首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The syncytial divisions of the Drosophila melanogaster embryo lack some of the well established cell-cycle checkpoints. It has been suggested that without these checkpoints the divisions would display a reduced fidelity. To test this idea, we examined division error frequencies in individuals bearing an abnormally long and rearranged second chromosome, designated C(2)EN. Relative to a normal chromosome, this chromosome imposes additional structural demands on the mitotic apparatus in both the early syncytial embryonic divisions and the later somatic divisions. We demonstrate that the C(2)EN chromosome does not increase the error frequency of the late larva neuroblast divisions. However, in the syncytial embryonic nuclear divisions, the C(2)EN chromosome produces a 10-fold increase in division errors relative to embryos with a normal karyotype. During late anaphase of the neuroblast divisions, the sister C(2)EN chromosomes cleanly separate from one another. In contrast, during late anaphase of the syncytial divisions in C(2)EN-bearing nuclei, large amounts of chromatin often lag on the metaphase plate. Live analysis of C(2)EN-bearing embryos demonstrates that individual nuclei in the syncytial population of dividing nuclei often delay in their initiation of anaphase. These delays frequently lead to division errors. Eventually the products of the nuclei delayed in anaphase sink inward and are removed from the dividing population of syncytial nuclei. These results suggest that the Drosophila embryo may be equipped with mechanisms that monitor the fidelity of the syncytial nuclear divisions. Unlike checkpoints that rely on cell cycle delays to identify and correct division errors, these embryonic mechanisms rely on cell cycle delays to identify and discard the products of division errors.  相似文献   

2.
Ciliates represent a morphologically and genetically distinct group of single-celled eukaryotes that segregate germline and somatic functions into two types of nuclei and exhibit complex cytogenetic events during the sexual process of conjugation, which is under the control of the so-called “mating type systems”. Studying conjugation in ciliates may provide insight into our understanding of the origins and evolution of sex and fertilization. In the present work, we studied in detail the sexual process of conjugation using the model species Euplotes vannus, and compared these nuclear events with those occurring in other ciliates. Our results indicate that in E. vannus: 1) conjugation requires about 75 hours to complete: the longest step is the development of the new macronucleus (ca. 64h), followed by the nuclear division of meiosis I (5h); the mitotic divisions usually take only 2h; 2) there are three prezygotic divisions (mitosis and meiosis I and II), and two of the eight resulting nuclei become pronuclei; 3) after the exchange and fusion of the pronuclei, two postzygotic divisions occur; two of the four products differentiate into the new micronucleus and macronucleus, respectively, and the parental macronucleus degenerates completely; 4) comparison of the nuclear events during conjugation in different ciliates reveals that there are generally three prezygotic divisions while the number of postzygotic divisions is highly variable. These results can serve as reference to investigate the mating type system operating in this species and to analyze genes involved in the different steps of the sexual process.  相似文献   

3.
Ge XH  Li ZY 《Plant cell reports》2006,25(10):1075-1080
Abnormal meiosis and microspore development and related defective mutants have often been reported in plants and wide hybrids. Here extra divisions and nuclei fusions were observed to occur in microspore nuclei of partial hybrids between synthetic Brassica hexaploid (2n=54, AABBCC) and another crucifer Orychophragmus violaceus (2n=24). Abnormal spindle were formed and chromosomes were separated into several nuclei of variable sizes after bi-, or multi-polar divisions in the four cells of tetrads. As a consequence, more than eight mini-microspores of different sizes were produced by one tetrad. Genomic in situ hybridization results indicated that no chromosome replication occurred during such divisions. In some tetrads, the four nuclei were fused to form one large cell with increased chromosome number. The extra divisions or fusions appeared only in some flower buds of one plant, some anthers in the same buds, or even in individual cells of tetrads. The possible mechanisms behind these cytological phenomena are discussed.  相似文献   

4.
SYNOPSIS. Under the influence of ecdysone a uninucleate asexual cell of Paranotila lata gen. et sp. nov. is transformed into a gametocyte in which, as a rule, 8 successive nuclear divisions occur, thus producing 8 male and 8 female pronuclei. No cytokinesis occurs during these divisions. The process should be regarded as a gametogenesis in which only nuclei participate. These gametic pronuclei fuse, male with female, and produce 8 fusion or zygotic nuclei. The cell may now be regarded as a zygote , which soon undergoes plasmotomy, and eventually produces 8 uninucleate, diploid asexual cells. This is the usual course of events. A few exceptions or irregularities have been noted. Throughout gametogenesis, Paranotila is quite indifferent regarding the production of new flagella and axostyles; sometimes they are produced, sometimes they are not.  相似文献   

5.
ABSTRACT. The germinal micronucleus divides six times during conjugation of Paramecium caudatum : this includes two meiotic divisions and one mitosis of haploid nuclei during mating, and three mitoses of a fertilization nucleus (synkaryon). Microsurgical removal of the macronucleus showed that micronuclei were able to divide repeatedly in the absence of the macronucleus, after metaphase of meiosis I of the micronucleus and also after synkaryon formation. When the macronucleus was removed after the first division of synkaryon, in an extreme case the synkaryon divided five times and produced 32 nuclei, compared to three divisions and eight nuclei produced in the presence of the macronucleus. Treatment with actinomycin D (100 μ /ml) inhibited the morphological changes of the macronucleus during conjugation and induced a multimicronucleate state in exconjugants. However, in other cells, it induced production of a few giant micronuclei. We conclude that the micronucleus is able to undergo repeated divisions at any stage of conjugation in the absence of the macronucleus once the factor(s) for induction of the micronuclear division has been produced by the macronucleus. The macronucleus may also produce a regulatory factor required to stop micronucler division.  相似文献   

6.
Samuel Panelius 《Chromosoma》1971,32(3):295-331
The germ line during the development of the male of the gall midge Heteropeza pygmaea was followed cell generation by cell generation. The development of the male egg begins with two meiotic divisions, followed by fusion of one of the resulting nuclei with (usually) two somatic nuclei (regulation), after which the regulated nucleus passes through 9–10 mitoses, and finally a further two meiotic divisions producing the spermatids. The chromosome numbers (determined by colchicine and air-drying techniques) of the race studied are 55 in the female germ line, very variable with a mean near 47–48 in the male germ line after regulation, 5 or 6 in the sperms, 10 in the female somatic nuclei and 5 in the male somatic nuclei. Statistical techniques for analysis of the different karyotypes are developed and a model explaining the known cytological events in Heteropeza is presented.  相似文献   

7.
Protoplast cultures of Vicia hajastana have a high division frequency. However, 20–40% of the microcolonies fail to develop beyond the 20-30-cell stage. Aneuploids and polyploids were found in early divisions and persisted in older cultures. The resulting protoplast-derived suspension culture differed karyologically from the original culture. Karyokinesis and cytokinesis were studied using simultaneous staining of microtubules (MT) by immunofluorescence, DNA by Hoechst 33258 (2-[2-(4-hydroxyphenyl)-6-benzimidazoyl]-6-[1-methyl-4-piperazyl]benzimidazole) and cell walls by Calcofluor. Freshly prepared protoplasts showed mitoses and high frequencies of binucleate cells, which probably resulted mainly from failure of cytokinesis. In early divisions, many mitoses showed metaphase chromosomes with kinetochore MT but lacking polar MT. These aberrant mitoses probably accounted for an increase in hyperploid cells observed in protoplast cultures. Multipolar spindles, which gave rise to hypoploid cells, were also seen in the early divisions. Telophase abnormalities included dislocated phragmoplasts and incomplete formation of cross walls. Many divisions resulted in daughter nuclei of unequal size. Unequal segregation of chromosomes was detected by cytofluorimetric measurements of telophase nuclei stained with Hoechst. After 5 d of culture, 91% of the divisions with incomplete cross walls also contained different-size nuclei; conversely, 78% of the divisions with fully formed cross walls contained nuclei of equal size. The malfunctioning of spindles and phragmoplasts in the same cells indicates a functional interdependence of the different MT configurations in mitosis. During the first 24 h of culture, a high frequency of abnormalities was found in spindles, cross-wall formation and chromosome segregation; this was reduced substantially in the cells undergoing first division by 48 h. The data indicate that it may be possible to manipulate the frequency of abnormalities by controlling the onset of the first division in protoplast cultures.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - MT microtubule(s) - PB prophase band(s) - PNF perinuclear fluorescence - PPB pre-prophase band  相似文献   

8.
Giant endopolyploid nuclei (>16n) can spontaneously fragment by endomitosis (nuclear internal division) into near‐diploid cells with reproductive capacity (depolyploidization), and endotetra/octopolyploidy can undergo chromosome‐visible meiotic‐like genome reductional divisions also to replicative subcells. These unconventional divisions are associated with production of aneuploidy, which led to the question in this study of whether endopolyploidy, in general, can contribute genetic variability to tumorigenic potential. For this purpose, non‐proliferative endopolyploid cells (range: 4n–32n) in near‐senescence of normal diploid cell strains were analysed for nuclear–morphogenic changes associated with the presence of diploid‐sized nuclei in the cytoplasm. A one‐by‐one nuclear‐cutoff process gave rise to reproducing genome‐reduced cells. It was concluded that these unconventional cell divisions are, indeed, suspects of originating genetic variability. Details of these irregular mitoses were compared to ‘mitotic–meiosis’ in primitive organisms, which suggested activation of an ancestral trait in the mammalian cells.  相似文献   

9.
10.
Evidence for meiosis was demonstrated electron microscopically for the first time in Pneumocystis carinii in rat alveoli by the observation of synaptonemal complexes followed by nuclear divisions. Synaptonemal complexes indicating meiotic nuclear divisions were observed in uninuclear precysts. Additionally, owing to the use of tannic acid as a fixative, spindle microtubules were also observed for the first time in the precyst. Based on these facts, a new life cycle of the organism is proposed. The precyst has generally been considered an intermediate form between the trophozoite and the cyst. The present paper proposes that the precyst is additionally defined as the cell in which eight intracystic bodies are produced through meiotic reduction. The most characteristic feature of the precyst is a clump of mitochondria in the cytoplasm. We divide the precyst phase into three forms, which are named early, intermediate, and late. Synaptonemal complexes were only observed in the early precyst, which is a uninuclear cell with a thin pellicle. In the intermediate precyst, nuclear divisions are observed as follows: meiosis I produces two haploid nuclei and each of these divides at meiosis II producing four nuclei. After that, another postmeiotic mitosis takes place, resulting in eight haploid nuclei. In the late precyst, a delimiting membrane originates from the mother plasmalemma and surrounds the daughter nuclei and a small portion of the adjacent cytoplasm. Finally, when the eight intracystic bodies are complete, the precyst changes to a cyst. Thus, we deduce that intracystic bodies resulting from meiotic nuclear division are haploid and, after excystation, they are haploid trophozoites. We consider that this process can be called sporogony. Although we could not distinguish between the haploid and the diploid trophozoite, it is quite plausible that copulation occurs, probably in host alveoli.  相似文献   

11.
Mass cultures of a stock of Paramecium polycaryum maintained over a period of several years showed abundant and frequent nuclear reorganization stages resembling those of ex-conjugant and ex-autogamous animals of other species of Paramecium. Conjugation has never been reported for P. polycaryum, nor has it been found in these studies. Cytological examination of stained preparations revealed a process of autogamy in P. polycaryum, closely similar to that described previously for P. aurelia. As a rule, all four of the micronuclei, the typical vegetative number in P. polycaryum, engage in the first prezygotic division which is characterized by the formation of prophase crescents. Variable numbers of the eight nuclei continue with the second division. A maximum of sixteen nuclei may result. Apparently, only one of these normally completes the third prezygotic division to form the gametic nuclei, although more than one may initiate it. A fusion nucleus (synkaryon) arises in, or near, a paroral cone, thus paralleling autogamy in P. aurelia. A series of postzygotic divisions produces eight definitive nuclei, four of which become macronuclear anlagen and four remain micronuclei. The first division of the synkaryon results, possibly, in the formation of a viable nucleus and a non-viable one, as in ex-conjugants of P. caudatum. After the last micronuclear division, a skein evolves from the old macronucleus which has become flattened and leaf-like. The skein rapidly segments into "sausages" which transform into spherical fragments, about thirty in number. Two cell divisions restore the normal vegetative nuclear complex.  相似文献   

12.
Summary We describe the mitotic cleavage patterns during blastoderm stage of the house flyMusca domestica L. Nuclear divisions up to mitotic stage 11 are apparently synchronous. Beginning with stage 12, nuclear divisions in the posterior third of the embryo lag behind, resulting first in a parasynchronous and finally in an asynchronous cleavage pattern. Thus a stage exists where all nuclei in the anterior region have completed 14 nuclear division cycles, while those in the posterior region have completed only 13 cycles. The border region between these nuclei is well defined and lies at 35% EL (egg length), the expression border of a gap gene. This border region is about 4–5 nuclei wide and shows a specialized mitotic behaviour.  相似文献   

13.
Light microscopic observations of nuclear behavior (karyology) during conidiogenesis in the long, narrow phialides of Gliomastix murorum (Corda) Hughes are presented and discussed. Nuclei were observed mostly in a submedian position in phialides. The onset of mitosis was signalled by an increase in the size of nuclei and by the appearance of numerous chromatinic granules (chromosomes?). The number of chromatinic granules appeared to decrease, while the chromatin was arranged in the characteristic “double track” associated with somatic nuclear divisions in hyphomycetes. Transverse separation of the “double track” arrangement produced two daughter chromatinic masses which stained intensely, were small, and moved apart. Separation of daughter chromatinic masses (nuclei) appeared to be largely a function of migration of distal daughter nuclei several micrometers toward phialidic apices; the submedian position of proximal daughter nuclei was maintained. Upon movement of migrating distal daughter nuclei into conidial initials, conidia were delimited septally. Conidial nuclei remained condensed, while daughter nuclei remaining in phialides decondensed (i.e., enlarged and stained less intensely), thereby entering interphase. Repeated, single nuclear divisions and migrations were correlated with repeated conidial development. Karyological events described herein were compared with other published studies of both phialidic and non-phialidic species, and a “phialidic pattern” of nuclear behavior was suggested as a possibility. But, apparently a non-phialidic pattern cannot yet be suggested.  相似文献   

14.
Nearly a century ago, Rosenvinge published a now-classic paper reporting nuclear transfer between cells of Polysiphonia during secondary pit connection (SPC) formation. While reinvestigating this phenomenon, we discovered that the uninucleate apical cell, which is the progenitor of all cells in the plant, has many times (ca. 64–128 ×) the level of nuclear DNA characteristic of nuclei of gametes or mature pericentral cells. Via a regular sequence of cell divisions, the polyploid apical cell gives rise to tiers of cells, each composed of a number of pericentral cells which surround a single central cell. A large proportion of the nuclear divisions are not accompanied by DNA replication. Thus, as the number of nuclei within elongating pericentral cells increases, the DNA level of nuclei in these cells “cascades” down to the DNA level expected for the particular life history generation (i.e., gametophyte or tetrasporophyte). In mature pericentral cells, the number of nuclei is proportional to the volume of the cell. The pattern of nuclear division, reduction in ploidy level and the timing of intercellular nuclear transfer via SPC formation is regular and characteristic of a species. Nuclei transferred from one cell to an adjacent cell participate in the further nuclear divisions of the recipient cell. The degree of polyploidy in apical cells may determine the number of cells in a “determinant” branch or even the number of cells in “indeterminant” axes. In addition, the highly polyploid state of the germinating spore and its pattern of development may provide for the rapid initial growth so characteristic of this taxon.  相似文献   

15.
Early embryogenesis is described for the southern corn rootworm, Diabrotica undecimpunctata Howardi Barber, at 24 ± 1°C. During the first four hours following oviposition, the maturation divisions and syngamy are completed. Morphological changes in the second polar body accompany syngamy. Cleavage divisions and energid migration occur during the fourth to the tenth hour. The vitellophags, which appear during cleavage divisions, are distinguished from the blastema-bound nuclei by having smaller, more densely staining nuclei. After completion of a uniform blastoderm (11-14 hour), cell division ceases until the completion of the germ band and the formation of the embryonic membranes (22 hour). This species has a pattern of amnion formation that is different from most Coleoptera but is shared with a few other chrysomelids, some Isoptera, and some Odonata.  相似文献   

16.
Drosophila embryogenesis is initiated by a series of syncytial mitotic divisions. The first nine of these divisions are internal, and are accompanied by two temporally distinct nuclear movements that lead to the formation of a syncytial blastoderm with a uniform monolayer of cortical nuclei. The first of these movements, which we term axial expansion, occurs during division cycles 4-6 and distributes nuclei in a hollow ellipsoid underlying the cortex. This is followed by cortical migration, during cycles 7-10, which places the nuclei in a uniform monolayer at the cortex. Here we report that these two movements differ in their geometry, velocity, cell-cycle dependence, and protein synthesis requirement. We therefore conclude that axial expansion and cortical migration are mechanistically distinct, amplifying a similar conclusion based on pharmacological data (Zalokar and Erk, 1976). We have examined microtubule organization during cortical migration and find that a network of interdigitating microtubules connects the migrating nuclei. These anti-parallel microtubule arrays are observed between migrating nuclei and yolk nuclei located deeper in the embryo. These arrays are present during nuclear movement but break down when the nuclei are not moving. We propose that cortical migration is driven by microtubule-dependent forces that repel adjacent nuclei, leading to an expansion of the nuclear ellipsoid established by axial expansion.  相似文献   

17.
SYNOPSIS. The mycetozoan genus Echinosteliopsis, resembling the myxomycete Echinostelium in some of its features, is described. The single species, E. oligospora Reinhardt & Olive, forms small sporocarps which consist of a basal disk, stalk and a sporangium with only 1–8 spores. Spores form progressively, not simultaneously, by segmentation. The spores germinate to release non-flagellate amebae which, in liquid, assume a characteristic broad, fan shape. Each ameba has one or more nuclei. The nucleus is distinctive because of refractile, globular to elongate peripheral bodies which cytochemical tests indicate to be primarily RNA. At the time of nuclear division the characteristic RNA bodies disappear and, as observed with the phase microscope and in stained preparations, optically dense material accumulates in the middle area of the nucleus. Threads, either a spindle or actual chromatin, can be seen attached to the nuclear membrane. The threads separate to opposite poles as the nucleus elongates. During this division process the nuclear membrane apparently remains intact. Synchronous binucleate divisions, as well as a tripolar nuclear division, have been observed. Uninucleate and synchronous binucleate divisions may or may not be followed by cytokinesis. The absence of cell division after nuclear division leads to the production of cells with varying numbers of nuclei. Nuclear divisions in early sporangial stages and in spores have not been observed. The spores are uni- to multinucleate. In 8-spored sporangia and in most 4-spored sporangia there is a characteristic small “stalk spore” at the apex of the stalk. The stalk spore germinates slowly, if at all, but the larger spores germinate readily. No evidence of a sexual process has been found.  相似文献   

18.
李平  郑学经 《植物研究》1986,6(4):113-118
多年来,由于对延龄草的营养叶的脉序和花被片的分化趋势的研究,引起众多学者对延龄草的系统位置发生了兴趣。我们已发表过延龄草的大孢子发生及雌配子体的形成,本文发表的是延龄草的胚乳发育,并在此基础上,对延龄草的系统位置谈一些看法。延龄草的胚乳发育始于合点端。受精极核第一次分裂形成二个子细胞,两细胞间由一弧形壁将胚囊分隔成珠孔端室与合点端室,前者大于后者。通常珠孔端室核先于合点端室核分裂。游离核沿胚囊边缘向中央分布,且由珠孔端开始形成胚乳细胞,其速度也快于合点端。胚乳发育为沼生目型。  相似文献   

19.
Nuclear division and migration of cleavage nuclei in the embryos of Bradysia tritici (Diptera : Sciaridae) have been studied by light microscopy and nuclear staining. There are 8 cleavage cycles up to the syncytial blastoderm stage (4.5 hr), and during the 11th cycle cellularization begins (6.5 hr). The first 3 divisions take about 30 min each. During the 5th and 6th cycles, the maximum rate of division is reached (12 min/cycle at 22°C). After pole cell formation, the duration of the following mitotic cycles increases progressively. During nuclear migration, the presumptive germ line nuclei reach the egg cortex first, followed by anterior somatic nuclei and finally, posterior somatic nuclei reach the egg cortex. Possibly as a result of this region-specific nuclear migration, nuclear divisions become parasynchronous after 3 hr of embryogenesis (4th cycle). Several mitotic cycles later, between the 8th and 10th cycle in different embryos, X-chromosome elimination in somatic nuclei begins at the anterior egg pole and progresses in anteroposterior direction. Our observations suggest that the observed region-specific differences may be due to the activity of localized factors in the egg that control migration and nuclear cycle of the somatic nuclei.  相似文献   

20.
During the initial development of syncytial embryos, nuclei go through cycles of nuclear division and spatial rearrangement. The arising spatial pattern of nuclei is important for subsequent cellularization and morphing of the embryo. Although nuclei are contained within a common cytoplasm, cytoskeletal proteins are nonuniformly packaged into regions around every nucleus. In fact, cytoskeletal elements like microtubules and their associated motor proteins exert stochastic forces between nuclei, actively driving their rearrangement. Yet, it is unknown how the stochastic forces are balanced to maintain nuclear order in light of increased nuclear density upon every round of divisions. Here, we investigate the nuclear arrangements in Drosophila melanogaster over the course of several nuclear divisions starting from interphase 11. We develop a theoretical model in which we distinguish long-ranged passive forces due to the nuclei as inclusions in the elastic matrix, namely the cytoplasm, and active, stochastic forces arising from the cytoskeletal dynamics mediated by motor proteins. We perform computer simulations and quantify the observed degree of orientational and spatial order of nuclei. Solely doubling the nuclear density upon nuclear division, the model predicts a decrease in nuclear order. Comparing results to experimental recordings of tracked nuclei, we make contradictory observations, finding an increase in nuclear order upon nuclear divisions. Our analysis of model parameters resulting from this comparison suggests that overall motor protein density as well as relative active-force amplitude has to decrease by a factor of about two upon nuclear division to match experimental observations. We therefore expect a dilution of cytoskeletal motors during the rapid nuclear division to account for the increase in nuclear order during syncytial embryo development. Experimental measurements of kinesin-5 cluster lifetimes support this theoretical finding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号