-3. The vitamin D3induced osteocalcin was strongly inhibited in a dose-dependent manner in the presence of gal-3, at both the mRNA and protein levels. This inhibition was mainly mediated by phosphatidylinositol-3-kinase. These findings indicate that high levels of extracellular gal-3, which could be encountered locally during the inflammatory process, have deleterious effects in both cartilage and subchondral bone tissues.  相似文献   

15.
In this sheep study, we have tested the hypothesis that an osteogenic response is triggered in the subchondral bone by periosteum implanted in full thickness cartilage defects and can be prevented by replacing the periosteum by a cell-free collagen type I/III membrane. Two 7-mm diameter osteochondral defects were made in the trochlea groove and in the medial femoral condyle of one of the knees in each of 15 adult sheep. The animals were divided into three groups (n=5): a control group with untreated cartilage defects, a group treated with autologous chondrocyte transplantation (ACT) and periosteum, and a group treated with ACT in combination with a collagen I/III membrane cover. Histological examination was performed 1 year later. The optical density of the subchondral bone in the histological sections was measured with digital imaging software. There was a dramatic, statistically significant (P<0.0001; power=1) increase in bone density of 45%–70% under defects that were treated with the periosteal cover, compared with the collagen membrane and control groups, which displayed the same bone density. There was no difference in the cartilaginous reparative tissue in the defects in the three groups. Periosteum thus stimulates the remodelling process in subchondral bone. Stiffening of the subchondral bone can lead to degeneration of the overlying reparative cartilaginous tissue because of an increase in the mechanical stress in the tissue. These findings warrant evaluation of subchondral bone changes in patients treated by ACT and the correlation of these changes with clinical outcome.  相似文献   

16.
Due to its apparent absence in archaeologically derived skeletons, rheumatoid arthritis (RA) has generally been believed to be of fairly recent origin. A growing body of evidence now demonstrates that erosive lesions typical of RA are present in archaeological populations and that the antiquity of RA may be greater than previously expected. In support of this argument, a case of erosive arthritis is reported in a skeleton from Kulubnarti, Republic of the Sudan (c. 700-1450 A.D.). Lytic, erosive lesions and subchondral cysts are present bilaterally in the carpal and metacarpal joints of a female skeleton with an estimated age at death of 50+ years. These lesions are typical of those seen in clinically diagnosed rheumatoid patients. While their expression and distribution are highly suggestive of RA, interpretation must be made with due consideration for problems of differential diagnosis of this disease in archaeological material.  相似文献   

17.
MRI bone oedema occurs in various forms of inflammatory and non-inflammatory arthritis and probably represents a cellular infiltrate within bone. It is common in early rheumatoid arthritis and is associated with erosive progression and poor functional outcome. Histopathological studies suggest that a cellular infiltrate comprising lymphocytes and osteoclasts may be detected in subchondral bone and could mediate the development of erosions from the marrow towards the joint surface. There is emerging evidence from animal models that such an infiltrate corresponds with MRI bone oedema, pointing towards the bone marrow as a site for important pathology driving joint damage in rheumatoid arthritis.  相似文献   

18.
Biochemical and mechanical properties of subchondral bone in osteoarthritis   总被引:2,自引:0,他引:2  
Bailey AJ  Mansell JP  Sims TJ  Banse X 《Biorheology》2004,41(3-4):349-358
The subchondral bone has long been known to thicken in osteoarthritis. However, recent evidence has demonstrated that the turnover of the bone is increased several fold, and further suggests that the thickening occurs prior to degradation of the articular cartilage, indicating that it plays a role in the pathogenesis of osteoarthritis. The mechanical and biochemical properties of the subchondral bone are therefore of particular interest in any attempt to determine the nature of the factors initiating osteoarthritis. We have shown that the subchondral bone collagen of the femoral head possessed a 20-fold increase in turnover, as assessed by procollagen rate of synthesis and metalloproteinase degradation, and a 25% decrease in mineralisation. This increased metabolism and high lysyl hydroxylation leads to narrower and weaker fibres. Additionally the phenotypic expression of the osteoblasts is modified to produce increasing proportions of type I homotrimer in addition to the normal type I heterotrimer, which further reduces the mechanical strength of the bone. Overall, the narrow immature collagen fibres, the reduction in pyrrole cross-linking, decreased mineralisation, and increased amounts of type I homotrimer, all contribute to a weakening of the mechanical properties of the subchondral bone.  相似文献   

19.
MRI bone oedema occurs in various forms of inflammatory and non-inflammatory arthritis and probably represents a cellular infiltrate within bone. It is common in early rheumatoid arthritis and is associated with erosive progression and poor functional outcome. Histopathological studies suggest that a cellular infiltrate comprising lymphocytes and osteoclasts may be detected in subchondral bone and could mediate the development of erosions from the marrow towards the joint surface. There is emerging evidence from animal models that such an infiltrate corresponds with MRI bone oedema, pointing towards the bone marrow as a site for important pathology driving joint damage in rheumatoid arthritis.  相似文献   

20.

Background

Osteochondrosis (OC(D)) is a juvenile osteo-articular disorder affecting several mammalian species. In horses, OC(D) is considered as a multifactorial disease and has been described as a focal disruption of endochondral ossification leading to the development of osteoarticular lesions. Nevertheless, OC(D) physiopathology is poorly understood. Affected horses may present joint swelling, stiffness and lameness. Thus, OC(D) is a major concern for the equine industry. Our study was designed as an integrative approach using omics technologies for the identification of constitutive defects in epiphyseal cartilage and/or subchondral bone associated with the development of primary lesions to further understand OC(D) pathology. This study compared samples from non-affected joints (hence lesion-free) from OC(D)-affected foals (n = 5, considered predisposed samples) with samples from OC-free foals (n = 5) considered as control samples. Consequently, results are not confounded by changes associated with the evolution of the lesion, but focus on altered constitutive molecular mechanisms. Comparative proteomics and micro computed tomography analyses were performed on predisposed and OC-free bone and cartilage samples. Metabolomics was also performed on synovial fluid from OC-free, OC(D)-affected and predisposed joints.

Results

Two lesion subtypes were identified: OCD (lesion with fragment) and OC (osteochondral defects). Modulated proteins were identified using omics technologies (2-DE proteomics) in cartilage and bone from affected foals compare to OC-free foals. These were associated with cellular processes including cell cycle, energy production, cell signaling and adhesion as well as tissue-specific processes such as chondrocyte maturation, extracellular matrix and mineral metabolism. Of these, five had already been identified in synovial fluid of OC-affected foals: ACTG1 (actin, gamma 1), albumin, haptoglobin, FBG (fibrinogen beta chain) and C4BPA (complement component 4 binding protein, alpha).

Conclusion

This study suggests that OCD lesions may result from a cartilage defect whereas OC lesions may be triggered by both bone and cartilage defects, suggesting that different molecular mechanisms responsible for the equine osteochondrosis lesion subtypes and predisposition could be due to a defect in both bone and cartilage. This study will contribute to refining the definition of OC(D) lesions and may improve diagnosis and development of therapies for horses and other species, including humans.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-947) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号