首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
When two tree species co-occur, decomposition and nitrogen (N) release from the foliage litter depend on two factors: the forest floor conditions under each canopy type and the species composition of the litter. We conducted an experiment using fir and oak to answer several questions regarding decomposition beneath canopies of the two species and the effects of litter species composition on decomposition. We compared the rates of decomposition and N release from three different litters (fir needle, oak leaf, and a mixture of the two) in 1-mm-mesh litterbags on the forest floor under three different canopies (a 40-year-old fir plantation, large oak trees, and mixed fir and oak trees) in Hokkaido, Japan, over a 2-year period. Beneath each of these canopy types, the litter decomposition rate and percentage of N remaining in the litterbags containing a mixture of fir and oak litter were not significantly different from the expected values calculated for litterbags containing litter from a single tree species. Oak leaf litter decomposed significantly faster than fir needle litter beneath each canopy type. The litter decomposition rate was significantly higher beneath the fir canopy than under the oak canopy, and was intermediate under the mixed canopy of fir and oak. No net N release, that is, a decrease in the total N compared to the original amount, was detected from fir litter under each canopy type or from oak leaf litter beneath the oak canopy. N increased over the original amount in the fir litter beneath the oak canopy and the mixed canopy of fir and oak, but N was released from the oak litter under the fir canopy and the mixed canopy of fir and oak. These results suggest that oak leaf litter blown onto fir forest floor enhances nutrient cycling, and this might be a positive effect of a mixed stand of conifer and broad-leaved trees.  相似文献   

2.
季节性冻融期间亚高山森林凋落物的质量变化   总被引:2,自引:1,他引:1  
凋落物质量是影响凋落物分解的重要生物因子,其在季节性冻融期间的变化可能对亚高山森林生态系统过程产生显著的影响。因此,采用凋落物分解袋法,研究了岷江冷杉(Abies faxoniana)和白桦(Betula platyphylla)凋落物质量在一个季节性冻融期间(2006年10月至2007年4月)的变化。季节性冻融期间,岷江冷杉和白桦凋落物的木质素(L)和纤维素的降解率为全年降解的70%-75%,岷江冷杉和白桦凋落物的C/N、L/N和纤维素/N均显著增加,而纤维素/P均有所降低。岷江冷杉凋落物的C/P和L/P有所增加,但白桦凋落物的C/P和L/P有所降低。可见,季节性冻融期间,亚高山森林凋落物的质量发生了较为显著的变化,其显著影响了亚高山凋落物分解过程。  相似文献   

3.
Potassium (K), calcium (Ca), iron (Fe) and aluminium (Al) release from Norway spruce (Picea abies Karsten), Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Roth.) logging residues (fine roots, foliage and small branches) were studied by means of litterbags over a period of three years in clear-cut area and adjacent uncut Norway spruce dominated mixed boreal forest in eastern Finland (63°51′ N, 28°58′ E, 220 m a.s.l) to determine the amounts and rates of release for these elements and to evaluate whether clear-cutting accelerates mineralization. Almost all K was released from logging residues already during the first year. Calcium was released from foliage and roots but accumulated in branches. Most of the roots Fe and Al content were released during three years while the absolute amounts of Fe and Al in branches and foliage generally increased with decomposition. The results indicate that mineralization is slightly accelerated as a result of clear-cutting since K from foliage and branches of all studied tree species and Ca from pine and spruce roots was released significantly faster at the clear-cut plot than at the forest plot. In three years the initial K pool in the logging residues declined by 90%, Ca by 8%, Fe by 55% and Al by 61% in the clear-cut area. These results indicate that Ca is retained a long time; but Fe, Al and in particular, K are soon released from logging residues. Fine roots of the logged trees release large amounts of Fe and Al and can significantly affect Fe and Al fluxes.  相似文献   

4.
The accumulation and decomposition of coarse woody debris (CWD) are processes that affect habitat, soil structure and organic matter inputs, and energy and nutrient flows in forest ecosystems. Natural disturbances such as fires typically produce large quantities of CWD as trees fall and break, whereas human disturbances such as timber harvesting remove much of the CWD. Our objective was to compare the amount of CWD removed and left behind after clear-cutting to the amount consumed and left behind after natural fires in Rocky Mountain lodgepole pine. The masses of fallen logs, dead-standing trees, stumps, and root crowns more than 7.5 cm in diameter were estimated in clear-cut and intact lodgepole pine forests in Wyoming and compared to estimates made in burned and unburned stands in Yellowstone National Park (YNP), where no timber harvesting has occurred. Estimates of downed CWD consumed or converted to charcoal during an intense crown fire were also made in YNP. No significant differences in biomass of downed CWD more than 7.5 cm in diameter were detected between burned stands and those following a single clear-cut. However, the total mass of downed CWD plus the mass of snags that will become CWD was nearly twice as high in burned stands than in clear-cuts. In YNP, approximately 8% of the downed CWD was consumed by fire and an additional 8% was converted to charcoal, for an estimated loss of about 16%. In contrast, approximately four times more wood (70%) was removed by clear-cutting. Considering all CWD more than 7.5 cm in diameter that was either still present in the stand or removed by harvesting, slash treatment, or burning, clear-cut stands lost an average of 80 Mg ha−1 whereas stands that burned gained an average of 95 Mg ha−1. Some CWD remains as slash and stumps left behind after harvesting, but stands subjected to repeated harvesting will have forest floor and surface soil characteristics that are beyond the historic range of variability of naturally developing stands. Received 16 November 1999; Accepted 31 May 2000.  相似文献   

5.
British Columbia (BC) forests are estimated to have become a net carbon source in recent years due to tree death and decay caused primarily by mountain pine beetle (MPB) and related post‐harvest slash burning practices. BC forest biomass has also become a major source of wood pellets, exported primarily for bioenergy to Europe, although the sustainability and net carbon emissions of forest bioenergy in general are the subject of current debate. We simulated the temporal carbon balance of BC wood pellets against different reference scenarios for forests affected by MPB in the interior BC timber harvesting area using the Carbon Budget Model of the Canadian Forest Sector (CBM‐CFS3). We evaluated the carbon dynamics for different insect‐mortality levels, at the stand‐ and landscape level, taking into account carbon storage in the ecosystem, wood products and fossil fuel displacement. Our results indicate that current harvesting practices, in which slash is burnt and only sawdust used for pellet production, require between 20–25 years for beetle‐impacted pine and 37–39 years for spruce‐dominated systems to reach pre‐harvest carbon levels (i.e. break‐even) at the stand‐level. Using pellets made from logging slash to replace coal creates immediate net carbon benefits to the atmosphere of 17–21 tonnes C ha?1, shortening these break‐even times by 9–20 years and resulting in an instant carbon break‐even level on stands most severely impacted by the beetle. Harvesting pine dominated sites for timber while using slash for bioenergy was also found to be more carbon beneficial than a protection reference scenario on both stand‐ and landscape level. However, harvesting stands exclusively for bioenergy resulted in a net carbon source unless the system contained a high proportion of dead trees (>85%). Systems with higher proportions of living trees provide a greater climate change mitigation if used for long lived wood products.  相似文献   

6.
Summary A determination was made of the differences in the utilization of energy by laboratory reared larval Choristoneura fumiferana fed either balsam fir or white spruce foliage. This enabled us to quantitatively measure the quality of these foliages vis a vis the spruce budworm.The larval strategy was to feed rapidly and develop quickly. Development time was longer on spruce than on fir. Total consumption was virtually identical on both foliage types though production was ca 20% greater on a white spruce diet. Calories/gram increased with insect development and with the development of balsam fir foliage but declined over time in white spruce. Assimilation efficiencies (A/C) were 33.9% to 40.2% while gross production efficiencies (P/C) were 9.5% to 13.3% and net production efficiencies (P/A) were 26.1% to 38.8%. The spruce fed insects gave higher values than those on fir, but all values were at the low end of the range for lepidopterous defoliators (possibly due to characteristics of conifer foliage).The enhanced growth found in spruce fed larvae contrasts the relationship between balsam fir and high insect densities. This is discussed together with the influence of spruce budworm on forest composition and the possible competitive benefits of spruce budworm induced tree mortality.Parts of this paper appeared in a Master's thesis (Koller 1978) submitted to the University of Maine  相似文献   

7.
Elevated dissolved carbon (C), nitrogen (N) and phosphorus (P) concentrations are frequently observed in surface water soon after clear-cutting of boreal coniferous forests. It has been suggested that they originate from the fine logging residues whose decomposition may be accelerated as a result of changes in soil temperature and moisture conditions. In the present study, the decomposition rate and release of C, N, and P from Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies Karsten) and silver birch (Betula pendula Roth.) logging residues (fine roots 2 mm, branches 10 mm and foliage) were investigated during three years with the litterbag method in a clear-cut area and in an adjacent Norway spruce dominated, mixed boreal forest in eastern Finland (63°51 N, 28°58 E, 220 m asl). The mass loss of the logging residues decreased in the order: foliage > roots > branches. Birch leaves were the only fraction that showed significantly higher losses of mass and C at the clear-cut plot than at the forest plot; otherwise there was no tendency for accelerated decomposition or mineralization at the clear-cut plot. After three years the initial C pool in the logging residues had declined by 33% and that of P by 49% but there was no net release of N as more N accumulated in roots and branches than was released from foliage. The results indicate that 1) logging residues release relatively large and rapid fluxes of CO2 to the atmosphere 2) are potential source of elevated P in surface waters soon after clear-cutting 3) are not a net source of N immediately after clear-cutting.  相似文献   

8.
高山森林凋落物分解过程中的微生物生物量动态   总被引:1,自引:0,他引:1  
周晓庆  吴福忠  杨万勤  朱剑霄 《生态学报》2011,31(14):4144-4152
凋落物分解过程中的微生物生物量动态对于深入了解森林凋落物分解机理具有重要意义。为了解高山森林典型树种凋落物分解过程中的微生物生物量特征,采用凋落物分解袋法,研究了土壤冻结期(3月)、融冻期(4月-5月)、生长季节(5-10月)和冻结初期(11月)红桦(Betula albosinensi)、岷江冷杉(Abies faxoniana)和粗枝云杉(Picea asperata)凋落物分解过程的微生物生物量C(MBC)、微生物生物量N(MBN)和微生物生物量P(MBP)动态。四个关键时期,凋落物的MBC、MBN以生长季节最高,但非生长季节的三个关键时期也检测出较高的MBC、MBN。在融冻期结束后,三类凋落物分解过程中MBC和MBN均出现爆发性增长。然而,MBP在生长季节中期(8月)、完全冻结期(3月)和冻结初期(11月)均相对较低,但在融冻期和生长季节后期(9月)相对较高。另外,红桦凋落物的MBC、MBN和MBP含量均高于岷江冷杉和粗枝云杉凋落物(除4月粗枝云杉凋落物MBP异常升高外)。这些结果为更加清晰地认识高寒森林凋落物分解过程及机理,以及进一步理解陆地生态系统结构和功能提供了一定基础数据。  相似文献   

9.
Nitrogen release from litter in relation to the disappearance of lignin   总被引:5,自引:1,他引:4  
Nitrogen dynamics were followed in several decomposing forest foliage litters in two contrasting ecosystem types. Litter types showing a significant net accumulation before a net release started were subjected to a study on nitrogen release mechanisms. In all cases no net release of nitrogen took place until a decomposition of the recalcitrant lignin fraction had started. The use of lignin as a predictor for the onset of a net nitrogen release was found to be better than the C/N ratio.  相似文献   

10.
Aims Slash removal is a common practice to prepare recently harvested sites for replanting. However, little is known about its impact on soil carbon (C) dynamics in subtropical plantations. This study evaluates the effects of burning versus manual slash removal site preparation treatments on soil organic carbon (SOC), soil respiration and soil microbial community structure in a Pinus massoniana plantation in southern China.Methods Three areas within a mature P. massoniana plantation were clearcut. Two months following harvesting, slash on one-half of each area was burned (BURN), whereas slash was manually removed (MANR) on the other portion. Slash removal treatments were also compared with adjacent uncut plantation areas (UNCUT). Soil samples, and soil respiration measurements were used to characterize soil properties and microbial communities following slash removal treatments. Important findings Mean soil respiration rates from the MANR and BURN treatments were 26% and 17% lower, respectively, than the UNCUT treatment over 1 year. The MANR and BURN treatment resulted in soils with 27% and 9% reduction in total phospholipid fatty acids (PLFAs) and 18% and 10% reduction in bacterial PLFAs, respectively, compared with the UNCUT treatment. However, no significant differences existed between slash removal treatments with respect to soil chemical properties, SOC chemical compositions, soil respiration and microbial communities; although PLFA patterns were notably different for the burned plots. Most factors affecting C dynamics and microbial communities were not sensitive to the differences imparted to the ecosystem due to manual slash removal or burning. Our results suggested that low-intensity burning after clear-cutting might have no significant effect on soil C pool and its dynamics compared with manual slash removal in subtropical plantations.  相似文献   

11.
We measured changes in carbon (C), nitrogen (N) and phosphorus (P) concentrations and mass of 10 foliar litters decomposing over 12 years at 21 sites across Canada, ranging from subarctic to temperate, to evaluate the influence of litter quality (nature) and forest floor (nurture) on N and P dynamics. Most litters lost P faster than N, relative to C, except in one litter which had a high initial C:P quotient (2,122). Net N loss occurred at mass C:N quotients of between 33 and 68, positively correlated with the C:N quotient in the original litter, and net P loss likely occurred at C:P quotients between 800 and 1,200. Forest floor properties also influenced N and P dynamics: the higher the C:N or C:P quotient in the surface soil organic matter, the smaller the proportion of initial N or P left in the decomposing litter, relative to C. There was a convergence of C:N and C:P quotients as the litters decomposed, with an overall mass ratio of 427:17:1 when the litters reached 20% original C remaining. These results, covering a wide range of sites and litters and thus decomposition rates, showed that the C:N:P quotients followed similar trajectories and converged as the litters decomposed. The relative loss of N and P was affected by both the initial litter nutrient concentration and the chemistry of the site forest floor, with the former being more important than the latter, resulting in spatial variations in nutrient content of the forest floor.  相似文献   

12.
森林凋落物研究进展   总被引:90,自引:6,他引:84  
林波  刘庆  吴彦  何海 《生态学杂志》2004,23(1):60-64
对森林凋落物的概念、研究方法及主要研究内容作了阐述,特别就凋落物收集面积和分解袋孔径大小、凋落量时空动态和凋落物分解速率等问题进行了综合分析。目前森林凋落物研究的重要结论有:海拔和纬度因子是通过对光、温、水等生态因子的再分配来影响凋落量,其中主导气候因子是年均温。凋落物的分解与化学组成和环境因子有关,C/N和N含量在凋落物分解过程中起着重要作用。土壤水分是影响凋落物分解主要环境因子之一;土壤微生物对凋落物的影响,前期是通过真菌破碎凋落物表层使内居性动物得以侵入凋落物内部,后期则以细菌降解有机物为主。凋落量、凋落物分解的影响因子,以及凋落物的生态作用等内容应是凋落物研究的重要方向。  相似文献   

13.
Calcium cycling plays a key role in the health and productivity of red spruce forests in the northeastern US. A portion of the flowpath of calcium within forests includes translocation as Ca2+ in sapwood and accumulation as crystals of calcium oxalate in foliage. Concentrations of Ca in these tree tissues have been used as markers of environmental change due to acidic deposition or forest management practices. We compared the effects of Ca fertilization treatment on Ca concentration in wood and Ca and oxalate (Ox) concentration in foliage at two locations with different initial concentrations of Ca in the soil. We found greater amounts of Ca in wood from the high-Ca location than from the low-Ca location. Ca concentration was greater in wood formed in the 1970s than for wood formed in the 1980s, the outermost decadal band in these samples. The Ca-treatment was detected as an increased concentration of Ca in the 1970s and 1980s decadal bands. We also found that variation in Ca and Ox in foliage was essentially stoichiometric. The appearance and response to chemical tests of crystals in foliage were consistent with identification as calcium oxalate. The increased Ca in wood after Ca-treatment of the soil supports the use of dendrochemistry of base cations to investigate environmental change. However, differences in Ca concentration between the two outermost decadal bands of wood illustrate that internal processes of translocation and storage also affect Ca concentration. Calcium oxalate production in foliage diverts carbon from ordinary biosynthesis and energy-yielding processes. This sequestration, shedding, and decomposition of foliage may represent a significant and under-recognized contribution to carbon and Ca cycling.  相似文献   

14.
The large accumulation of organic matter in peatlands has been partially attributed to litter decomposition rates, which are slowed by a high water table. To test this, we examined whether there were significant differences in the decomposition and N and P dynamics of ten foliar litters and wood blocks at three pairs of upland forest and peatland sites in the transitional grassland, high boreal and low subarctic regions of central Canada, using litterbags collected over a 12-year period. At two of the three pairs, the decomposition rate, as determined by proportion of the original mass remaining after 12 years and by the exponential decay coefficient (k), was faster overall at the upland than at the peatland. In the third pair, there was no significant difference, despite the water table being close to the peat surface; warmer soil temperatures in the peatland than the upland may be the cause. In general, there were small losses or gains of N in the litters after 12 years, compared to the original litter, though there were some differences among litter types and sites, net gains in N likely reflecting the higher exogenous N availability. P was lost from most litters at the two northern pairs of sites, but at the transitional grassland pair, there were large net gains in P and greater variation among litters. The N:P ratio in the original litters ranged from 5 to 26 and after 12 years the ratio narrowed, with the site average of the ten litters ranging from 13 to 22, varying with the soil ratio. Decomposition rates and N and P dynamics after 12 years are different between upland and peatland sites: although the water table is a primary control on these differences, other factors such as temperature and soil nutrient status are also important.  相似文献   

15.
In the context of land use change, the dynamics of the water extractable organic carbon (WEOC) pool and CO2 production were studied in soil from a native oak-beech forest and a Douglas fir plantation during a 98-day incubation at a range of temperatures from 8°C to 28°C. The soil organic carbon, water contents and mineralisation rates of soil samples from the 0–5 cm layer were higher in the native forest than in the Douglas fir plantation. During incubation, a temperature-dependent shift in the δ13C of respired CO2 was observed, suggesting that different carbon compounds were mineralised at different temperatures. The initial size of the WEOC pool was not affected by forest type. The WEOC pool size of samples from the native forest did not change consistently over time whereas it decreased significantly in samples from the Douglas plantation, irrespective of soil temperature. No clear changes in the δ13C values of the WEOC were observed, irrespective of soil origin. The fate of the WEOC, independent of soil organic carbon content or mineralisation rates, appeared to relate to forest types. Replacement of native oak-beech forest with Douglas fir plantation impacts carbon input to the soil, mineralisation rates and production of dissolved organic carbon.  相似文献   

16.
The change of current pools of soil C in Norway spruce ecosystems in Sweden were studied using a process-based model (CoupModel). Simulations were conducted for four sites representing different regions covering most of the forested area in Sweden and representing annual mean temperatures from 0.7°C to 7.1°C. The development of both tree layer and field layer (understory) was simulated during a 100-year period using data on standing stock volumes from the Swedish Forest Inventory to calibrate tree growth using different assumptions regarding N supply to the plants. The model successfully described the general patterns of forest stand dynamics along the Swedish climatic transect, with decreasing tree growth rates and increasing field layer biomass from south to north. However, the current tree growth pattern for the northern parts of Sweden could not be explained without organic N uptake and/or enhanced mineralisation rates compared to the southern parts. Depending on the assumption made regarding N supply to the tree, different soil C sequestration rates were obtained. The approach to supply trees with both mineralised N and organic N, keeping the soil C:N ratio constant during the simulation period was found to be the most realistic alternative. With this approach the soils in the northern region of Sweden lost 5 g C m−2 year−1, the soils in the central region lost 2 g C m−2 year−1, and the soils in the two southern regions sequestered 9 and 23 g C m−2 year−1, respectively. In addition to climatic effects, the feedback between C and N turnover plays an important role that needs to be more clearly understood to improve estimates of C sequestration in boreal forest ecosystems.  相似文献   

17.
In the past two centuries, anthropogenic fire suppression has affected many biomes, including boreal forests. Absence of fire in the boreal zone is often linked to declining soil fertility and increased carbon sequestration in the humus through changes in NPP and litter decomposition. We studied tree litterfall and litter decomposition for thirty lake islands in the boreal forested zone of Sweden, which differ naturally in fire regime: larger islands have burned far more frequently than smaller ones because they are intercepted more often by lightning. We used litter trays to show that the ratio of twig to foliar litterfall for Picea abies with prolonged absence of fire is largely responsible for the concomitant increased twig proportion in the total litterfall. We hypothesised that the increased twig proportion in the litterfall with time since fire would affect overall decomposition by reducing net litter quality and through impairing decomposition of associated foliar litters. We established a litter decomposition mesocosm experiment based on litter from the three main tree species found on the islands. From each of the thirty islands, we prepared a set of litterbags comprising three mixtures (all foliar litters combined, all twig litters combined, and all twig and foliar litters combined), plus monotypes (i.e. each of the separate foliage and twig litters for each species). Unlike most studies, we used the natural litterfall proportions in the mixtures. We found a (negative) effect of time since wildfire on decomposition rate for only the foliage‐twig mixtures, although twig litter did not inhibit the decomposition of foliar litter within these mixtures. The reduced decomposition rate in the foliage‐twig mixture from the small islands was therefore due to the increased proportion of twigs in the mixtures from these islands. Our results suggest that, with prolonged absence of fire, the increase of twig proportion in the foliage‐twig litterfall for P. abies combined with the shift to canopy dominance by P. abies may be important in contributing to reduced decomposition rates in boreal forest soils.  相似文献   

18.
Bhatti  J. S.  Apps  M. J.  Jiang  H. 《Plant and Soil》2002,242(1):1-14
The interacting influence of disturbances and nutrient dynamics on aboveground biomass, forest floor, and mineral soil C stocks was assessed as part of the Boreal Forest Transect Case Study in central Canada. This transect covers a range of forested biomes–-from transitional grasslands (aspen parkland) in the south, through boreal forests, and into the forested subarctic woodland in the north. The dominant forest vegetation species are aspen, jack pine and spruce. Disturbances influence biomass C stocks in boreal forests by determining its age-class structure, altering nutrient dynamics, and changing the total nutrient reserves of the stand. Nitrogen is generally the limiting nutrient in these systems, and N availability determines biomass C stocks by affecting the forest dynamics (growth rates and site carrying capacity) throughout the life cycle of a forest stand. At a given site, total and available soil N are determined both by biotic factors (such as vegetation type and associated detritus pools) and abiotic factors (such as N deposition, soil texture, and drainage). Increasing clay content, lower temperatures and reduced aeration are expected to lead to reduced N mineralization and, ultimately, lower N availability and reduced forest productivity. Forest floor and mineral soil C stocks vary with changing balances between complex sets of organic carbon inputs and outputs. The changes in forest floor and mineral soil C pools at a given site, however, are strongly related to the historical changes in biomass at that site. Changes in N availability alter the processes regulating both inputs and outputs of carbon to soil stocks. N availability in turn is shaped by past disturbance history, litter fall rate, site characteristics and climatic factors. Thus, understanding the life-cycle dynamics of C and N as determined by age-class structure (disturbances) is essential for quantifying past changes in forest level C stocks and for projecting their future change.  相似文献   

19.
The effects of clearcut and partial harvesting of early-seral trembling aspen plots were compared to conventional clearcut harvesting in mid-seral mixedwood and late-seral conifer plots. Twice a year, for three consecutive years, we assessed mineral N and microbial dynamics in the forest floor of these plots to test three hypotheses related to the higher litter quality of aspen leaves and to the sustained inputs of available C on partially harvested plots: (1) the post-clearcutting mineral N flush and the net [(NO3): (NO3 + NH4+)] production ratio (RNI) are higher in aspen plots than in black spruce plots, with intermediate values occurring in mixedwood plots; (2) net N mineralization rates in aspen plots are higher in spring than in autumn; and (3) compared to clearcutting, partial harvesting reduces potential ammonification and nitrification rates. Initial NH4+ and NO3 concentrations respectively ranged between 1.7–4.4 and 0.2–1.5 g N kg–1 Ntotal, net ammonification and nitrification rates (30 d incubations) respectively ranged between 5.3–17.8 and 0.1–27.6 g N kg–1 Ntotal, basal respiration ranged between 20.9–38.9 mg CO2-C kg–1 h–1, and microbial biomass ranged between 6.1–8.7 g Cmic kg–1. Although clearcutting increased NO3 concentrations in aspen plots, the balance of our results did not support our first hypothesis, because NH4+ concentrations increased in conifer plots only, potential ammonification was unaffected by clearcutting, potential nitrification increased in mixedwood plots only, and RNI increased in all plots. In each seral stage, basal respiration, microbial biomass, and metabolic quotient either increased or were unaffected by clearcutting, suggesting that increases in RNI after disturbance were not related to lower microbial immobilisation of NO3 due to lower available C. Forest floors in mid-seral mixedwood plots exhibited a distinct combination of mineral N and microbial properties, suggesting that the functional richness of the forest is enhanced not only by the number of species, but also by the diversity of assemblages that are present. Results supported our second hypothesis and showed, furthermore, that net N mineralization in conifer stands is greater in autumn than in spring. Partial harvesting in aspen stands resulted in lower potential mineralization of N and lower RNI, compared to clearcutting. Further lysimetry studies are needed to confirm whether partial harvesting mitigates NO3 leaching following disturbance.  相似文献   

20.
Associations among the few tree species in the North American boreal landscape are the result of complex interactions between climate, biota, and historical disturbances during the Holocene. The closed-crown boreal forest of eastern North America is subdivided into two ecological regions having distinct tree species associations; the balsam fir zone and the black spruce zone, south and north of 49°N, respectively. Subalpine old-growth stands dominated by trees species typical of the balsam fir forest flora (either balsam fir or white spruce) are found on high plateaus, some of which are isolated within the black spruce zone. Here we identified the ecological processes responsible for the distinct forest associations in the subalpine belt across the eastern boreal landscape. Extensive radiocarbon dating, species composition, and size structure analyses indicated contrasted origin and dynamics of the subalpine forests between the two ecological regions. In the black spruce zone, the subalpine belt is a mosaic of post-fire white spruce or balsam fir stands coexisting at similar elevation on the high plateaus. With increasing time without wildfire, the subalpine forests become structurally similar to the balsam fir forest of the fir zone. These results concur with the hypothesis that the subalpine forests of this area are protected remnants of an historical northern expansion of the fir zone. Its replacement by the fire-prone black spruce forest flora was caused by recurrent fires. In the subalpine belt of the fir zone, no fire was recorded for several millennia. Harsh climate at high altitude is the primary factor explaining white spruce dominance over balsam fir forming a distinct subalpine white spruce belt above the balsam fir dominated forest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号