首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
The allosteric transition of threonine-sensitive aspartokinase I-homoserine dehydrogenase I from Escherichia coli has been studied by time-resolved fluorescence spectroscopy. Fluorescence decay can be resolved into 2 distinct classes of tryptophan emitters: a fast component, with a lifetime of about 1.5 ns; and a slow component, with a lifetime of about 4.5 ns. The fluorescence properties of the slow component are modified by the allosteric transition. In the T-form of the enzyme stabilized by threonine, the lifetime of the slow component is longer, with a red-shifted spectrum; its accessibility to quenching by acrylamide becomes slightly higher without any decrease of fluorescence anisotropy. These results indicate a change in polarity of the slow component environment. The quaternary structure change associated with the allosteric transition probably involves global movements of structural domains without leading to any local mobility on the nanosecond time-scale. We suggest that the slow component corresponds to the unique tryptophan of the buried kinase domain.  相似文献   

2.
Adenosine deaminase, a purine salvage enzyme essential for immune competence, was studied by time-resolved fluorescence spectroscopy. The heterogeneous emission from this four-tryptophan protein was separated into three lifetime components: tau 1 = 1 ns and tau 2 = 2.2 ns an emission maximum at about 330 nm and tau 3 = 6.3 ns with emission maximum at about 340 nm. Solvent accessibility of the tryptophan emission was probed with polar and nonpolar fluorescence quenchers. Acrylamide, iodide, and trichloroethanol quenched emission from all three components. Acrylamide quenching caused a blue shift in the decay-associated spectrum of component 3. The ground-state analogue enzyme inhibitor purine riboside quenched emission associated with component 2 whereas the transition-state analogue inhibitor deoxycoformycin quenched emission from both components 2 and 3. The quenching due to inhibitor binding had no effect on the lifetimes or emission maxima of the decay-associated spectra. These observations can be explained by a simple model of four tryptophan environments. Quenching studies of the enzyme-inhibitor complexes indicate that adenosine deaminase undergoes different protein conformation changes upon binding of ground- and transition-state analogue inhibitors. The results are consistent with localized structural alterations in the enzyme.  相似文献   

3.
4.
5.
Long-lived tryptophan fluorescence in phosphoglycerate mutase   总被引:1,自引:0,他引:1  
J A Schauerte  A Gafni 《Biochemistry》1989,28(9):3948-3954
Phosphoglycerate mutase (PGM; EC 2.7.5.3) isolated from rat and rabbit muscle has been shown to possess an unusually long-lived fluorescence component when excited by ultraviolet light below 310 nm. On the basis of spectral and physical measurements, this 16.4 (+/- 0.2) ns fluorescence lifetime at room temperature is assigned to a tryptophan residue in an unusual environment. The emission profile of this long-lived tryptophan is red shifted from the other tryptophans of PGM by approximately 25 nm. PGM has been crystallized and sequenced from yeast where it has been shown to be a tetramer with 29K subunits. However, we have not been able to detect the existence of an unusually long-lived fluorescence component in the yeast isomer. The long fluorescence lifetime is lost upon denaturation of rabbit PGM and is partially restored upon introduction of the protein to a nondenaturing environment, suggesting the long lifetime is not the result of a covalent modification. The PGM molecule was studied by a number of techniques including time-resolved tryptophan fluorescence, quenching studies of tryptophan fluorescence, and enzyme activity studies. The long-lived fluorescence has been shown to be statistically quenched by Br-, I-, and Cu2+ in the submillimolar region while the acrylamide quenching shows the tryptophan is marginally accessible to solvent. Characterization of the long-lived fluorescence and its possible sources are discussed.  相似文献   

6.
The internal dynamics of human superoxide dismutase has been studied using time-resolved fluorescence. The fluorescence decay has been analyzed using continuous distribution of lifetime values. The effect of temperature and conformational state on the lifetime distribution has been investigated. The emission of the single tryptophan residue depends on the nature and dynamics of the protein matrix. Conformational changes have been induced by increased concentration of guanidinium hydrochloride. We found that both temperature and conformation strongly effect the width of the lifetime distribution.  相似文献   

7.
C K Luk 《Biopolymers》1971,10(7):1229-1242
The effect of cupric ion on the emission of tryptophan, tyrosine, and serum albumins is studied by emission spectroscopy and lifetime measurements. It is found that whenever cupric ion is bound to tryptophan or tyrosine, their emissions are quenched completely. The quenching may be due to an electron transfer mechanism. The fluorescence of complexes of cupric ions with serum albumins is partially quenched; this is because energy is transferred from tryptophan to the complexed cupric ions by a dipolar energy transfer mechanism. It is deduced from the present study that the tryptophan in the human serum albumin molecule is between 11 and 16 Å from the nearest eupric ion binding sites (assumed to be at the surface of the protein) and that one of the tryptophan in the bovine serum albumin molecule is very close to the cupric ion binding sites and the other is near the center of the bovine serum albumin molecule. It is also found that the deuterium solvent effect on serum albumin fluorescence is very small, and that the quenching of bovine serum albumin fluorescence at the N-F transition is the result of quenching of the fluorescence of both tryptophans. The phosphorescence lifetime apparatus, capable of measuring decay times of signals with intensities changing over a few orders of magnitude, and the ratio spectrofluorometer, both of which were constructed in this laboratory, are also described.  相似文献   

8.
Das TK  Mazumdar S 《Biopolymers》2000,57(5):316-322
Picosecond time-resolved fluorescence studies are carried out on cyanide-inhibited and heat-modified cytochrome c oxidase in aqueous lauryl maltoside surfactant solution, as well as in an aqueous vesicle, to understand the conformational changes associated with electron transfer and proton pumping activity of the enzyme. The tryptophan fluorescence decay profiles follow a four exponential model, which also matches the lifetime maxima obtained in a maximum entropy method analysis. The fast lifetime components are highly affected by the reduction and chemical modification of the enzyme. Changes in these lifetime components are related to the conformational changes in the vicinity of the heme centers of the enzyme. The cyanide-inhibited enzyme in the oxidized form shows a fluorescence decay profile similar to that of the native oxidized form, indicating that the conformational changes due to cyanide binding are very small. However, reduction of the cyanide-inhibited enzyme that leaves cyanide bound heme alpha3 oxidized causes a large increase in the fluorescence lifetimes, which indicates very significant conformational changes due to electron transfer to the dinuclear Cu(A) and heme alpha centers. A comparison of the tryptophan fluorescence decay of various other modified forms of the enzyme leads us to propose that the possible site of conformational coupling is located near heme alpha instead of the binuclear heme alpha3-Cu(B) center.  相似文献   

9.
The fluorescence lifetime of the single tryptophan in whiting parvalbumin has been measured by time-correlated single-photon counting. In the presence of saturating calcium, greater than 2 mol/mol of protein, the decay of fluorescence is accurately single exponential with a lifetime of 4.6 ns (0.1 M KCl, 20 mM borate, 1 mM dithiothreitol, 20 degrees C, pH 9). Upon complete removal of calcium from parvalbumin with ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid the emission decay becomes biphasic, and a second more rapid decay process with a lifetime of 1.3 ns comprising approximately 18% of the fluorescence emission at 350 nm is observed. The fluorescence emission of the calcium-saturated form is not measurably quenched by iodide. In contrast, upon complete removal of calcium, the fluorescence is completely quenchable as shown by extrapolation of the data to infinite iodide concentration. These results indicate that there is a large increase in the accessibility of the tryptophan residue in the protein to solvent upon removal of calcium. Stern-Volmer plots of the quenching data are nonlinear and indicate that there is more than one quenchable conformation of the calcium-free protein. The lifetime and quenching results are consistent with the presence of significant concentrations of only two stoichiometric species, apoparvalbumin and parvalbumin--Ca2, at partial occupancy of the calcium binding sites.  相似文献   

10.
The fluorescence decay kinetics at different ranges of the emission spectrum is reported for 17 proteins. Out of eight proteins containing a single tryptophan residue per molecule, seven proteins display multiexponential decay kinetics, suggesting that variability in protein structure may exist for most proteins. Tryptophan residues whose fluorescence spectrum is red shifted may have lifetimes longer than 7 ns. Such long lifetimes have not been detected in any of the denatured proteins studied, indicating that in native proteins the tryptophans having a red-shifted spectrum are affected by the tertiary structure of the protein. The fluorescence decay kinetics of ten denatured proteins studied obey multiexponential decay functions. It is therefore concluded that the tryptophan residues in denatured proteins can be grouped in two classes. The first characterized by a relatively long lifetime of about 4 ns and the second has a short lifetime of about 1.5 ns. The emission spectrum of the group which is characterized by the longer lifetime is red shifted relative to the emission spectrum of the group characterized by the shorter lifetime. A comparison of the decay data with the quantum yield of the proteins raises the possibility that a subgroup of the tryptophan residues is fully quenched. It is noteworthy that despite this heterogeneity in the environment of tryptophan residues in each denatured protein, almost the same decay kinetics has been obtained for all the denatured proteins studied in spite of the vastly different primary structures. It is therefore concluded that each tryptophan residue interacts in a more-or-less random manner with other groups on the polypeptide chain, and that on the average the different tryptophan residues in denatured proteins have a similar type of environment.  相似文献   

11.
The fluorescence decay of apoazurin derived from Pseudomonas aeruginosa is monoexponential. By this criterion the population of molecules of apoazurin is homogeneous. The emission anisotropy factor and the absorption anisotropy factor at the red edge of the absorption band assume similar values, showing that the tryptophan residue in apoazurin has the same asymmetric environment both in the ground and excited states. This finding suggests tight packing of the protein at the tryptophan environment. Native azurin does not decay monoexponentially. Moreover, comparison between the quantum yield calculated from the decay kinetics and the one measured directly shows that the majority of the azurin molecules are not fluorescent. There is thus variability in the structure of azurin molecules with an equilibration time that is longer than the fluorescence lifetime. Different asymmetric environment was found for the tryptophan residue in oxidized and reduced holoprotein and in apoazurin, as studied by the circular polarization of the fluorescence. D(2)O increases the fluorescence lifetime of apoazurin by 6 percent, compared to the lifetime in H(2)O solution; therefore water molecules may have access to the tryptophan residue, though the latter is situated in a hydrophobic environment.  相似文献   

12.
A temperature-dependent change in the microenvironment of the coenzyme, FAD, of D-amino acid oxidase was investigated by means of steady-state and picosecond time-resolved fluorescence spectroscopy. Relative emission quantum yields from FAD bound to D-amino acid oxidase revealed the temperature transition when concentration of the enzyme was lowered. The observed fluorescence decay curves were well described with four-exponential decay functions. The amplitude of the shortest lifetime (tau 0), approximately 25 ps, was always negative, which indicates that the fluorescence of D-amino acid oxidase at approximately 520 nm appears after a metastable state of the excited isoalloxazine decays. The other components with positive amplitudes were assigned to dimer or associated forms of the enzyme, monomer, and free FAD dissociated from the enzyme. Ethalpy and entropy changes of intermediate states in the quenching processes were evaluated according to the absolute rate theory. The temperature transition was much more pronounced in the monomer than in the dimer or associated forms of the enzyme.  相似文献   

13.
Enzyme I of the bacterial phosphoenolpyruvate: glycose phosphotransferase system has 2 tryptophan residues/monomer, as determined spectrophotometrically. The tryptophan fluorescence has been investigated with the aid of nanosecond time-resolved techniques. The decay of the fluorescence intensity was analyzed in terms of a biexponential function. The contribution of the emission associated with the shorter decay constant increases from 17-19% at 1 degree C to 43-44% at room temperature. Decay-associated spectra obtained with Enzyme I indicate different spectral distributions associated with the two decay constants. The measurement of tumbling of Enzyme I as a function of temperature revealed a transition of rotational rates between 5 and 15.5 degrees C. Global analysis allowed decomposition of the anisotropy decay into a formulation consistent with monomer and dimer rotational contributions.  相似文献   

14.
15.
We have studied the time-resolved intrinsic tryptophan fluorescence of the lac repressor (a symmetric tetramer containing two tryptophan residues per monomer) and two single-tryptophan mutant repressors obtained by site-directed mutagenesis, lac W201Y and lac W220Y. These mutant repressor proteins have tyrosine substituted for tryptophan at positions 201 and 220, respectively, leaving a single tryptophan residue per monomeric subunit at position 220 for the W201Y mutant and at position 201 in the W220Y mutant. It was found that the two decay rates recovered from the analysis of the wild type data do not correspond to the rates recovered from the analysis of the decays of the mutant proteins. Each of these residues in the mutant repressors displays at least two decay rates. Global analysis of the multiwavelength data from all three proteins, however, yielded results consistent with the fluorescence decay of the wild type lac repressor corresponding simply to the weighted linear combination of the decays from the mutant proteins. The effect of ligation by the antagonistic ligands, inducer and operator DNA, was similar for all three proteins. The binding of the inducer sugar resulted in a quenching of the long-lived species, while binding by the operator decreased the lifetime of the short components. Investigation of the time-resolved anisotropy of the intrinsic tryptophan fluorescence in these three proteins revealed that the depolarization of fluorescence resulted from a fast motion and the global tumbling of the macromolecule. Results from the simultaneous global analysis of the frequency domain data sets from the three proteins revealed anisotropic rotations for the macromolecule, consistent with the known elongated shape of the repressor tetramer. In addition, it appears that the excited-state dipole of tryptophan 220 is alighed with the long axis of the repressor.  相似文献   

16.
The single tryptophan residue, at position 69 in the amino acid sequence, was used as an intrinsic probe to obtain structural and dynamical information on the lipolytic enzyme Fusarium solani cutinase. In the enzyme's native state the tryptophan fluorescence is highly quenched. Time-resolved experiments reveal that the majority of the excited state species is characterized by an unusually fast decay time of approximately 40 ps, indicating the occurrence of a very efficient nonradiative relaxation process, possibly via the adjacent disulphide bond or via the peptide bonds of a nearby loop. A minority of the excited state species relaxes on a nanosecond time scale. Irradiation of the enzyme in the tryptophan absorption band causes an increase by an order of magnitude of the fluorescence quantum yield. This increase is ascribed to a photo-induced, subtle structural change of a minor subset of species whose fluorescence is not highly quenched. The structural change is accompanied by a tightening of the local environment of the tryptophan moiety, as indicated by results from time-resolved fluorescence anisotropy which reveal a complete disappearance of the segmental flexibility of the tryptophan moiety.  相似文献   

17.
T Fernando  C A Royer 《Biochemistry》1992,31(29):6683-6691
The unfolding properties of the trp repressor of Escherichia coli have been studied using a number of different time-resolved and steady-state fluorescence approaches. Denaturation by urea was monitored by the average fluorescence emission energy of the intrinsic tryptophan residues of the repressor. These data were consistent with a two-state transition from dimer to unfolded monomer with a free energy of unfolding of 19.2 kcal/mol. The frequency response profiles of the fluorescence emission brought to light subtle urea-induced modifications of the intrinsic tryptophan decay parameters both preceding and following the main unfolding transition. The increase of lifetime induced by urea required higher concentrations of urea than the increase in the total intensity described by Gittelman and Matthews [(1990) Biochemistry 29, 7011]. This indicates that the intensity increase has both dynamic and static origins. To assess the effect of tryptophan binding upon repressor stability, and to determine whether repressor oligomerization would be detectable in an unfolding experiment, we examined denaturation profiles of repressor labeled with the long-lived fluorescence probe 5-(dimethylamino)naphthalene-1-sulfonyl (DNS), by monitoring the average rotational correlation time of the probe. These experiments revealed a protein concentration dependent transition at low urea concentrations. This transition was promoted by tryptophan binding. We ascribe this transition to urea-induced dissociation of repressor tetramers. The main unfolding transition of the dimer to unfolded monomer was also observable using this technique, and the free energies associated with this transition were 18.3 kcal/mol in the absence of tryptophan and 24.1 kcal/mol in its presence, demonstrating that co-repressor binding stabilizes the repressor dimer against denaturation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Fluorescence lifetime quenching and anisotropy studies of ribonuclease T1   总被引:1,自引:0,他引:1  
The time-resolved fluorescence of the lone tryptophanyl residue of ribonuclease T1 was investigated by using a mode-locked, frequency-doubled picosecond dye laser. The fluorescence decay could be characterized by a single exponential function with a lifetime of 3.9 ns. The fluorescence was readily quenched by uncharged solutes but was unaffected by iodide ion. These observations are interpreted in terms of the electrostatic properties of the amino acid residues at the active site of the protein, which would appear to restrict the access of solute species to the tryptophanyl residue. The temperature dependence of the fluorescence lifetime and anisotropy decay time could be rationalized in terms of a model which postulates a significant ordering of the solvent layer immediately surrounding the surface of the protein.  相似文献   

19.
Fluorescence of tryptophan dipeptides: correlations with the rotamer model   总被引:5,自引:0,他引:5  
R F Chen  J R Knutson  H Ziffer  D Porter 《Biochemistry》1991,30(21):5184-5195
The multiexponential decay of tryptophan derivatives has previously been explained by the presence of rotamers having different fluorescence lifetimes, but it has been difficult to correlate rotamer structure and physical properties. New time-resolved and static data on dipeptides of the type Trp-X and X-Trp, where X is another aminoacyl residue, are consistent with the rotamer model and allow some correlations. That a dominant rotamer of Trp-X zwitterion has the -NH3+ group near the indole ring was inferred from absorption and fluorescence spectra, titrimetric determination of pKa values, photochemical hydrogen-deuterium-exchange experiments, decay-associated spectra, quantum yields, and decay kinetics. Analysis of the lifetime and quantum yield data for Trp dipeptides, especially X-Trp, suggests that static self-quenching is not uncommon. Highly quenched and weak components of the fluorescence do not contribute to the calculated mean lifetime, thus resulting in apparent static quenching. We propose the term quasi-static self-quenching (QSSQ) to distinguish this phenomenon from quenching due to ground-state formation of a dark complex. Mechanisms of quenching and the structure of statically quenched rotamers are discussed. The occurrence of QSSQ supports the idea that rotamers interconvert slowly. A major perceived deficiency of the rotamer model, namely, the apparent inability to predict reasonable rotamer populations from fluorescence decay data, may result from the presence of statically quenched species, which do not contribute to the fluorescence.  相似文献   

20.
Steady state and time-resolved fluorescence studies on native, desulpho and deflavo xanthine oxidase (XO) have been carried out to investigate the conformational changes associated with the replacement of the molybdenum double bonded sulphur by oxygen and the removal of the flavin adenine dinucleotide (FAD). The steady state quenching experiments of the intrinsic tryptophan residues of the enzyme show that all the nine tryptophans are accessible to neutral quencher, acrylamide, in the native as well as desulpho and deflavo enzymes. However, the number of the tryptophan residues accessible to the ionic quenchers, potassium iodide and cesium chloride, increases upon removal of the FAD centre from the enzyme. This indicates that two tryptophan residues move out from the core of the enzyme to the solvent upon the removal of the FAD. The time-resolved fluorescence studies were carried out on the native, desulpho and deflavo XO by means of the time-correlated single photon counting technique, and the data were analysed by discrete exponential and maximum entropy methods. The results show that the fluorescence decay curve fitted best to a three-exponential model with lifetimes tau(1)=0.4, tau(2)=1.4 and tau(3)=3.0 ns for the native and desulpho XO, and tau(1)=0.7, tau(2)=1.7 and tau(3)=4.8 ns for the deflavo XO. The replacement of the molybdenum double bonded sulphur by oxygen in the desulpho enzyme does not cause any significant change of the lifetime components. However, removal of the FAD centre causes a significant change in the shortest and longest lifetime components indicating a conformational change in the deflavo XO possibly in the flavin domain. Decay-associated emission spectra at various emission wavelengths have been used to determine the origin of the lifetimes. The results show that tau(1) and tau(3) of the native and desulpho XO originate from the tryptophan residues which are completely or partially accessible to the solvent but tau(2) corresponds to those residues which are buried in the core of the enzyme and not exposed to the solvent. For deflavo enzyme, tau(2) is red shifted compared to the native enzyme indicating the movement of tryptophan residues from the core of the enzyme to the solvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号