首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The deoR gene, which encodes the deor repressor protein in Escherichia coli, was fused to the strong Ptrc promoter in plasmid pKK233-2. The Ptrc promoter is kept repressed by lacI repressor to prevent cell killing. Induction of the Ptrc--deoR fusion plasmid resulted in the accumulation of 4% of the soluble protein as deoR protein. The deoR repressor protein was purified to 80% purity using conventional techniques; it has a mass of 28.5 kd and appears to exist as an octamer in solution. The deoR repressor is shown by DNase I footprinting to bind to the 16 bp palindromic sequence in the Pribnow box region of the deoP1 promoter. Also, the deoR repressor binds cooperatively in vitro to a DNA template with two deoR binding sites separated by 224 bp in keeping with the conclusion from genetic experiments that more than one operator is required for efficient repression of the deo operon.  相似文献   

3.
Tandem CRP binding sites in the deo operon of Escherichia coli K-12   总被引:26,自引:7,他引:19       下载免费PDF全文
The locations of DNA binding by the cyclic AMP receptor protein (CRP) in the deo operon of Escherichia coli have been determined by the DNase I footprinting procedure. Two high affinity sites were found around positions -35 and -90, preceding the second deo promoter. In vitro data on induction of gene fusions that join different parts of the deoP -2 regulatory region to the lac genes suggest that: (1) both CRP binding sites are needed for high expression from the deoP -2 region; and (2) negative regulation by the cytR repressor is accomplished by preventing the cAMP-CRP complex from binding to the second target.  相似文献   

4.
5.
6.
7.
Summary We have studied the importance of the specific DNA sequence of the deo operator site for DeoR repressor binding by introducing symmetrical, single basepair substitutions at all positions in the deo operator and tested the ability of these variants to titrate DeoR in vivo. Our results show that a 16 by palindromic sequence constitutes the deo operator. Positions outside this palindrome (positions ±9, ±10) can be changed without any major effect on DeoR binding. Most of the central 6-8 by of the palindrome (positions ±1, ±2, ± 3) can be substituted with other nucleotides with no or only minor effects on DeoR binding, while changes at position ±4 and ±_5 give a more heterogeneous response. Finally, changes at positions ±6, ± 7 and ±8 severely disrupt DeoR binding.  相似文献   

8.
9.
We have studied the deoP2 promoter of Escherichia coli to define features that are required for optimal activation by the complex of adenosine 3',5' monophosphate (cAMP) and the cAMP receptor protein (CRP). Systematic mutagenesis of deoP2 shows that the distance between the CRP site and the -10 hexamer is the crucial factor in determining whether the promoter is activated by cAMP-CRP. Based on these observations, we propose that cAMP-CRP-activated promoters can be created by correctly aligning a CRP target and a -10 hexamer. This idea has been successfully tested by converting both a CRP-independent promoter and a sequence resembling the consensus -10 hexamer to strongly cAMP-CRP-activated promoters.  相似文献   

10.
The Escherichia coli Trp repressor binds to promoters of very different sequence and intrinsic activity. Its mode of binding to trp operator DNA has been studied extensively yet remains highly controversial. In order to examine the selectivity of the protein for DNA, we have used electromobility shift assays (EMSAs) to study its binding to synthetic DNA containing the core sequences of each of its five operators and of operator variants. Our results for DNA containing sequences of two of the operators, trpEDCBA and aroH are similar to those of previous studies. Up to three bands of lower mobility than the free DNA are obtained which are assigned to complexes of stoichiometry 1 : 1, 2 : 1 and 3 : 1 Trp repressor dimer to DNA. The mtr and aroL operators have not been studied previously in vitro. For DNA containing these sequences, we observe predominantly one retarded band in EMSA with mobility corresponding to 2 : 1 complexes. We have also obtained retardation of DNA containing the trpR operator sequence, which has only been previously obtained with super-repressor Trp mutants. This gives bands with mobilities corresponding to 1 : 1 and 2 : 1 complexes. In contrast, DNA containing containing a symmetrized trpR operator sequence, trpRs, gives a single retarded band with mobility corresponding solely to a 1 : 1 protein dimer-DNA complex. Using trpR operator variants, we show that a change in a single base pair in the core 20 base pairs can alter the number of retarded DNA bands in EMSA and the length of the DNase I footprint observed. This shows that the binding of the second dimer is sequence selective. We propose that the broad selectivity of Trp repressor coupled to tandem 2 : 1 binding, which we have observed with all five operator sequences, enables the Trp repressor to bind to a limited number of sites with diverse sequences. This allows it to co-ordinately control promoters of different intrinsic strength. This mechanism may be of importance in a number of promoters that bind multiple effector molecules.  相似文献   

11.
Summary We have investigated in vivo the coupling between CytR regulation of the deoP2 promoter in Escherichia coli and the DNA-binding specificity of the cAMP-CRP (cAMP receptor protein) complex in order to obtain a more detailed picture of the role played by cAMP-CRP in CytR regulation. By introducing CRP proteins that exhibit an altered DNA binding specificity into a strain containing a mutant deoP2 promoter in which cAMP-CRP activation was decreased and CytR regulation completely abolished, we show that CytR regulation of this promoter can be reestablished by restored the DNA binding of the cAMP-CRP complex. Hence, CytR regulation of deoP2 can be modulated by simply varying DNA binding of cAMP-CRP. These data confirm the crucial role played by the cAMP-CRP activator complex in CytR regulation of the deoP2 promoter.  相似文献   

12.
13.
14.
15.
We have studied the deoP2 promoter in Escherichia coli to define features important for its interaction with the CytR repressor. As is characteristic for CytR-regulated promoters, deoP2 encodes tandem binding sites for the activating complex cAMP-CRP. One of these sites, CRP-1, overlaps the -35 region, and is sufficient for activation; the second site, CRP-2, centred around -93, is indispensable for repression. Here we demonstrate, by means of in vivo titration, that CytR interaction with deoP2 depends not only on CRP-2, but also on CRP-1 and the length and possibly the sequence separating these two sites. Also, point mutations in either CRP site reduce or abolish CytR titration; however, no co-operativity is observed in the interaction of CytR with the two CRP binding sites. Furthermore, the reduction in CytR titration parallels the reduction in binding of cAMP-CRP to the mutated CRP sites in vitro. These observations are not easily explained by current models for the action of prokaryotic repressors; instead we favour a model in which the interaction of CytR with deoP2 depends on the presence of tandem DNA-bound cAMP-CRP complexes.  相似文献   

16.
The binding of cI-repressor to a series of mutant operators containing OR1 of the right operator of bacteriophage lambda was investigated. Sites OR2 and/or OR3 were inactivated by either point or deletion mutations. The free energy of binding repressor to OR1 in the wildtype operator, delta G1, is -13.7 +/- 0.3 kcal/mol. delta G1 determined for an OR2- operator created by a single point mutation in OR2 is -13.6 +/- 0.2 kcal/mol. In contrast, delta G1 for the binding of repressor to a cloned synthetic OR1 operator containing only 24 bp of lambda sequence is -12.2 +/- 0.1 kcal/mol. When sequence 5' to OR1 is present, the binding affinity increases to -13.0 +/- 0.1 kcal/mol. In addition, the proximity of OR1 to a fragment-end decreases delta G1 from -13.7 to -12.3 +/- 0.1 kcal/mol. These results suggest that the DNA sequence outside the 17 bp OR1 binding-site contributes to the specific binding of cI-repressor.  相似文献   

17.
18.
19.
20.
Employing a newly developed uranyl photofootprinting technique (Nielsen et al. (1988) FEBS Lett. 235, 122), we have analyzed the structure of the E. coli RNA polymerase deoP1 promoter open complex. The results show strong polymerase DNA backbone contacts in the -40, -10, and most notably in the +10 region. These results suggest that unwinding of the -12 to +3 region of the promoter in the open complex is mediated through polymerase DNA backbone contacts on both sides of this region. The pattern of bases that are hyperreactive towards KMnO4 or uranyl within the -12 to +3 region furthermore argues against a model in which this region is simply unwound and/or single stranded. The results indicate specific protein contacts and/or a fixed DNA conformation within the -12 to +3 region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号