首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three light-regulated genes, chlorophyll a/b-binding protein (CAB), ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit, and chalcone synthase (CHS), are demonstrated to be up-regulated in the high-pigment-1 (hp-1) mutant of tomato (Lycopersicon esculentum Mill.) compared with wild type (WT). However, the pattern of up-regulation of the three genes depends on the light conditions, stage of development, and tissue studied. Compared with WT, the hp-1 mutant showed higher CAB gene expression in the dark after a single red-light pulse and in the pericarp of immature fruits. However, in vegetative tissues of light-grown seedlings and adult plants, CAB mRNA accumulation did not differ between WT and the hp-1 mutant. The ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit mRNA accumulated to a higher level in the hp-1 mutant than WT under all light conditions and tissues studied, whereas CHS gene expression was up-regulated in de-etiolated vegetative hp-1-mutant tissues only. The CAB and CHS genes were shown to be phytochrome regulated and both phytochrome A and B1 play a role in CAB gene expression. These observations support the hypothesis that the HP-1 protein plays a general repressive role in phytochrome signal transduction.  相似文献   

2.
3.
A comprehensive, multi-generation, allele test, carried out in this study, suggests that the tomato mutations dark-green (dg) and high pigment 2(j) (hp-2(j)) are allelic. The hp-2(j) mutant is caused by a mutation in the tomato homolog of the DEETIOLATED1 (DET1) gene, involved in the signal transduction cascade of light perception and morphogenesis. This suggestion is in agreement with the exaggerated photomorphogenic de-etiolation response of homozygous dg mutants grown under modulated light conditions. Sequence analysis of the DET1 gene was carried out in dg mutants representing two different lines, and revealed a single A-to-T base transversion in the second exon of the DET1 gene in comparison with the normal wild-type sequence. This transversion results in a conserved Asparagine(34)-to-Isoleucine(34) amino-acid substitution, and eliminates a recognition site for the AclI restriction endonuclease, present in the wild-type and in the other currently known tomato mutants at the DET1 locus. This polymorphism was used to develop a PCR-based DNA marker, which enables an early genotypic selection for breeding lycopene-rich tomatoes. Using this marker and sequence analysis we demonstrate that an identical base transversion also exists in dg mutants of the cultivar Manapal, in which the natural dg mutation was originally discovered. A linkage analysis, carried out in a F(2) population, shows a very strong linkage association between the DET1 locus of dg mutant plants and the photomorphogenic response of the seedlings, measured as hypocotyl length (12 < LOD Score < 13, R(2) = 51.1%). The results presented in this study strongly support the hypothesis that the tomato dg mutation is a novel allele of the tomato homolog of the DET1 gene.  相似文献   

4.
5.
A single pulse of red light (R) given to 4-d-old etiolated high-pigment-1 (hp-1) mutant tomato (Solanum lycopersicum L.) seedlings followed by a 3-d dark period is demonstrated to result in a block of greening in subsequent white light. Wild-type seedlings green normally under this regime. The block of greening in the hp-1 mutant depends on the length of the dark period before and after the R pulse and operates via the low-fluence-response mode of phytochrome action. This block of greening takes place in hp-1 double mutants lacking either phytochrome A or phytochrome B1, but is absent in the hp-1 triple mutant lacking both phytochromes A and B1. These observations enable a screen to be devised for new phytochrome B1 mutants either within the photoreceptor or mutants defective in phytochrome B1-signalling steps which result in loss of capacity to green, by mutagenising the phytochrome A-deficient hp-1, fri double mutant. Received: 20 February 1998 / Accepted: 18 June 1998  相似文献   

6.
Tomato high pigment (hp) mutants are characterized by their exaggerated photoresponsiveness. Light-grown hp mutants display elevated levels of anthocyanins, are shorter and darker than wild-type plants, and have dark green immature fruits due to the overproduction of chlorophyll pigments. It has been proposed that HP genes encode negative regulators of phytochrome signal transduction. We have cloned the HP-2 gene and found that it encodes the tomato homolog of the nuclear protein DEETIOLATED1 (DET1) from Arabidopsis. Mutations in DET1 are known to result in constitutive deetiolation in darkness. In contrast to det1 mutants, tomato hp-2 mutants do not display any visible phenotypes in the dark but only very weak phenotypes, such as partial chloroplast development. Furthermore, whereas det1 mutations are epistatic to mutations in phytochrome genes, analysis of similar double mutants in tomato showed that manifestation of the phenotype of the hp-2 mutant is strictly dependent upon the presence of active phytochrome. Because only one DET1 gene is likely to be present in each of the two species, our data suggest that the phytochrome signaling pathways in which the corresponding proteins function are regulated differently in Arabidopsis and tomato.  相似文献   

7.
UV-B radiation inhibits hypocotyl elongation in etiolated tomato (Lycopersicon esculentum Mill. cv. Alisa Craig) seedlings acting through a photoreceptor system with peak apparent effectiveness around 300 nm. In order lo further characterize the response and gain insight into its potential ecological significance, the time-course of inhibition was measured and compared with the time-course of flavonoid accumulation in the same seedlings. When a background of strong (> 620 μmol m?2 s?1) white light (WL) was supplemented with low irradiance UV-B (~ 3 μmol m?2 s?1). substantial (~ 50%) inhibition of elongation occurred within 3 h of the light treatment. The magnitude of UV-B-induced elongation inhibition was similar in wild type (WT) and au-mutant seedlings, in spite of the large differences between genotypes in rate and temporal pattern of elongation. In comparison to the effect of UV-B on elongation, induction of flavonoid accumulation in WT and au seedlings undergoing de-etiolation was a much slower response. Several UV-absorbing compounds appeared to be specifically induced by light, and some of them accumulated faster under the WL + UV-B treatment than under WL alone. However, there was little or no delectable effect of WL on flavonoid levels until up to 3 h of treatment, and the specific UV-B effect was measurable only after 6 h of continuous treatment. Indeed. UV-B-screening properties of crude alcoholic extracts were not different between WL and WL + UV-B treatments until after 9 or 24 h. When the light treatments were applied to seedlings that were just breaking through the soil surface. UV-B was found to consistently retard seedling emergence. These results suggest that the rapid inhibition of elongation in de-etiolating seedlings is an evolved response lo UV-B, which may serve to minimize seedling exposure to sunlight until protective pigmentation responses (triggered by WL and UV-B) have taken place in the seedlings epidermis.  相似文献   

8.
The mapping of phytochrome genes and photomorphogenic mutants of tomato   总被引:6,自引:0,他引:6  
The map positions of five previously described phytochrome genes have been determined in tomato (Lycopersicon esculentum Mill.) The position of the yg-2 gene on chromosome 12 has been confirmed and the classical map revised. The position of the phytochrome A (phy A)-deficient fri mutants has been refined by revising the classical map of chromosome 10. The position of the PhyA gene is indistinguishable from that of the fri locus. The putative phyB1-deficient tri mutants were mapped by classical and RFLP analysis to chromosome 1. The PhyB1 gene, as predicted, was located at the same position. Several mutants with the high pigment (hp) phenotype, which exaggerates phytochrome responses, have been reported. Allelism tests confirmed that the hp-2 mutant is not allelic to other previously described hp (proposed here to be called hp-1) mutants and a second stronger hp-2 allele (hp-2 j ) was identified. The hp-2 gene was mapped to the classical, as well as the RFLP, map of chromosome 1. Received: 24 May 1996 / Accepted: 14 June 1996  相似文献   

9.
UV and blue light control the expression of flavonoid biosynthesis genes in a range of higher plants. To investigate the signal transduction processes involved in the induction of chalcone synthase (CHS) gene expression by UV-B and UV-A/blue light, we examined the effects of specific agonists and inhibitors of known signaling components in mammalian systems in a photomixotrophic Arabidopsis cell suspension culture. CHS expression is induced specifically by these wavelengths in the cell culture, in a manner similar to that in mature Arabidopsis leaf tissue. Both the UV-B and UV-A/blue phototransduction processes involve calcium, although the elevation of cytosolic calcium is insufficient on its own to stimulate CHS expression. The UV-A/blue light induction of CHS expression does not appear to involve calmodulin, whereas the UV-B response does; this difference indicates that the signal transduction pathways are, at least in part, distinct. We provide evidence that both pathways involve reversible protein phosphorylation and require protein synthesis. The UV-B and UV-A/blue light signaling pathways are therefore different from the phytochrome signal transduction pathway regulating CHS expression in other species.  相似文献   

10.
EIN2 (ethylene insensitive 2) is a very important component in the ethylene signal transduction pathway. Recently, the genomic DNA and full-length cDNA of LeEIN2 (tomato EIN2) have been isolated in our laboratory. To reveal the function of LeEIN2, transgenic tomato plants with reduced expression levels of LeEIN2 were produced. The fruit ripening and expressions of ripening-related genes encoding polygalacturonase and TomLoxB were inhibited in the LeEIN2-silenced transgenic plants compared to the wild-type Ailsa Craig. In the seedling ethylene response assay, the transgenic tomato plants with reduced LeEIN2 expression exhibited ethylene insensitivity. These results indicate that LeEIN2 plays a critical role in regulating tomato fruit ripening and is a positive regulator in ethylene signal transduction pathway.  相似文献   

11.
UV-B-induced photomorphogenesis in Arabidopsis thaliana   总被引:4,自引:0,他引:4  
Relatively little is known about the types of photomorphogenic responses and signal transduction pathways that plants employ in response to ultraviolet-B (UV-B, 290–320 nm) radiation. In wild-type Arabidopsis seedlings, hypocotyl growth inhibition and cotyledon expansion were both reproducibly promoted by continuous UV-B. The fluence rate response of hypocotyl elongation was examined and showed a biphasic response. Whereas photomorphogenic responses were observed at low doses, higher fluences resulted in damage symptoms. In support of our theory that photomorphogenesis, but not damage, occurs at low doses of UV-B, photomorphogenic responses of UV-B sensitive mutants were indistinguishable from wild-type plants at the low dose. This allowed us to examine UV-B-induced photomorphogenesis in photoreceptor deficient plants and constitutive photomorphogenic mutants. The cry1 cryptochrome structural gene mutant, and phytochrome deficient hy1, phyA and phyB mutant seedlings resembled wild-type seedlings, while phyA/phyB double mutants were less sensitive to the photomorphogenic effects of UV-B. These results suggest that either phyA or phyB is required for UV-B-induced photomorphogenesis. The constitutive photomorphogenic mutants cop1 and det1 did not show significant inhibition of hypocotyl growth in response to UV-B, while det2 was strongly affected by UV-B irradiation. This suggests that COP1 and DET1 work downstream of the UV-B signaling pathway.  相似文献   

12.
A tomato EST sequence, highly homologous to the human and Arabidopsis thaliana UV-damaged DNA binding protein 1 (DDB1), was mapped to the centromeric region of the tomato chromosome 2. This region was previously shown to harbor the HP-1 gene, encoding the high pigment-1 (hp-1) and the high pigment-1w (hp-1w) mutant phenotypes. Recent results also show that the A. thaliana DDB1 protein interacts both genetically and biochemically with the protein encoded by DEETIOLATED1, a gene carrying three tomato mutations that are in many respects isophenotypic to hp-1: high pigment-2 (hp-2), high pigment-2j (hp-2j) and dark green (dg). The entire coding region of the DDB1 gene was sequenced in an hp-1 mutant and its near-isogenic normal plant in the cv. Ailsa Craig background, and also in an hp-1w mutant and its isogenic normal plant in the GT breeding line background. Sequence analysis revealed a single A931-to-T931 base transversion in the coding sequence of the DDB1 gene in the hp-1 mutant plants. This transversion results in the substitution of the conserved asparagine at position 311 to a tyrosine residue. In the hp-1w mutant, on the other hand, a single G2392-to-A2392 transition was observed, resulting in the substitution of the conserved glutamic acid at position 798 to a lysine residue. The single nucleotide polymorphism that differentiates hp-1 mutant and normal plants in the cv. Ailsa Craig background was used to design a pyrosequencing genotyping system. Analysis of a resource F2 population segregating for the hp-1 mutation revealed a very strong linkage association between the DDB1 locus and the photomorphogenic response of the seedlings, measured as hypocotyl length (25<LOD score<26, R2=62.8%). These results strongly support the hypothesis that DDB1 is the gene encoding the hp-1 and hp-1w mutant phenotypes.Communicated by R. Hagemann  相似文献   

13.
14.
15.
Colliver  S.  Bovy  A.  Collins  G.  Muir  S.  Robinson  S.  de Vos  C.H.R.  Verhoeyen  M.E. 《Phytochemistry Reviews》2002,1(1):113-123
Flavonoids are a diverse group of phenolic secondary metabolites that occur naturally in plants and therefore form an integral component of the human diet. Many of the compounds belonging to this group are potent antioxidants in vitro and epidemiological studies suggest a direct correlation between high flavonoid intake and decreased risk of cardiovascular disease, cancer and other age-related diseases. Modifying flavonoid biosynthesis in chosen crops may provide new raw materials that have the potential to be used in foods designed for specific benefits to human health. We report that flavonoid biosynthesis in tomato fruit is subject to tissue specific and developmental regulation. Using transgenic modification, we have investigated the role of several of the enzymatic steps of tomato flavonol biosynthesis. Furthermore, we have generated several tomato lines with significantly altered flavonoid content. Most notably achieving an up to 78-fold increase in total fruit flavonols through ectopic expression of the biosynthetic enzyme, chalcone isomerase. This increase results principally from the accumulation of quercetin-glycosides in peel tissue. In addition, we report that chalcone synthase and flavonol synthase transgenes act synergistically to significantly up-regulate flavonol biosynthesis in tomato flesh tissues. A review of this work is presented in this paper.  相似文献   

16.
17.
The diageotropica (dgt) mutation has been proposed to affect either auxin perception or responsiveness in tomato plants. It has previously been demonstrated that the expression of one member of the Aux/IAA family of auxin-regulated genes is reduced in dgt plants. Here, we report the cloning of ten new members of the tomato Aux/IAA family by PCR amplification based on conserved protein domains. All of the gene family members except one (LeIAA7) are expressed in etiolated tomato seedlings, although they demonstrate tissue specificity (e.g. increased expression in hypocotyls vs. roots) within the seedling. The wild-type auxin-response characteristics of the expression of these tomato LeIAA genes are similar to those previously described for Aux/IAA family members in Arabidopsis. In dgt seedlings, auxin stimulation of gene expression was reduced in only a subset of LeIAA genes (LeIAA5, 8, 10, and 11), with the greatest reduction associated with those genes with the strongest wild-type response to auxin. The remaining LeIAA genes tested exhibited essentially the same induction levels in response to the hormone in both dgt and wild-type hypocotyls. These results confirm that dgt plants can perceive auxin and suggest that a specific step in early auxin signal transduction is disrupted by the dgt mutation.  相似文献   

18.
19.
Xing  Tim  Malik  Kamal  Martin  Teresa  Miki  Brian L 《Plant molecular biology》2001,46(1):109-120
A mitogen-activated protein kinase kinase (MAPKK) gene, tMEK2, was isolated from tomato cv. Bonny Best. By mutagenesis, a permanently active variant, tMEK2 MUT, was created. Both wild-type tMEK2 and mutant tMEK2 MUT were driven by a newly described strong plant constitutive promoter, tCUP, in a tomato protoplast transient gene expression system. Pathogenesis-related genes, PR1b1, PR3 and Twi1, and a wound-inducible gene, ER5, were activated by tMEK2MUT. Specific inhibitors of p38 class MAPK inhibited tMEK2MUT-induced activation of PR3 and ER5 genes but not that of the PR1b1 or Twi1 gene. Arabidopsis dual-specificity protein tyrosine phosphatase1 (DsPTP1) and maize protein phosphatase 1 (PP1) inhibited tMEK2MUT-induced activation of the ER5 gene and the Twi1 gene, respectively, whereas PR1b1 and PR3 were not affected by either AtDsPTP1, or maize PP1, or Arabidopsis protein phosphatase 2A (PP2A). We have demonstrated for the first time that a single MAPKK activates an array of PR and wound-related genes. Our observation indicates that the activation of the genes downstream of tMEK2 occurs through divergent pathways and that tMEK2 may play an important role in the interaction of signal transduction pathways that mediate responses to both biotic (e.g. disease) and abiotic stresses (e.g. wound responsiveness).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号