首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract: X-Adrenoleukodystrophy (X-ALD) is an inherited metabolic disorder of very long-chain fatty acids (VLCFA) with subsequent manifestation of neuroinflammatory disease. To investigate the possible role of proinflammatory cytokines in the X-ALD disease process, we examined the effect of cytokines on the metabolism of VLCFA in C6 glial cells expressing oligodendrocyte-like properties. C6 glial cells under serum-free conditions were treated with different combinations of cytokines (tumor necrosis factor-α, interleukin-1β, interferon-γ) or cytokine with bacterial lipopolysaccharide (LPS). Cytokine-treated C6 cells had higher concentrations of VLCFA, measured as percent weight and also as C26:0/C22:0 ratio, which were 300–400% as compared with the controls. We also found increased levels of C26:1 in cytokine-treated cells. The accumulation of VLCFA paralleled the decrease (35–55%) in peroxisomal β-oxidation activity and a 12- to 14-fold increase in the production of nitric oxide (NO). Individual cytokines were unable either to produce NO or to increase the levels of VLCFA in C6 cells. Inhibition of cytokine-induced NO production by l -N-methylarginine, an inhibitor of NO synthase (NOS), and N-acetylcysteine, an inhibitor of cytokine-mediated induction of inducible NOS, normalized the peroxisomal β-oxidation activity and the levels of VLCFA, suggesting a role for the proinflammatory cytokines and NO toxicity in the neuropathological changes associated with abnormal VLCFA metabolism (e.g., X-ALD). X-ALD is a peroxisomal disease having deficient oxidation of VLCFA, resulting in the excessive accumulation of VLCFA in all tissues but especially in brain. We observed greater increase in levels of VLCFA in the inflammatory region of ALD brain (in the demyelinating plaque and the area around the plaque) than in the normal-looking area away from the plaque; this also indicates that cytokines in the proinflammatory region may augment the VLCFA defect caused by the inherited abnormality in X-ALD brain. Although C6 glial cultured cells do not reflect the X-ALD model precisely, the observed relationship between the cytokine-induced inhibition of the oxidation of VLCFA, excessive accumulation of VLCFA, and excessive production of NO and their normalization by inhibitors of NOS in C6 glial cells suggests that NO-mediated toxicity may play a role in VLCFA-associated neuroinflammatory diseases (e.g., X-ALD).  相似文献   

2.
Free Fatty Acids in the Rat Brain in Moderate and Severe Hypoxia   总被引:20,自引:16,他引:4  
Abstract: The effects of mild, moderate, and severe hypoxia on cerebral cortical concentrations of free fatty acids (FFAs) were investigated in artificially ventilated rats under nitrous oxide anaesthesia. No change occurred during either mild (arterial Po2 35–40 mm Hg) or moderate (Po2 25–30 mm Hg) hypoxia. The effects of severe hypoxia (Po2 about 20 mm Hg) combined with hypotension (mean arterial blood pressure 80–85 mm Hg) varied with the EEG pattern and the tissue energy state. Thus, a major increase in total as well as in individual FFAs occurred first when EEG was severely depressed (almost isoelectric) and energy homeostasis disrupted. On a relative basis the greatest change occurred in free arachidonic acid. It is concluded that hypoxia is associated with an increase in the concentrations of FFAs in brain tissue, provided that tissue oxygen deficiency is severe enough to cause tissue energy failure. However, an increase in FFAs does not invariably accompany minor reductions in the adenylate energy charge (EC) of the tissue.  相似文献   

3.
采用梯度离心和放射性同位素等方法从鼠脑中分离得到髓磷脂、突触囊、轻突触体、重突触体、线粒体6个亚细胞组分。分别测定了各亚细胞中硒-75、谷胱甘肽过氧化物酶和不饱和脂肪酸的含量,结果表明这些成分在鼠脑亚细胞中的分布呈现明显的相关性,同时首次在突触囊、线粒体和微粒体中检测到三种不同的谷胱甘肽过氧化物酶的活性峰,其中之一可能是红细胞谷胱甘肽过氧化物酶(EC1.11.1.9).还就机体的自我保护机制和硒在脑组织中的重要作用进行了讨论。  相似文献   

4.
5.
Methods to investigate the in vivo effects and release of neuroactive substances include cortical cups, push-pull cannulae, chemitrodes, and dialytrodes. Critical evaluation of these procedures is necessary in order to interpret related results and to select the most suitable devices for further studies. Recent improvements in the dialytrode include structural modifications and the use of a small, permeable membrane constructed of thin polyester. The dialytrode system and its diffusion rates have been characterized with in vitro studies. In vivo long-term experiments in awake cats have been conducted to test injection rates, diffusion of [14C]urea, temporal variability, pressure factors, and other experimental variables. Using dialytrodes we have measured the normal profile of amino acids present in different cerebral structures and their possible correlations.  相似文献   

6.
Abstract: Polyunsaturated fatty acids are needed for normal neonatal brain development, but the degree of conversion of the 18-carbon polyunsaturated fatty acid precursors consumed in the diet to their respective 20-and 22-carbon polyunsaturates accumulating in the brain is not well known. In the present study, in vivo 13C nuclear magnetic resonance spectroscopy was used to monitor noninvasively the brain uptake and metabolism of a mixture of uniformly 13C-enriched 16-and 18-carbon polyunsaturated fatty acid methyl esters injected intragastrically into neonatal rats. In vivo NMR spectra of the rat brain at postnatal days 10 and 17 had larger fatty acid signals than in uninjected controls, but changes in levels of individual fatty acids could not be distinguished. One day after injection of the U-13C-polyunsaturated fatty acid mixture, 13C enrichment (measured by isotope ratio mass spectrometry) was similar in brain phospholipids, free fatty acids, free cholesterol, and brain aqueous extract; 13C enrichment remained high in the phospholipids and cholesterol for 15 days. 13C enrichment was similar in the main fatty acids of the brain within 1 day of injection but 15 days later had declined in all except arachidonic acid while continuing to increase in docosahexaenoic acid. These changes in 13C enrichment in brain fatty acids paralleled the developmental changes in brain fatty acid composition. We conclude that, in the neonatal rat brain, dietary 16-and 18-carbon polyunsaturates are not only elongated and desaturated but are also utilized for de novo synthesis of long-chain saturated and monounsaturated fatty acids and cholesterol.  相似文献   

7.
Significant amounts of policosanol and very long-chain fatty acids (VLFAs) ranging in carbon length from 22 to 30 were found in the lipophilic fraction obtained from potato pulp fermented with Rhizopus oryzae. It is believed that these compounds would have originally been present as suberin-related compounds, but not as wax, in the periderm of potato tubers and concentrated into potato pulp during the process of starch production. Moreover, the policosanol and VLFAs extracted from potato pulp with organic solvents were found to have increased after fermentation.  相似文献   

8.
大鼠糖尿病溃疡动物模型的初步研究   总被引:7,自引:0,他引:7  
目的构建大鼠糖尿病溃疡动物模型,观察评价该模型的临床及病理特点。方法利用磁片循环压迫的方法,构建大鼠糖尿病溃疡动物模型,并从整体,组织和生化三个层次对糖尿病溃疡进行了研究。结果构建出了一个可以复制的糖尿病溃疡动物模型,该模型具有组织坏死、白细胞聚集以及高浓度晚期糖化终末产物等特征。结论利用缺血再灌注法构建了大鼠糖尿病溃疡动物模型。其病理改变与人极为相似,是一种很好的用于糖尿病溃疡发病机制和治疗研究的动物模型。  相似文献   

9.
Changes in brain amino acid uptake and metabolism have been proposed as a possible etiological factor in hepatic encephalopathy. By use of a brain dialysis technique (a thin tube implanted in the brain of the living animal), the extracellular amino acid concentrations in the striatum of portacaval (PC)-shunted and sham-operated rats were measured. Leucine, phenylalanine, methionine, and glutamine were increased two- to sixfold in the PC-shunted rats, whilst no changes were seen for GABA, valine, glutamate, or isoleucine, confirming previous reports. Aspartate levels were 350% higher in the PC-shunted rats, and this rise, as well as that of phenylalanine, was significantly correlated with the lower motor activity observed in the PC-shunted rats, suggesting a possible importance of these amino acids in the etiology of hepatic encephalopathy. The amino acid concentrations measured in whole blood demonstrated the well-known pattern of low levels of branched-chain amino acids and increased concentrations of phenylalanine, glutamine, and histidine.  相似文献   

10.
Effects of Free Fatty Acids on Synaptosomal Amino Acid Uptake Systems   总被引:3,自引:11,他引:3  
Abstract: The Na+-dependent synaptosomal uptakes of proline, aspartic acid, glutamic acid, and γ-aminobutyric acid were strongly inhibited by monounsaturated fatty acids. With oleic acid, half-maximal inhibition was observed at about 15 μM. The Na+-independent uptakes of leucine, phenylalanine, histidine, and valine were less sensitive to inhibition by the unsaturated fatty acids. In contrast, the uptakes of all of these amino acids were unaffected by saturated fatty acids. The inhibition of proline uptake (and that of the other Na+-dependent amino acids) by oleic acid was overcome by the addition of serum albumin and the data presented further indicate that the previously reported stimulation of proline uptake by albumin could be related to its fatty acid binding properties.  相似文献   

11.
The quantitative relationship between phosphoinositides and free fatty acids (FFAs) in brain ischemia was studied by measuring contents of individual fatty acids in phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylinositol 4-phosphate (PIP), phosphatidylinositol (PI), phosphatidic acid (PA), diacylglycerol (DAG), and the FFA pool. Various periods of complete ischemia (1, 3, 10, and 30 min) were produced by decapitation. Ischemia of 1-3 min caused rapid decreases in PIP2 and PIP content together with preferential production of stearic and arachidonic acids in the DAG and FFA pools. The decrement in levels of these fatty acid residues in polyphosphoinositides was sufficient to account for their increment in levels in the enlarged DAG and FFA pools. After 10 min of ischemia, levels of PIP2, PIP, and DAG approached plateau values, but levels of all FFAs continued to increase. The increases in content of DAG and FFAs at later ischemic periods could not be accounted for by the decreases in content of PIP2 and PIP, PI and PA levels showed only transient and subtle changes. These results indicate that, at the onset of ischemia, phosphodiesteric cleavage of PIP2 and PIP and subsequent deacylation by lipases are primarily responsible for the preferential increase in levels of free stearic and arachidonic acids and that, later, hydrolysis of other phospholipids plays a major role in the continuous accumulation of FFAs.  相似文献   

12.
Abstract: A variety of fatty acids including the cis -polyunsaturated very-long-chain fatty acids (VLCFA) (>22 carbon atoms) common in retina, spermatozoa, and brain were examined for their ability to activate protein kinase C (PKC) purified from rat brain. Arachidonic [20:4(n-6)], eicosapentaenoic [20:5(n-3)], and docosahexaenoic [22:6(n- 3)] acids as well as the VLCFA dotriacontatetraenoic [32:4(n-6)] and tetratriacontahexaenoic [34:6(n-3)] were equally capable of activating PKC in vitro with maximal activity being between 25 and 50 μ M. The phorbol ester 12- O -tetradecanoylphorbol 13-acetate further enhanced the in vitro activation of PKC when added to the protein kinase assay system with the fatty acids. The fully saturated arachidic acid (20:0) was inactive in both assay systems. The potential significance of the in vitro activation of PKC by the VLCFA is discussed.  相似文献   

13.
衰老对大鼠脑区氨基酸水平的影响   总被引:3,自引:1,他引:3  
本文测定了正常青龄组(3月龄)和老龄组(20月龄)大鼠不同脑区(皮层、小脑海马、纹状体和下丘脑)谷氨酸、天门冬氨酸、甘氨酸、r-氨基丁酸和牛磺酸的含量。结果表明:在衰老过程中大鼠某些脑区谷氨酸、天门冬氨酸、甘氨酸和牛磺酸水平显著降低;而纹状体γ-氨基丁酸含量则显著升高。  相似文献   

14.
Abstract: Liver failure and coma are serious complications of Jejunoileal bypass (JIB) in man. Rats underwent either a 90–95% JIB or a sham operation. Six weeks later all animals were sacrificed, and plasma and brain amino acids were determined. In the plasma of rats with JIB compared with sham operation, the concentrations of valine, leucine, isoleucine, lysine, tryptophan, and tyrosine were significantly lower, while in the brain, phenylalanine, tyrosine, histidine, and glutamine were significantly higher. These changes in the brain are similar to those resulting from portalsystemic shunting in the rat.  相似文献   

15.
16.
Abstract: White matter and active plaque tissue from adrenoleukodystrophy (ALD) patients were analysed for lipid class and fatty acid compositions and the results compared with white matter from normal brain. ALD white matter was characterized by increased levels of cholesteryl esters and decreased levels of phosphatidylethanola- mine, including phosphatidylethanolamine plasmalogen, in comparison with normal brain white matter. In addition to even higher levels of cholesteryl esters, ALD plaque tissue had reduced levels of cerebrosides as well as phosphati-dylethanolamines. The loss of phosphatidylethanolamine plasmalogen is indicative of early demyelination. Total lipid from ALD white matter and ALD plaque tissue contained nearly five times and seven times, respectively, more 26:0 than total lipid from normal brain white matter. The 26:0 in ALD white matter was elevated in all lipid classes except phosphatidylinositol, but was located mainly in cerebrosides, phosphatidylcholine, sphingomyelin, and sulfatides. Most of the 26:0 in ALD plaque tissue was present in cholesteryl esters, followed by phosphatidylcholine and sphingomyelin, with reduced amounts in cerebrosides as compared with ALD white matter. The results are consistent with an initial accumulation of very-long-chain fatty acids in ALD white matter, primarily in sphingolipids and phosphatidylcholine, and subsequent accumulation of very-long- chain fatty acids in cholesteryl esters during demyelination. In addition, it was notable that the sphingolipids, especially sphingomyelin in ALD brain, had decreased levels of 24:1 and increased levels of 18:0, as well as increased levels of very-long-chain fatty acids. The extent to which the data shed light on mechanisms of demyelination in ALD is discussed.  相似文献   

17.
Wistar rats were fed for three generations with a semisynthetic diet containing either 1.5% sunflower oil (940 mg% of C18:2n-6, 6 mg% of C18:3n-3) or 1.9% soya oil (940 mg% of C18:2n-6, 130 mg% of C18:3n-3). At 60 days of age, the male offspring of the third generation were killed. The fatty acyl composition of isolated capillaries and choroid plexus was determined. The major changes noted in the fatty acid profile of isolated capillaries were a reduction (threefold) in the level of docosahexaenoic acid and, consequently, a fourfold increase in docosapentaenoic acid in sunflower oil-fed animals. The total percentage of polyunsaturated fatty acids was close to that in the soya oil-fed rats, but the ratio of n-3/n-6 fatty acids was reduced by threefold. In the choroid plexus, the C22:6n-3 content was also reduced, but by 2.6-fold, whereas the C22:5n-6 content was increased by 2.3-fold and the ratio of n-3/n-6 fatty acids was reduced by 2.4-fold. When the diet of sunflower oil-fed rats was replaced with a diet containing soya oil at 60 days of age, the recovery in content of n-6 and n-3 fatty acids started immediately after diet substitution; it progressed slowly to reach normal values after 2 months for C22:6n-5 and 2.5 months for C22:6n-3. The recovery in altered fatty acids of choroid plexus was also immediate and very fast. Recovery in content of C22:5n-6 and C22:6n-3 was complete by 46 days after diet substitution.  相似文献   

18.
The etiologic relationship between disturbances in metabolism of amino acids and amines and hepatic coma was investigated by examining the effects of diets containing various mixtures of amino acids on brain amine metabolism in rats with a portacaval shunt, using a method for simultaneous analysis of amino acids and amines. Rats with a portacaval shunt were fed on four different amino acid compositions with increased amounts of various amino acids suspected to be etiologically related to hepatic coma, such as methionine, phenylalanine, tyrosine, and tryptophan. The animals were killed 4 weeks after operation. During the experimental period, these animals did not become comatose, but exhibited various behavioral abnormalities. Marked increase in the plasma and brain levels of the augmented amino acids, especially methionine and tyrosine, were observed in rats with a portacaval shunt. Brain noradrenaline, dopamine, and serotonin levels were significantly decreased when the brain tyrosine level was increased. These results indicate that in rats with a portacaval shunt the dietary levels of amino acids greatly influence the brain levels of both amino acids and transmitter amines.  相似文献   

19.
Levels of phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylinositol 4-phosphate (PIP), phosphatidylinositol (PI), phosphatidic acid, diacylglycerol (DAG), triacylglycerol (TAG), and free fatty acids (FFAs), as well as their fatty acid composition, were determined in rat forebrain during ischemia and postischemic recirculation. Cerebral energy state and electroencephalograms (EEGs) were also studied. Fifteen minutes of ischemia resulted in a decrease in PIP2 and PIP contents but not in PI content, concurrent with an enlargement of the FFA and DAG pools. The latter were enriched in stearate and arachidonate. Prolongation of ischemia did not produce further changes in content of any of the inositol phospholipids, but the increase in levels of FFAs and DAG continued. At the end of 45 min of ischemia, levels of both PIP2 and PIP decreased by 45-50%, and the total phosphoinositide content (PIP2 + PIP + PI) decreased by 21%, whereas levels of FFAs and DAG increased to 14- and 3.6-fold of control levels, respectively. During ischemia, the TAG-palmitate level decreased, but the TAG-arachidonate level increased; the tissue energy state deteriorated severely; and the EEG was suppressed. A 30-min recirculation period after 15 or 45 min of ischemia led to increases in PIP2, PIP, and total phosphoinositide contents, whereas levels of FFAs and DAG promptly decreased toward control values. The TAG-arachidonate level peaked and the TAG-palmitate level returned to a low control value during early recirculation. The ischemic changes in tissue lipids were completely reversed within 3 h of recirculation after both periods of ischemia. Adenylates were fully phosphorylated with as little as 30 min of reflow. The EEG activity partially recovered during reflow after 15 min of ischemia, whereas it remained depressed after prolonged ischemia. Thus, phosphodiesteric cleavage of PIP2 and PIP followed by deacylation of DAG is likely to contribute to the production of FFAs in early ischemia. Deacylation of undetermined lipids plays a role for the increment in levels of FFAs in the later period of ischemia. The rapid postischemic increase in levels of PIP2 and PIP indicates active synthesis not only from existing PI, but probably also by means of accumulated FFAs and DAG. These results indicate that the impaired resynthesis of inositol phospholipids cannot be a cause of the poor EEG activity after prolonged ischemia. Degradation and resynthesis of polyphosphoinositides and formation of TAG-arachidonate may be important for modulation of free arachidonic acid levels in the brain during temporary ischemia.  相似文献   

20.
The concentration of most amino acids was higher in the brains of 19- and 21-day rat fetuses than in their respective mothers. After an intraperitoneal load of tryptophan to the mother, the intracerebral concentration of several amino acids (including leucine) decreased not only in the mothers, but also in their fetuses. The in vitro incorporation of pHJleucine into proteins in brain postmitochondrial supernatant fractions was enhanced in both the mothers and fetuses after tryptophan administration, but this effect disappeared when protein synthesis was calculated by using specific activities corrected for the amount of unlabeled leucine in the preparation. By this criterion, protein synthesis activity appeared similar in the brains of 19- and 21-day pregnant rats but was higher in their fetuses, especially in the 21-day subjects. Thus, protein synthesis in the brain was not altered by marked changes in the amino acid pool and more profound and prolonged metabolic disturbances must occur to cause permanent damage in the developing brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号