首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our technique enables non-invasive experiments to be conducted on the proprioceptor part of respiratory control, while eliminating misleading responses due to interaction with the chemoreceptor system; interaction was prevented by stabilizing arterial PO2 and PCO2 with the aid of an optimal regulator based on a mini-computer which controlled the inspired gas mixture. The proprioceptor system in a human was disturbed by applying positive pressure pulses at the mouth, responses were derived from continuous air-flow measurement. The classical inflation inhibiting reflex and an effect akin to Head's paradoxical reflex were demonstrated.  相似文献   

2.
Fructose 2,6-bisphosphate and plant carbohydrate metabolism   总被引:7,自引:4,他引:3       下载免费PDF全文
Stitt M 《Plant physiology》1987,84(2):201-204
The control of the fructose 2,6-bisphosphate (Fru2,6P2) concentration and its possible role in controlling carbohydrate synthesis and degradation are discussed. This regulator metabolite is involved in the fine tuning of photosynthetic metabolism, and in controlling photosynthetic partitioning, and may also be involved in the response to hormones, wounding, and changing water relations. Study of the mechanisms controlling Fru2,6P2 concentrations could reveal insights into how these responses are mediated. However, the detailed action of Fru2,6P2 requires more attention, especially in respiratory metabolism where the background information about the compartmentation of metabolism between the plastid and cytosol is still inadequate, and the potential role of pyrophosphate has to be clarified.  相似文献   

3.
4.
The respiratory system is described as a control system. The controller consists of the peripheral and central chemoreceptors, the respiratory centre in the medulla oblongata and the controlling signal “alveolar ventilation”. The controlled system comprise three compartments (lung, brain, tissue) connected by the circulating blood. The controlled values of the system are explicit the arterial O2-pressure and the CO2-pressure of the brain-compartment. Hypoxia, hyperoxia and hypercapnia are the disturbing signals, which are caused by changing concentrations in the inspired gas. In this research both dynamic and steady-state behavior are studied. The steady-state and transient data of the model generally approach the findings of the experiments. The analysis of the efficiency of the regulation states the quality of the control system. In the on-and off-transients the CO2-fractions of the alveolar gas, and in the off-transient the alveolar ventilation deviate from the experimental results in hypercapnic disturbances. Reasons for these differences and others existing between simulation and experiment are discussed.
  相似文献   

5.
In ripening banana (Musa acuminata L. [AAA group, Cavandish subgroup] cv. Valery) fruit, the steady state concentration of the glycolytic regulator fructose 2,6-bisphosphate (Fru 2,6-P2) underwent a transient increase 2 to 3 hours before the respiratory rise, but coincident with the increase in ethylene synthesis. Fru 2,6-P2 concentration subsequently decreased, but increased again approximately one day after initiation of the respiratory climacteric. This second rise in Fru 2,6-P2 continued as ripening proceeded, reaching approximately five times preclimacteric concentration. Pyrophosphate-dependent phosphofructokinase glycolytic activity exhibited a transitory rise during the early stages of the respiratory climacteric, then declined slightly with further ripening. Cytosolic fructose 1,6-bisphosphatase activity did not change appreciably during ripening. The activity of ATP-dependent phosphofructokinase increased approximately 1.6-fold concurrent with the respiratory rise. A balance in the simultaneous glycolytic and gluconeogenic carbon flow in ripening banana fruit appears to be maintained through changes in substrate levels, relative activities of glycolytic enzymes and steady state levels of Fru 2,6-P2.  相似文献   

6.
We propose a new method for quantifying the ventilatory sensitivity of the peripheral chemoreceptors to changes in CO2 through analysis of the natural breath-to-breath variations in ventilation (y) and alveolar Pco2 (x). This technique is truly non-invasive in that the need for administering CO2-enriched mixtures is circumvented, and peripheral chemosensitivity is assessed while the respiratory control system operates in its normal eucapnic state, unperturbed by external interventions. The method is based on solution of the inverse problem relating the cross-correlation between alveolar Pco2 and ventilation changes, and the autocorrelation of changes in alveolar Pco2. Tests are performed using simulated data generated by a closed-loop respiratory control model. The impulse response of the controller and the convective delay between lungs and chemoreceptors are estimated from the data. Subsequently, the best exponential fit to the estimated impulse response yields values for the effective controller gain (G) and the associated time constant of the response. The estimates of G contain a small contribution from the control chemoreflex gain; however, the relation between changes in G and changes in peripheral gain remains unaltered. The effects of other details in the computation procedure, such as length of data sequence, maximum number of correlation lags and starting lag number, are also investigated.  相似文献   

7.
A new model for aspects of the control of respiration in mammals has been developed. The model integrates a reduced representation of the brainstem respiratory neural controller together with peripheral gas exchange and transport mechanisms. The neural controller consists of two components. One component represents the inspiratory oscillator in the pre-Bötzinger complex (pre-BötC) incorporating biophysical mechanisms for rhythm generation. The other component represents the ventral respiratory group (VRG), which is driven by the pre-BötC for generation of inspiratory (pre)motor output. The neural model was coupled to simplified models of the lungs incorporating oxygen and carbon dioxide transport. The simplified representation of the brainstem neural circuitry has regulation of both frequency and amplitude of respiration and is done in response to partial pressures of oxygen and carbon dioxide in the blood using proportional (P) and proportional plus integral (PI) controllers. We have studied the coupled system under open and closed loop control. We show that two breathing regimes can exist in the model. In one regime an increase in the inspiratory frequency is accompanied by an increase in amplitude. In the second regime an increase in frequency is accompanied by a decrease in amplitude. The dynamic response of the model to changes in the concentration of inspired O2 or inspired CO2 was compared qualitatively with experimental data reported in the physiological literature. We show that the dynamic response with a PI-controller fits the experimental data better but suggests that when high levels of CO2 are inspired the respiratory system cannot reach steady state. Our model also predicts that there could be two possible mechanisms for apnea appearance when 100% O2 is inspired following a period of 5% inspired O2. This paper represents a novel attempt to link neural control and gas transport mechanisms, highlights important issues in amplitude and frequency control and sets the stage for more complete neurophysiological control models.  相似文献   

8.
Maximal aerobic metabolic rates (MMR) in vertebrates are supported by increased conductive and diffusive fluxes of O2 from the environment to the mitochondria necessitating concomitant increases in CO2 efflux. A question that has received much attention has been which step, respiratory or cardiovascular, provides the principal rate limitation to gas flux at MMR? Limitation analyses have principally focused on O2 fluxes, though the excess capacity of the lung for O2 ventilation and diffusion remains unexplained except as a safety factor. Analyses of MMR normally rely upon allometry and temperature to define these factors, but cannot account for much of the variation and often have narrow phylogenetic breadth. The unique aspect of our comparative approach was to use an interclass meta-analysis to examine cardio-respiratory variables during the increase from resting metabolic rate to MMR among vertebrates from fish to mammals, independent of allometry and phylogeny. Common patterns at MMR indicate universal principles governing O2 and CO2 transport in vertebrate cardiovascular and respiratory systems, despite the varied modes of activities (swimming, running, flying), different cardio-respiratory architecture, and vastly different rates of metabolism (endothermy vs. ectothermy). Our meta-analysis supports previous studies indicating a cardiovascular limit to maximal O2 transport and also implicates a respiratory system limit to maximal CO2 efflux, especially in ectotherms. Thus, natural selection would operate on the respiratory system to enhance maximal CO2 excretion and the cardiovascular system to enhance maximal O2 uptake. This provides a possible evolutionary explanation for the conundrum of why the respiratory system appears functionally over-designed from an O2 perspective, a unique insight from previous work focused solely on O2 fluxes. The results suggest a common gas transport blueprint, or Bauplan, in the vertebrate clade.  相似文献   

9.
10.
See RM  Foy CL 《Plant physiology》1982,70(2):350-352
Mitochondria isolated from hypocotyls of five-day-old bean (Phaseolus vulgaris L. `Black Valentine') seedlings rapidly oxidized succinate, malate, and NADH. Oxidation rates, respiratory control, and ADP:O ratios obtained with saturating concentrations of all three substrates indicated that the mitochondria were tightly coupled. The mitochondrial preparation was then employed to investigate the respiration-inhibiting effects of butanedioic acid mono (2,2-dimethyl-hydrazide) (daminozide) a plant growth retardant having structural similarity to an endogenous respiratory substrate (succinate). Daminozide markedly inhibited the activity of membrane-bound succinate dehydrogenase. Inhibition was of the competitive type (apparent Ki, 20.2 millimolar) with respect to succinate. Although not excluding other hypotheses, the results support an active role for daminozide in the suppression of respiration as an important metabolic site of its action as a plant growth regulator.  相似文献   

11.
The purpose of the present study was to investigate the effect of exercise induced hyperventilation and hypocapnia on airway resistance (R aw), and to try to answer the question whether a reduction of R aw is a mechanism contributing to the increase of endurance time associated with a reduction of exercise induced hyperventilation as for example has been observed after respiratory training. Eight healthy volunteers of both sexes participated in the study. Cycling endurance tests (CET) at 223 (SD 47) W, i.e. at 74 (SD 5)% of the subject's peak exercise intensity, breathing endurance tests and body plethysmograph measurements of pre- and postexercise R aw were carried out before and after a 4-week period of respiratory training. In one of the two CET before the respiratory training CO2 was added to the inspired air to keep its end-tidal concentration at 5.4% to avoid hyperventilatory hypocapnia (CO2-test); the other test was the control. The pre-exercise values of specific expiratory R aw were 8.1 (SD 2.8), 6.8 (SD 2.6) and 8.0 (SD 2.1) cm H2O · s and the postexercise values were 8.5 (SD 2.6), 7.4 (SD 1.9) and 8.0 (SD 2.7) cm H2O · s for control CET, CO2-CET and CET after respiratory training, respectively, all differences between these tests being nonsignificant. The respiratory training significantly increased the respiratory endurance time during breathing of 70% of maximal voluntary ventilation from 5.8 (SD 2.9) min to 26.7 (SD 12.5) min. Mean values of the cycling endurance time (t cend) were 22.7 (SD 6.5) min in the control, 19.4 (SD 5.4) min in the CO2-test and 18.4 (SD 6.0) min after respiratory training. Mean values of ventilation ( E) during the last 3␣min of CET were 123 (SD 35.8) l · min−1 in the control, 133.5 (SD 35.1) l · min−1 in the CO2-test and 130.9 (SD 29.1) l · min−1 after respiratory training. In fact, six subjects ventilated more and cycled for a shorter time, whereas two subjects ventilated less and cycled for a longer time after the respiratory training than in the control CET. In general, the subjects cycled longer the lower the E, if all three CET are compared. It is concluded that R aw measured immediately after exercise is independent of exercise-induced hyperventilation and hypocapnia and is probably not involved in limiting t cend, and that t cend at a given exercise intensity is shorter when E is higher, no matter whether the higher E occurs before or after respiratory training or after CO2 inhalation. Accepted: 11 September 1996  相似文献   

12.
We show that many of the morphological features of the respiratory system of growth enhanced transgenic salmon are greater than those of similarly sized control salmon. Growth hormone transgenic Atlantic salmon, Salmo salar were the F2 generation produced using eggs from a transgenic F1 female and milt from a nontransgenic male. At the time the gill tissues were sampled, the transgenic salmon were growing 2.1 times more rapidly than the nontransgenic control salmon, and they had oxygen uptake rates that were about 1.6 times greater than control salmon. In the present study we show that the gill surface area available for respiratory exchange in the transgenic salmon is about 1.24 times that in control salmon which does not parallel the 1.6 elevation in oxygen uptake. The increase in gill exchange area was due largely to a relatively uniform increase in length of each gill filament.  相似文献   

13.
Results of a comparative study of the sensitivity of the system of respiratory control to increases in the CO2 concentration and the intensity of free-radical processes in young and elderly subjects are described. It is shown that normal (natural) aging is accompanied by a decrease in the sensitivity of the respiratory system to hypercapnic stimulation and a parallel significant decrease in the activity of catalase in the blood of examined subjects. Mechanisms responsible for the modifications of the sensitivity of the system of respiratory control to hypercapnia are discussed; these shifts can be at least partly related to changes in the intensity of production of free radicals observed in elderly subjects. Neirofiziologiya/Neurophysiology, Vol. 40, No. 1, pp. 53–57, January–February, 2008.  相似文献   

14.
After irradiation of rats with a linear electron accelerator, the respiratory rate in rat brain mitochondria was studied in the presence of substrate + ADP and after the conversion of ADP → ATP. After 20,000 rads of irradiation to the head there was a transient diminution of mitochondrial respiratory control when glutamate was used as the substrate, but no changes were observed when succinate was the substrate. Irradiation with 10,000 rads had no effect upon respiratory control. The addition of NADH2 to irradiated mitochondria had no effect upon mitochondrial respiration. Irradiation of the brain with 20,000 rads failed to produce mitochondrial peroxidation or swelling, even in the presence of FeNH4(SO4)2 or ascorbate. The slight changes in respiratory control of brain mitochondria following irradiation is in marked contrast to the susceptibility of mitochondria from other organs. The comparative radioresistance of brain mitochondria may be the result of greatly diminished radiation-induced peroxidation of cerebral mitochondrial membranes.  相似文献   

15.
16.
A model conditional-suicide system to control genetically engineered microorganisms able to degrade substituted benzoates is reported. The system is based on two elements. One element consists of a fusion between the promoter of the Pseudomonas putida TOL plasmid-encoded meta-cleavage pathway operon (Pm) and the lacI gene encoding Lac repressor plus xylS, coding for the positive regulator of Pm. The other element carries a fusion between the Ptac promoter and the gef gene, which encodes a killing function. In the presence of XylS effectors, LacI protein is synthesized, preventing the expression of the killing function. In the absence of effectors, expression of the Ptac::gef cassette is no longer prevented and a high rate of cell killing is observed. The substitution of XylS for XylSthr45, a mutant regulator with altered effector specificity and increased affinity for benzoates, allows the control of populations able to degrade a wider range of benzoates at micromolar substrate concentrations. Given the wide effector specificity of the key regulators, the wild-type and mutant XylS proteins, the system should allow the control of populations able to metabolize benzoate; methyl-, dimethyl-, chloro-, dichloro-, ethyl-, and methoxybenzoates; salicylate; and methyl- and chlorosalicylates. A small population of genetically engineered microorganisms became Gef resistant; however, the mechanism of such survival remains unknown.  相似文献   

17.
The progression of toxic hepatitis is accompanied by the activation of oxidative processes in the liver associated with an enhancement of the mitochondrial respiratory chain activity and superoxide anion production (О2˙-). The purpose of this study was to examine our previously formulated assumption concerning the predominant contribution of the complex I to О2˙- production increase by the mitochondrial respiratory chain of hepatocytes in toxic hepatitis (Shiryaeva et al. Tsitologiia, 49, 125–132 2007). Toxic hepatitis was induced by a combined application of ССl4 and ethanol. Respiratory chain function analysis was executed with submitochondrial particles (SP) in the presence of specific inhibitors. It was shown that the rate of О2˙- production by SP of animals with toxic hepatitis, when NADH was delivered, was 2.5-fold higher as compared with the control. The rates of О2˙- production by SP of rats with toxic hepatitis in the presence of NADH or NADH + rotenone were similar. The О2˙- production rate by control SP in the presence of NADH + rotenone corresponded to the О2˙- production rate by toxic hepatitis SP when only NADH was delivered. When NADH + myxothiazol were delivered to the incubation system, О2˙- production by toxic hepatitis SP was 72% higher than for the control. Conversely, in the presence of antimycin A, the production of О2˙- by toxic hepatitis SP was lower compared to the control. Collectively, the presented data indicate that the О2˙- production rate was enhanced by the complex I of the hepatocyte mitochondrial respiratory chain in experimental toxic hepatitis. Complex III contribution to the production of О2˙- was insignificant. We assume that the increase in О2˙- production by the respiratory chain may be considered not only as the mechanism of pathology progression, but also as a compensatory mechanism preserving the electron transport function of the mitochondrial respiratory chain when complex I functioning is blocked in part.  相似文献   

18.
The Down syndrome critical region 1 (DSCR1) gene encodes a regulator of calcineurin 1 (RCAN1), which is overexpressed in the patients with Down syndrome. In this study, we found that the protein expression of RCAN1 was increased by the hydrogen peroxide (H2O2). The increase of RCAN1 expression by H2O2 was blocked by the treatment with anti-oxidants and inhibitors of mitogen-activated protein kinases (MAPKs), indicating that this increase was caused by the generation of reactive oxygen species and activation of MAPKs. In addition, we found that the phosphorylation of RCAN1 by H2O2 caused an increase of RCAN1 expression by increasing of the half-life of the protein. Our results provide the evidence that H2O2 acts as an important regulator in the control of RCAN1 protein expression through phosphorylation.  相似文献   

19.
20.
Stomatin-like protein 2 (SLP-2) is a mainly mitochondrial protein that is widely expressed and is highly conserved across evolution. We have previously shown that SLP-2 binds the mitochondrial lipid cardiolipin and interacts with prohibitin-1 and -2 to form specialized membrane microdomains in the mitochondrial inner membrane, which are associated with optimal mitochondrial respiration. To determine how SLP-2 functions, we performed bioenergetic analysis of primary T cells from T cell-selective Slp-2 knockout mice under conditions that forced energy production to come almost exclusively from oxidative phosphorylation. These cells had a phenotype characterized by increased uncoupled mitochondrial respiration and decreased mitochondrial membrane potential. Since formation of mitochondrial respiratory chain supercomplexes (RCS) may correlate with more efficient electron transfer during oxidative phosphorylation, we hypothesized that the defect in mitochondrial respiration in SLP-2-deficient T cells was due to deficient RCS formation. We found that in the absence of SLP-2, T cells had decreased levels and activities of complex I-III2 and I-III2-IV1-3 RCS but no defects in assembly of individual respiratory complexes. Impaired RCS formation in SLP-2-deficient T cells correlated with significantly delayed T cell proliferation in response to activation under conditions of limiting glycolysis. Altogether, our findings identify SLP-2 as a key regulator of the formation of RCS in vivo and show that these supercomplexes are required for optimal cell function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号