共查询到20条相似文献,搜索用时 15 毫秒
1.
旨在对鸡细胞色素P450 1A5(CYP1A5)蛋白进行体外功能研究,采用大肠杆菌系统进行CYP1A5的异源表达。以鸡的cDNA为模板,扩增出CYP1A5基因,将该基因的N端编码区进行修饰,并连接到pCW载体中构建His-CYP1A5,经IPTG诱导在大肠杆菌中表达。经CO-差示光谱检测,所获得的His-CYP1A5具有典型的P450吸收峰。该蛋白与细胞色素P450还原酶(CPR)进行体外重组,构成的重组酶系表现出乙氧基试卤灵-O-脱乙基酶活性。结果表明,所采用的表达策略可以成功产生出具有催化活性的鸡细胞色素P450 1A5(CYP1A5)蛋白。 相似文献
2.
Cheng J Wan DF Gu JR Gong Y Yang SL Hao DC Yang L 《Protein expression and purification》2006,47(2):467-476
Cytochrome P450s (CYPs) hold a balance in studying pharmacokinetics, toxico-kinetics, drug metabolism, and drug-drug interactions, which require association with cytochrome P450 reductase (CPR) to achieve optimal activity. A novel system of Saccharomyces cerevisiae useful for expression studies of mammalian microsomal CYPs was established. Human CPR (hCPR) was co-expressed with human CYP3A4 (hCYP3A4) in this system, and two expression plasmids pTpLC and pYeplac195-3A4 containing the cDNA of hCPR and hCYP3A4 were constructed, respectively. The two plasmids were applied first and controlled by phosphoglycerate kinase (PGK) promoter. S. cerevisiae BWG1-7alpha transformed with the expression plasmids produced the respective proteins in the expected molecular sizes reactive with both anti-hCYP3A4 immunoglobulin (Ig) and anti-hCPR Ig. The activity of hCPR in yeast BWG-CPR was 443.2 nmol reduced cytochrome c/min/mg, which was about three times the CPR activity of the microsome prepared from the parental yeast. The protein amount of hCYP3A4 in BWG-CPR/3A4 was 35.53 pmol/mg, and the 6beta-hydroxylation testosterone formation activity of hCYP3A4 expressed was 7.5 nmol/min/nmol CYP, 30 times higher than the activity of hCYP3A4 expressed in the parental yeast, and almost two times the activity of hCYP3A4 from homologous human liver microsome. Meanwhile, BWG-CPR/3A4 retained 100 generations under nonselective culture conditions, indicating this yeast was a mitotically stable transformant. BWG-CPR was further tested daily by the PCR amplification of hCPR of yeast genome, Western blot analysis, and the activity assay of hCPR of yeast microsome. This special expression host for CYPs was validated to be stable and efficient for the expression of CYPs, applying as an effective selection model for the drug metabolism in vitro. 相似文献
4.
Mast N Andersson U Nakayama K Bjorkhem I Pikuleva IA 《Archives of biochemistry and biophysics》2004,428(1):99-108
Heterologous expression in Escherichia coli, subcellular distribution, solubility, and catalytic and substrate-binding properties of four truncated cytochromes P450 46A1 were investigated in the present study. All four lacked the N-terminal transmembrane region (residues 3-27), and, in addition, Delta 46A1H had a 4x His-tag fused to the C-terminus; H Delta 46A1 had the N-terminal 4x His-tag; H Delta 46A1 Delta had a 4x His-tag at the N-terminus and did not contain a proline-rich region at the C-terminus (residues 494-499); and Delta 46A1 Delta lacked the C-terminal proline-rich region. The truncated enzymes were expressed at 390-650 nmol/L culture levels, distributed at about a 1:1 ratio between the membrane fraction and the cytosol in low ionic strength buffer, and were predominantly monomers in detergent-free buffer. They had moderately decreased catalytic efficiencies for either cholesterol or 24S-hydroxycholesterol or both, whereas their substrate-binding constants were either unchanged or decreased 2-fold. The two forms, Delta 46A1 Delta and H Delta 46A1 Delta, both lacking the C-terminal proline-rich region seem to be good candidates for future crystallographic studies because they contain only 0.3-0.8% of high molecular weight aggregates and their catalytic efficiencies are decreased no more than 2.3-fold. 相似文献
5.
Proteoliposomes, containing cytochrome P450 1A2, were obtained by the cholate-dialysis technique. The effect of bifunctional cross-linking reagents on the purified hexameric cytochrome P450 1A2 in an aqueous medium and on the proteoliposomal P450 1A2 have been compared. Electrophoretic analysis of the modified proteins demonstrated the same oligomeric (hexameric) organization of the hemoprotein in each case. 相似文献
6.
Human cytochrome P450 (P450) 4F11 is still considered an “orphan” because its function is not well characterized. A bacterial expression system was developed for human P450 4F11, producing ∼230 nmol P450 from a 3-l culture of Escherichia coli. P450 4F11 was purified and utilized for untargeted substrate searches in human liver extract using a liquid chromatography/mass spectrometry-based metabolomic and isotopic labeling approach (Tang et al., 2009 [19]). Four fatty acids—palmitic, oleic, arachidonic, and docosahexaenoic—were identified in human liver and verified as substrates of P450 4F11. The products were characterized as ω-hydroxylated fatty acids by gas chromatography-mass spectrometry analysis of their trimethylsilyl derivatives. Kinetic analysis of the oxidation products confirmed that the fatty acids are substrates oxidized by P450 4F11. P450 4F11 also exhibited low activity for some drug N-demethylation reactions but none for activation of several pro-carcinogens. 相似文献
7.
Thomas Hamann Tomas Laursen Birger Lindberg Mller 《Protein expression and purification》2009,68(1):18-21
The introduction of an affinity tag offers an attractive approach to isolation of membrane proteins. The type of affinity tag and its positioning in the protein is determined by the desired subsequent experimental uses of the isolated protein. To minimize the risk of interference, membrane proteins may preferentially be tagged on the side of the membrane that does not harbor the active site. In cytochromes P450, affinity tags have traditionally been introduced at the C-terminal to obtain high expression levels and to avoid translocation of the affinity tag over the membrane bilayer. Using the plant cytochrome P450 CYP79A1 and CYP71E1 as model systems, we demonstrate that a full-length CYP79A1 strepII tagged at the N-terminal expresses well and is able to translocate over the lipid bilayer to produce a functionally active protein that is amenable to affinity purification. The expression level and activity of the N-terminally tagged CYP79A1 protein are very similar to those obtained for the C-terminally tagged version. As an experimental tool, ER luminal tagging is envisioned to offer many advantages in future P450 research work e.g. when catalytic properties of an enzyme or protein–protein interactions are to be investigated. 相似文献
8.
Yadav S Dhawan A Singh RL Seth PK Parmar D 《Molecular and cellular biochemistry》2006,286(1-2):171-180
Studies initiated to investigate the expression of cytochrome P450 2E1 (CYP2E1) in rat brain demonstrated low but detectable protein and mRNA expression in control rat brain. Though mRNA and protein expression of CYP2E1 in brain was several fold lower as compared to liver, relatively high activity of N-nitrosodimethylamine demethylase (NDMA-d) was observed in control rat brain microsomes. Like liver, pretreatment with CYP2E1 inducers such as ethanol or pyrazole or acetone significantly increased the activity of brain microsomal NDMA-d. Kinetic studies also showed an increase in the Vmax and affinity (Km) of the substrate towards the brain enzyme due to increased expression of CYP2E1 in microsomes of brain isolated from ethanol pretreated rats. In vitrostudies using organic inhibitors, specific for CYP2E1 and anti-CYP2E1 significantly inhibited the brain NDMA-d activity indicating that like liver, NDMA-d activity in rat brain is catalyzed by CYP2E1. Olfactory lobes exhibited the highest CYP2E1 expression and catalytic activity in control rats. Furthermore, several fold increase in the mRNA expression and activity of CYP2E1 in cerebellum and hippocampus while a relatively small increase in the olfactory lobes and no significant change in other brain regions following ethanol pretreatment have indicated that CYP2E1 induction maybe involved in selective sensitivity of these brain areas to ethanol induced free radical damage and neuronal degeneration. 相似文献
9.
Wu ZL Bartleson CJ Ham AJ Guengerich FP 《Archives of biochemistry and biophysics》2006,445(1):138-146
Cytochrome P450 (P450) 27C1 is one of the "orphan" P450 enzymes without a known biological function. A human P450 27C1 cDNA with a nucleotide sequence modified for Escherichia coli usage was prepared and modified at the N-terminus, based on the expected mitochondrial localization. A derivative with residues 3-60 deleted was expressed at a level of 1350nmol/L E. coli culture and had the characteristic P450 spectra. The identity of the expressed protein was confirmed by mass spectrometry of proteolytic fragments. The purified P450 was in the low-spin iron state, and the spin equilibrium was not perturbed by any of the potential substrates vitamin D(3), 1alpha- or 25-hydroxy vitamin D(3), or cholesterol. P450s 27A1 and 27B1 are known to catalyze the 25-hydroxylation of vitamin D(3) and the 1alpha-hydroxylation of 25-hydroxy vitamin D(3), respectively. In the presence of recombinant human adrenodoxin and adrenodoxin reductase, recombinant P450 27C1 did not catalyze the oxidation of vitamin D(3), 1alpha- or 25-hydroxy vitamin D(3), or cholesterol at detectable rates. P450 27C1 mRNA was determined to be expressed in liver, kidney, pancreas, and several other human tissues. 相似文献
10.
Supratim Choudhuri Xu Jie Zhang Mark J. Waskiewicz Paul E. Thomas 《Journal of biochemical and molecular toxicology》1995,10(6):299-307
Induction of P450 3A1 and P450 3A2 was studied in adult rat liver following treatment with a single high dose of dexamethasone (DEX). The increase of both P450 3A1 and 3A2 occurred at the level of mRNA as well as protein. P450 3A isozymes thus induced were catalytically active. No constitutive expression of P450 3A1 mRNA or protein was observed in males or females. Constitutive expression of P450 3A2 mRNA and protein was observed in males but not in females. Additionally, in females, P450 3A2 was almost nondetectable compared to that in males, at any dose of DEX. A time course study following DEX treatment showed that P450 3A1 mRNA and protein were detectable in both sexes at 12 hours, increased until 48 hours, and then declined. The decline was more rapid in males. P450 3A2 mRNA and protein increased as early as 3 hours, increased further up to 48 hours, and slowly declined thereafter. A dose-response study indicated that P450 3A1 mRNA and protein progressively increased in both sexes from a dose of 30 mg/kg. In contrast, P450 3A2 mRNA and protein in males did not increase up to a dose of 30 mg/kg but increased at higher doses. Total P450 content and P450 3A catalytic activity were also found to increase with time and dose. © 1996 John Wiley & Sons, Inc. 相似文献
11.
Raising intact male pigs would have a significant economic impact on the pork industry because intact males have improved feed efficiency and a greater lean yield of the carcass compared with barrows. However, the presence of skatole, a major cause of boar taint, in meat from intact male pigs could be highly objectionable to consumers. It has been shown that CYP2A6 is a key enzyme in the hepatic metabolism of skatole and that the activity of CYP2A6 is negatively correlated with skatole accumulation in fat. The aim of this study was to isolate and characterize CYP2A6 from pig liver, as well as identify genetic polymorphisms in the CYP2A6 gene, and examine the association between these polymorphisms and skatole level. We identified a single base deletion in CYP2A6, resulting in a frame shift in the coding region that produces a non-functional enzyme, which was associated with high levels of skatole in fat tissue. 相似文献
12.
The kinetic constants for the metabolism of bromodichloromethane (BDCM) by three cytochrome P450 (CYP) isoenzymes have been measured in human liver microsomes. The three CYP isoenzymes, CYP2E1, CYP1A2 and CYP3A4, have been identified previously as important in the metabolism of this compound. To measure the constants for each isoenzyme, enzyme-specific inhibitory antibodies were used to block the activities for two of the three isoenzymes. CYP2E1 was found to have the lowest K(m), 2.9 microM, and the highest catalytic activity, k(cat). The K(m) for the other isoenzymes, CYP1A2 and CYP3A4, were about 60 microM with lower values of k(cat). Apparent kinetic constants obtained from two microsomal samples that were not inhibited were consistent with these results. In addition, 11 human microsome samples characterized for 10 CYP activities were correlated with the metabolism of 9.7 microM BDCM by each sample; statistical analysis showed a correlation with CYP2E1 activity only. This result is consistent with the finding that CYP2E1 is the only isoenzyme with a K(m) lower than the BDCM concentration used. The kinetic constants obtained from the inhibited microsomes were compared to similar results from recombinant human isoenzyme preparations containing only one CYP isoenzyme. The results for CYP2E1 were very similar, while the results for CYP1A2 were somewhat less similar and there was a substantial divergence for CYP3A4 in the two systems. Possible reasons for these differences are differing levels of CYP reductase and/or differing makeup of the membrane lipid environment for the CYPs. Because of the low levels of BDCM exposure from drinking water, it appears likely that CYP2E1 will dominate hepatic CYP-mediated BDCM metabolism in humans. 相似文献
13.
Kranendonk M Marohnic CC Panda SP Duarte MP Oliveira JS Masters BS Rueff J 《Archives of biochemistry and biophysics》2008,475(2):93-99
Y459H and V492E mutations of cytochrome P450 reductase (CYPOR) cause Antley-Bixler syndrome due to diminished binding of the FAD cofactor. To address whether these mutations impaired the interaction with drug-metabolizing CYPs, a bacterial model of human liver expression of CYP1A2 and CYPOR was implemented. Four models were generated: PORnull, PORwt, PORYH, and PORVE, for which equivalent CYP1A2 and CYPOR levels were confirmed, except for PORnull, not containing any CYPOR. The mutant CYPORs were unable to catalyze cytochrome c and MTT reduction, and were unable to support EROD and MROD activities. Activity was restored by the addition of FAD, with V492E having a higher apparent FAD affinity than Y459H. The CYP1A2-activated procarcinogens, 2-aminoanthracene, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, and 2-amino-3-methylimidazo(4,5-f)quinoline, were significantly less mutagenic in PORYH and PORVE models than in PORwt, indicating that CYP1A2, and likely other drug-metabolizing CYPs, are impaired by ABS-related POR mutations as observed in the steroidogenic CYPs. 相似文献
14.
We describe initial results on a Western blotting method, using a ployclonal antibody and chemiluminescence detection, for the measurement of cytochrome P450 2E1 in human lymphocytes. The method has been used to study the levels of 2E1 in lymphocytes isolated from 5 ml blood samples collected from a small group of well-controlled type 1 diabetics and healthy individuals. The described method offers increased sensitivity compared with a previously published method and does not need in vitro culturing of the lymphocytes prior to 2E1 measurement. The apparent molecular weight of the lymphocyte P450 2E1 was 55 kDa. There was approximately a six-fold difference in expression levels of 2E1 detected by this immunochemical technique across the study population. 相似文献
15.
Sono M Perera R Jin S Makris TM Sligar SG Bryson TA Dawson JH 《Archives of biochemistry and biophysics》2005,436(1):40-49
To probe whether the nature of the substrate can directly influence the spectral properties of oxyferrous cytochrome P450-CAM, the complex has been investigated in the absence and in the presence of the natural substrate (1R)-camphor (camphor) and of several camphor analogs. The oxyferrous complex of T252A P450-CAM, a mutant lacking the hydroxyl group that forms a hydrogen bond to the heme iron-coordinated dioxygen, has also been studied to gauge the influence of this hydrogen bond. UV-visible absorption and magnetic circular dichroism (MCD) spectra of these oxyferrous adducts prepared and stabilized at -40 degrees C in 60% (v/v) ethylene glycol are generally similar, exhibiting absorption bands at approximately 355, approximately 420, approximately 554, and approximately 585 nm (shoulder) and a characteristic MCD trough at approximately 585 nm. The MCD spectrum of camphor-bound oxyferrous P450-CAM is similar to that of the substrate-free oxyferrous enzyme, but the spectrum of the oxyferrous enzyme differs detectably in the presence of substrate analogs. The spectra of the oxyferrous T252A mutant and wild-type enzyme are overall similar except for Soret band position blue shifts by 2-6 nm for the mutant. 5-Methylenylcamphor (epoxidation substrate) appears to have an anomalous binding mode for the mutant compared with that for the wild-type enzyme. The present results indicate that the structures of the camphor analogs can sensitively influence the physical (spectroscopic) properties of the P450 dioxygen complex and could also affect its reactivity. The ability of substrate to modulate the reactivity of P450 intermediates could be a relevant factor in explaining the remarkable diversity of reactions catalyzed by the enzyme. 相似文献
16.
We describe initial results on a Western blotting method, using a ployclonal antibody and chemiluminescence detection, for the measurement of cytochrome P450 2E1 in human lymphocytes. The method has been used to study the levels of 2E1 in lymphocytes isolated from 5 ml blood samples collected from a small group of well-controlled type 1 diabetics and healthy individuals. The described method offers increased sensitivity compared with a previously published method and does not need in vitro culturing of the lymphocytes prior to 2E1 measurement. The apparent molecular weight of the lymphocyte P450 2E1 was 55 kDa. There was approximately a six-fold difference in expression levels of 2E1 detected by this immunochemical technique across the study population. 相似文献
17.
Sanjeewa G. Rupasinghe Heather L. Frericks Schmidt Chad M. Rienstra Mary A. Schuler 《生物化学与生物物理学报:生物膜》2007,1768(12):3061-3070
Cytochrome P450 monooxygenases (P450s), which represent the major group of drug metabolizing enzymes in humans, also catalyze important synthetic and detoxicative reactions in insects, plants and many microbes. Flexibilities in their catalytic sites and membrane associations are thought to play central roles in substrate binding and catalytic specificity. To date, Escherichia coli expression strategies for structural analysis of eukaryotic membrane-bound P450s by X-ray crystallography have necessitated full or partial removal of their N-terminal signal anchor domain and, often, replacement of residues more peripherally associated with the membrane (such as the F-G loop region). Even with these modifications, investigations of P450 structural flexibility remain challenging with multiple single crystal conditions needed to identify spatial variations between substrate-free and different substrate-bound forms. To overcome these limitations, we have developed methods for the efficient expression of 13C- and 15N-labeled P450s and analysis of their structures by magic-angle spinning solid-state NMR (SSNMR) spectroscopy. In the presence of co-expressed GroEL and GroES chaperones, full-length (53 kDa) Arabidopsis13C,15N-labeled His4CYP98A3 is expressed at yields of 2-4 mg per liter of minimal media without the necessity of generating side chain modifications or N-terminal deletions. Precipitated His4CYP98A3 generates high quality SSNMR spectra consistent with a homogeneous, folded protein. These data highlight the potential of these methodologies to contribute to the structural analysis of membrane-bound proteins. 相似文献
18.
A thorough understanding of the sequence–structure–function relationships of cytochrome P450 (P450) is necessary to better understand the metabolic diversity of living organisms. Significant amounts of pure enzymes are sometimes required for biochemical studies, and their acquisition often relies on the possibility of their heterologous expression. In this study, we performed extensive heterologous expression of fungal P450s in Escherichia coli using 304 P450 isoforms. Using large-scale screening, we confirmed that at least 27 P450s could be expressed with/without simple sequence deletion at the 5′ end of cDNAs, which encode the N-terminal hydrophobic domain of the enzyme. Moreover, we identified N-terminal amino acid sequences that can potentially be used to construct chimeric P450s, which could dramatically improve their expression levels even when the expression of the wild-type sequence was unpromising. These findings will help increase the chance of heterologous expression of a variety of fungal and other eukaryotic membrane-bound P450s in E. coli. 相似文献
19.
Chinta SJ Kommaddi RP Turman CM Strobel HW Ravindranath V 《Journal of neurochemistry》2005,93(3):724-736
Cytochrome P-450 function as mono-oxygenases and metabolize xenobiotics. CYP1A1, a cytochrome P-450 enzyme, bioactivates polycyclic aromatic hydrocarbons to reactive metabolite(s) that bind to DNA and initiate carcinogenesis. Northern and immunoblot analyses revealed constitutive expression of Cyp1a1 and CYP1A1 in rat and human brain, respectively. CYP1A1 mRNA and protein were localized predominantly in neurons of cerebral cortex, Purkinje and granule cell layers of cerebellum and pyramidal neurons of CA1, CA2, and CA3 subfields of the hippocampus. RT-PCR analyses using RNA obtained from autopsy human brain samples demonstrated the presence of a splice variant having a deletion of 87 bp of exon 6. This splice variant was present in human brain, but not in the liver from the same individual, and was absent in rat brain and liver. Structural modeling indicated broadening of the substrate access channel in the brain variant. The study demonstrates the presence of a unique cytochrome P-450 enzyme in human brain that is generated by alternate splicing. The presence of distinct cytochrome P-450 enzymes in human brain that are different from well-characterized hepatic forms indicates that metabolism of xenobiotics including drugs could occur in brain by pathways different from those known to occur in liver. 相似文献
20.
人类细胞色素P450与药物氧化代谢遗传多态性分子机制的研究现状 总被引:10,自引:0,他引:10
近年,在表型及基因型上均发现存在药物氧化代谢多态性,特别是对于人类细胞色素P450氧化酶与药氧化代谢遗传多态性的关系进行了深入的研究。有关CYP2D6、CYP2C19等的突变已大多被鉴定;CYP1A1、CYP1A2等在表型存在多态性而确切的遗传机制尚不清楚。 相似文献