首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The cytosolic phosphoenolpyruvate carboxykinase (PEPCK) gene is expressed in multiple tissues and is regulated in a complex tissue-specific manner. To map the cis-acting DNA elements that direct this tissue-specific expression, we made transgenic mice containing truncated PEPCK-human growth hormone (hGH) fusion genes. The transgenes contained PEPCK promoter fragments with 5' endpoints at -2088, -888, -600, -402, and -207 bp, while the 3' endpoint was at +69 bp. Immunohistochemical analysis showed that the -2088 transgene was expressed in the correct cell types (hepatocytes, proximal tubular epithelium of the kidney, villar epithelium of the small intestine, epithelium of the colon, smooth muscle of the vagina and lungs, ductal epithelium of the sublingual gland, and white and brown adipocytes). Solution hybridization of hGH mRNA expressed from the transgenes indicated that white and brown fat-specific elements are located distally (-2088 to -888 bp) and that liver-, gut-, and kidney-specific elements are located proximally (-600 to +69 bp). However, elements outside of the region tested are necessary for the correct developmental pattern and level of PEPCK expression in kidney. Both the -2088 and -402 transgenes responded in a tissue-specific manner to dietary stimuli, and the -2088 transgene responded to glucocorticoid stimuli. Thus, different tissues utilize distinct cell-specific cis-acting elements to direct and regulate the PEPCK gene.  相似文献   

4.
5.
The selective expression of a unique copy gene in several mammalian tissues has been approached by studying the regulatory sequences needed to control expression of the rat phosphoenolpyruvate carboxykinase (PEPCK) gene in transgenic mice. A transgene containing the entire PEPCK gene, including 2.2 kb of the 5'-flanking region and 0.5 kb of the 3'-flanking region, exhibits tissue-specific expression in the liver, kidney, and adipose tissue, as well as the hormonal and developmental regulation inherent to endogenous gene expression. Deletions of the 5'-flanking region of the gene have shown the need for sequences downstream of position -540 of the PEPCK gene for expression in the liver and sequences downstream of position -362 for expression in the kidney. Additional sequences upstream of position -540 (up to -2200) are required for expression in adipose tissue. In addition, the region containing the glucocorticoid-responsive elements of the gene used by the kidney was identified. This same sequence was found to be needed specifically for developmental regulation of gene expression in the kidney and, together with upstream sequences, in the intestine. The apparently distinct sequence requirements in the various tissues indicate that the tissues use different mechanisms for expression of the same gene.  相似文献   

6.
The kidney plays an important role in ion regulation in both freshwater and seawater fish. However, ion transport mechanisms in the teleost kidney are poorly understood, especially at the molecular level. We have cloned a kidney-specific SLC26 sulfate/anion exchanger from rainbow trout (Oncorhynchus mykiss) that is homologous to the mammalian SLC26A1 (Sat-1). Excretion of excess plasma sulfate concentration after Na2SO4 injection corresponded to significantly higher expression of the cloned SLC26A1 mRNA. Detailed morphological observation of rainbow trout renal tubules was also performed by light microscopy and transmission electron microscopy. According to the structure of brush border and tubular system in the cytoplasm, renal tubules of rainbow trout were classified into proximal tubule first and second (PI and PII) segments and distal tubules. In situ hybridization revealed that SLC26A1 anion exchanger mRNA is specifically localized in the PI segment of kidneys from both seawater- and freshwater-adapted rainbow trout. With immunocytochemistry, Na+-K+-ATPase and vacuolar-type H+-ATPase were colocalized to the same cells and distributed in the basolateral and the apical membranes, respectively, of the cells where the SLC26A1 mRNA expressed. These findings suggest that the cloned kidney-specific SLC26A1 is located in kidney proximal tubules and is involved in excretion of excess plasma sulfate in rainbow trout.  相似文献   

7.
The mouse Adh1 gene exhibits tissue-specific regulation, is developmentally regulated, and is androgen regulated in kidney and adrenal tissue. To study this complex regulation phenotype a transgenic mouse approach has been used to investigate regulatory regions of the gene necessary for proper tissue expression and hormonal control. Transgenic mice have been produced with an Adh1 minigene as a reporter behind either 2.5- or 10 kb of 5'-flanking sequence [1]. Complete androgen regulation in kidney requires a region between -2.5 and -10 kb. A sequence extending to -10 kb does not confer liver expression in this minigene construct. B6.S mice express an electrophoretically variant protein resulting from a known nucleotide substitution resulting in a restriction endonuclease length polymorphism. Transgenic mice harboring B6.S cosmids can be studied for expression analysis at both protein and mRNA levels, identification of transgenic founders and inheritance studies are greatly facilitated by a PCR-restriction endonuclease cleavage approach, the entire mouse gene is used as a reporter, and the formation of heterodimeric enzyme molecules can be used to infer expression of the transgene in the proper cell types within a given tissue. Expression of a B6.S cosmid containing the entire Adh1 gene and 6 kb of 5'- and 21 kb of 3'-flanking region occurs in transgenic mice in a copy number dependent manner in a number of tissues, but expression in liver does not occur. The ability to analyze expression at the protein and mRNA levels has been confirmed using this system. Future directions will involve the use of large BAC clones modified by RARE cleavage to identify the liver specific elements necessary for expression.  相似文献   

8.
Serine dehydratase (SDH) is abundant in the rat liver but scarce in the kidney. When administrated with dexamethasone, the renal SDH activity was augmented 20-fold, whereas the hepatic SDH activity was affected little. In situ hybridization and immunohistochemistry revealed that SDH was localized to the proximal straight tubule of the nephron. To address the role of this hormone, rats were made acidotic by gavage of NH(4)Cl. Twenty-two hours later, the SDH activity was increased three-fold along with a six-fold increment in the phosphoenolpyruvate carboxykinase (PEPCK) activity, a rate-limiting enzyme of gluconeogenesis. PEPCK, which is localized to the proximal tubules under the normal condition, spreads throughout the entire cortex to the outer medullary rays by acidosis, whereas SDH does not change regardless of treatment with dexamethasone or NH(4)Cl. When NH(4)Cl was given to adrenalectomized rats, in contrast to the SDH activity no longer increasing, the PEPCK activity responded to acidosis to the same extent as in the intact rats. A simultaneous administration of dexamethasone and NH(4)Cl into the adrenalectomized rats fully restored the SDH activity, demonstrating that the rise in the SDH activity during acidosis is primarily controlled by glucocorticoids. The present findings clearly indicate that the localization of SDH and its hormonal regulation during acidosis are strikingly different from those of PEPCK.  相似文献   

9.
Transgenic mice were used to investigate sequences within the promoter of the gene for the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) from the rat (EC 4.1.1.32) (PEPCK) which are involved in tissue-specific and developmental regulation of gene expression. Segments of the PEPCK promoter between -2000 and -109 were linked to the structural gene for bovine growth hormone (bGH) and introduced into the germ line of mice by microinjection. Bovine growth hormone mRNA was found in tissues that express the endogenous PEPCK gene, mainly in the liver but to a lesser extent in the kidney, adipose tissue, small intestine, and mammary gland. In the liver the chimeric PEPCK/bGH(460) gene was expressed in periportal cells, which is consistent with the zonation of endogenous PEPCK. The PEPCK/bGH gene was not transcribed in the livers of fetal mice until immediately before birth; at birth the concentration of bGH mRNA increased 200-fold. Our results indicate that the region of the PEPCK promoter from -460 to +73 base pairs contains regulatory sequences required for tissue-specific and developmental regulation of PEPCK gene expression. Mice transgenic for PEPCK/bGH(460) were not hyperglycemic or hyperinsulinemic in response to elevated bGH, as were transgenic mice with the MT/bGH gene. The number of insulin receptors in skeletal muscle was no different in mice transgenic for MT/bGH when compared with mice transgenic for PEPCK/bGH(460) and control animals. However, mRNA abundance for the insulin-sensitive glucose transporter in skeletal muscle was decreased in mice transgenic for the MT/bGH gene. The differences in glucose homeostasis noted with the two types of transgenic mice may be the result of the relative site of expression, the different developmental pattern, or hormonal regulation of expression of the bGH gene.  相似文献   

10.
The expression of glycan chains is precisely regulated in a time- and space-dependent manner. We summarize here our recent work on the kidney tubular cell-specific regulation of core 2 beta-1,6-GlcNAc transferase. Gsl5 gene was first identified by genetic analysis on the basis of polymorphic expression of kidney glycolipids among inbred strains of mice and turned out to be a regulatory gene controlling the level of mRNA of kidney-specific core 2 beta-1,6-GlcNAc transferase. This kidney-specific core 2 GlcNAc transferase takes glycolipids having Gal beta 1-3GalNAc at their termini, Gal beta 1-3GalNAc alpha 1- and beta 1-oligosaccharide derivatives, and glycoproteins having core 1 structure, as substrates. Immunohistochemistry with anti-core 2-Le( x ) monoclonal antibody demonstrated that vesicles located just below the microvillous membrane of proximal tubule cells were clearly stained in a Gsl5 -wild type mouse. Western blotting with the monoclonal antibody detected a major glycoprotein with a molecular mass of 500 kDa in the microsomal fraction of the wild type mouse kidney. In situ hybridization with anti-sense cDNA of kidney-specific core 2 GlcNAc transferase confirmed that Gsl5 gene controls the expression of the core 2 beta-1,6-GlcNAc transferase mRNA in a proximal tubular cell-specific manner. The 5' upstream sequences of the kidney-specific core 2 GlcNAc transferase gene in inbred and wild-derived strains of mice were analyzed, and the phylogenetic analysis of these sequences suggests that functional Gsl5 gene might be produced by the time of subspeciation of M. musculus, about one million years ago.  相似文献   

11.
This study describes cDNA cloning and characterization of mouse RALDH4. The 2.3-kb cDNA encodes an aldehyde dehydrogenase of 487 amino acid residues, about two-orders of magnitude more active in vitro with 9-cis-retinal than with all-trans-retinal. RALDH4 recognizes as substrate 9-cis-retinal generated in transfected cells by the short-chain dehydrogenases CRAD1, CRAD3, or RDH1, to reconstitute a path of 9-cis-retinoic acid biosynthesis in situ. Northern blot analysis showed expression of RALDH4 mRNA in adult mouse liver and kidney. In situ hybridization revealed expression of RALDH4 in liver on embryo day 14.5, in adult hepatocytes, and kidney cortex. Immunohistochemistry confirmed RALDH4 expression in hepatocytes and showed that hepatocytes also express RALDH1, RALDH2, and RALDH3. Kidney expresses the RALDH4 protein primarily in the proximal and distal convoluted tubules of the cortex but not in the glomeruli or the medulla. Kidney expresses RALDH2 in the proximal convoluted tubules of the cortex but not in the distal convoluted tubules or glomeruli. Kidney expresses RALDH1 and RALDH2 in the medulla. The enzymatic characteristics of RALDH4, its expression in fetal liver, and its unique expression pattern in adult kidney compared with RALDH1, -2, and -3 suggest that it could meet specific needs for 9-cis-retinoic acid biosynthesis.  相似文献   

12.
13.
14.
15.
16.
The mouse Adh1 gene exhibits tissue-specific regulation, is developmentally regulated, and is androgen regulated in kidney and adrenal tissue. To study this complex regulation phenotype a transgenic mouse approach has been used to investigate regulatory regions of the gene necessary for proper tissue expression and hormonal control. Transgenic mice have been produced with an Adh1 minigene as a reporter behind either 2.5- or 10 kb of 5′-flanking sequence [1]. Complete androgen regulation in kidney requires a region between −2.5 and −10 kb. A sequence extending to −10 kb does not confer liver expression in this minigene construct. B6.S mice express an electrophoretically variant protein resulting from a known nucleotide substitution resulting in a restriction endonuclease length polymorphism. Transgenic mice harboring B6.S cosmids can be studied for expression analysis at both protein and mRNA levels, identification of transgenic founders and inheritance studies are greatly facilitated by a PCR-restriction endonuclease cleavage approach, the entire mouse gene is used as a reporter, and the formation of heterodimeric enzyme molecules can be used to infer expression of the transgene in the proper cell types within a given tissue. Expression of a B6.S cosmid containing the entire Adh1 gene and 6 kb of 5′- and 21 kb of 3′-flanking region occurs in transgenic mice in a copy number dependent manner in a number of tissues, but expression in liver does not occur. The ability to analyze expression at the protein and mRNA levels has been confirmed using this system. Future directions will involve the use of large BAC clones modified by RARE cleavage to identify the liver specific elements necessary for expression.  相似文献   

17.
《The Journal of cell biology》1996,134(5):1333-1344
We have identified three DNase I-hypersensitive sites in chromatin between 15 and 17 kb upstream of the mouse pro alpha 2 (I) collagen gene. These sites were detected in cells that produce type I collagen but not in cells that do not express these genes. A construction containing the sequences from -17 kb to +54 bp of the mouse pro alpha 2 (I) collagen gene, cloned upstream of either the Escherichia coli beta- galactosidase or the firefly luciferase reporter gene, showed strong enhancer activity in transgenic mice when compared with the levels seen previously in animals harboring shorter promoter fragments. Especially high levels of expression of the reporter gene were seen in dermis, fascia, and the fibrous layers of many internal organs. High levels of expression could also be detected in some osteoblastic cells. When various fragments of the 5' flanking sequences were cloned upstream of the 350-bp proximal pro alpha 2(I) collagen promoter linked to the lacZ gene, the cis-acting elements responsible for enhancement were localized in the region between -13.5 and -19.5 kb, the same region that contains the three DNase I-hypersensitive sites. Moreover, the DNA segment from -13.5 to -19.5 kb was also able to drive the cell-specific expression of a 220-bp mouse pro alpha 1(I) collagen promoter, which is silent in transgenic mice. Hence, our data suggest that a far-upstream enhancer element plays a role in regulating high levels of expression of the mouse pro alpha 2(I) collagen gene.  相似文献   

18.
目的研究生长休止蛋白7(Gas7)在成年大鼠肾脏、心脏和肝脏的表达。方法成年SD大鼠16只,分别采用逆转录聚合酶链反应(RT-PCR)方法和免疫组织化学方法检测Gas7基因mRNA和蛋白在成年SD大鼠肾脏、心脏和肝脏的表达,并进行图像分析和统计学处理。结果RT—PCR结果显示,Gas7mRNA在肾脏高表达,在心脏的表达弱于肾脏(P〈0.05),而在肝脏的表达最弱,基本检测不到。免疫组化结果显示,在肾脏中,Gas7免疫阳性产物在近髓肾单位的近曲小管呈强阳性反应,在集合管表达较弱,在肾小球和其余肾小管未见表达;在心脏中,Gas7免疫阳性产物均匀分布于心肌细胞,呈中等强度反应,弱于肾脏(P〈O.05);在肝脏中,Gas7蛋白未见明显表达,与其mRNA在肝脏的表达相似。结论Gas7在大鼠肾脏、心脏和肝脏表达的不同,尤其在肾脏组织分布的差异性,提示Gas7在成年大鼠肾脏和心脏结构以及功能的维持中可能起着重要作用。  相似文献   

19.
20.
Incubation of isolated hepatocytes from fasted rats with 20 mM LiCl for 1 h decreased glucose production from lactate, pyruvate, and alanine. In addition, phosphoenolpyruvate carboxykinase (PEPCK) gene expression in FTO-2B rat hepatoma cells was inhibited by treatment with LiCl. Lithium was also able to counteract the increased PEPCK mRNA levels caused by both Bt2cAMP and dexamethasone, in a concentration-dependent manner. A chimeric gene containing the PEPCK promoter (-550 to +73) linked to the amino-3-glycosyl phosphotransferase (neo) structural gene was transduced into FTO-2B cells using a Moloney murine leukemia virus-based retrovirus. In these infected cells, 20 mM LiCl decreased both the concentration of neo mRNA transcribed from the PEPCK-neo chimeric gene and mRNA from the endogenous PEPCK gene. Lithium also inhibited the stimulatory effect of Bt2cAMP and dexamethasone on both genes. The stability of neo mRNA was not altered by lithium, since in cells infected with retrovirus containing only the neo gene transcribed via the retroviral 5'-LTR and treated with 20 mM LiCl, no change in neo mRNA levels was observed. The intraperitoneal administration of LiCl to rats caused a decrease in hepatic PEPCK mRNA, indicating that lithium could also modify gene expression in vivo. The effects of lithium were not due to an increase in the concentration of insulin in the blood but were correlated with an increase in hepatic glycogen and fructose 2,6-bisphosphate levels. These results indicate that lithium ions, at concentrations normally used therapeutically for depression in humans, can inhibit glucose synthesis in the liver by a mechanism which can selectively modify the expression of hepatic phosphoenolpyruvate carboxykinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号