首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Accumulation of the neurotoxic amyloid β-peptide (Aβ) in the brain is a hallmark of Alzheimer’s disease (AD). Several synthetic Aβ peptides have been used to study the mechanisms of toxicity. Here, we sought to establish comparability between two commonly used Aβ peptides Aβ1-42 and Aβ25-35 on an in vitro model of Aβ toxicity. For this purpose we used organotypic slice cultures of rat hippocampus and observed that both Aβ peptides caused similar toxic effects regarding to propidium iodide uptake and caspase-3 activation. In addition, we also did not observe any effect of both peptides on Akt and PTEN phosphorylation; otherwise the phosphorylation of GSK-3β was increased. Although further studies are necessary for understanding mechanisms underlying Aβ peptide toxicity, our results provide strong evidence that Aβ1-42 and the Aβ25-35 peptides induce neural injury in a similar pattern and that Aβ25-35 is a convenient tool for the investigation of neurotoxic mechanisms involved in AD.  相似文献   

2.
In this study we examined the effect of the statin atorvastatin on the Akt/GSK-3beta pathway. Our findings indicate that atorvastatin treatment for 15 days inhibited pressure overload-induced cardiac hypertrophy and prevented nuclear translocation of GATA4 and c-Jun and AP-1 DNA-binding activity. In addition, atorvastatin treatment prevented the increase in the phosphorylation of Akt and GSK-3beta caused by cardiac hypertrophy, and this effect correlated with an increase in protein levels of phosphatase and tensin homolog on chromosome 10 (PTEN), which negatively regulates the phosphoinositide-3 kinase/Akt pathway. To test whether the inhibitory effect of atorvastatin on Akt and GSK-3beta phosphorylation was direct we performed in vitro studies using embryonic rat heart-derived H9c2 cells, human AC16 cardiomyoblasts and neonatal rat cardiomyocytes. Preincubation of cells with atorvastatin prevented Akt/GSK-3beta phosphorylation by different hypertrophic stimuli without affecting PTEN protein levels. However, atorvastatin prevented endogenous reactive oxygen species (ROS) generation and PTEN oxidation, a process that correlates with its inactivation, suggesting that atorvastatin prevents ROS-induced PTEN inactivation in acute treatments. These findings point to a new potential anti-hypertrophic effect of statins, which can prevent activation of the Akt/GSK-3beta hypertrophic pathway by modulating PTEN activation by different mechanisms in chronic and acute treatments.  相似文献   

3.
Jiang H  Guo W  Liang X  Rao Y 《Cell》2005,120(1):123-135
Axon-dendrite polarity is a cardinal feature of neuronal morphology essential for information flow. Here we report a differential distribution of GSK-3beta activity in the axon versus the dendrites. A constitutively active GSK-3beta mutant inhibited axon formation, whereas multiple axons formed from a single neuron when GSK-3beta activity was reduced by pharmacological inhibitors, a peptide inhibitor, or siRNAs. An active mechanism for maintaining neuronal polarity was revealed by the conversion of preexisting dendrites into axons upon GSK-3 inhibition. Biochemical and functional data show that the Akt kinase and the PTEN phosphatase are upstream of GSK-3beta in determining neuronal polarity. Our results demonstrate that there are active mechanisms for maintaining as well as establishing neuronal polarity, indicate that GSK-3beta relays signaling from Akt and PTEN to play critical roles in neuronal polarity, and suggest that application of GSK-3beta inhibitors can be a novel approach to promote generation of new axons after neural injuries.  相似文献   

4.
Catecholamines, acting through adrenergic receptors, play an important role in modulating the effects of insulin on glucose metabolism. Insulin activation of glycogen synthesis is mediated in part by the inhibitory phosphorylation of glycogen synthase kinase-3 (GSK-3). In this study, catecholamine regulation of GSK-3beta was investigated in Rat-1 fibroblasts stably expressing the alpha1A-adrenergic receptor. Treatment of these cells with either insulin or phenylephrine (PE), an alpha1-adrenergic receptor agonist, induced Ser-9 phosphorylation of GSK-3beta and inhibited GSK-3beta activity. Insulin-induced GSK-3beta phosphorylation is mediated by the phosphatidylinositol 3-kinase/Akt signaling pathway. PE treatment does not activate phosphatidylinositol 3-kinase or Akt (Ballou, L. M., Cross, M. E., Huang, S., McReynolds, E. M., Zhang, B. X., and Lin, R. Z. (2000) J. Biol. Chem. 275, 4803-4809), but instead inhibits insulin-induced Akt activation and GSK-3beta phosphorylation. Experiments using protein kinase C (PKC) inhibitors suggest that phorbol ester-sensitive novel PKC and G? 6983-sensitive atypical PKC isoforms are involved in the PE-induced phosphorylation of GSK-3beta. Indeed, PE treatment of Rat-1 cells increased the activity of atypical PKCzeta, and expression of PKCzeta in COS-7 cells stimulated GSK-3beta Ser-9 phosphorylation. In addition, PE-induced GSK-3beta phosphorylation was reduced in Rat-1 cells treated with a cell-permeable PKCzeta pseudosubstrate peptide inhibitor. These results suggest that the alpha1A-adrenergic receptor regulates GSK-3beta through two signaling pathways. One pathway inhibits insulin-induced GSK-3beta phosphorylation by blocking insulin activation of Akt. The second pathway stimulates Ser-9 phosphorylation of GSK-3beta, probably via PKC.  相似文献   

5.
Tumor necrosis factor-alpha (TNF-alpha) mediated attenuation of insulin signaling pathway is an important cause in several disorders like obesity, obesity linked diabetes mellitus. TNF-alpha actions vary depending upon concentration and time of exposure in various cells. In the present study, the effects of long-term TNF-alpha (1 ng/ml) exposure on the components of insulin signaling pathway in HepG2 and HepG2 cells overexpressing constitutively active Akt1/PKB-alpha (HepG2-CA-Akt/PKB) have been investigated. In parental HepG2 cells, TNF-alpha treatment for 24 h reduced the phosphorylation of Akt1/PKB-alpha and GSK-3beta and under these conditions cells also showed reduced insulin responsiveness in terms of Akt1/PKB-alpha and GSK-3beta phosphorylation. TNF-alpha pre-incubated HepG2-CA-Akt/PKB cells showed lower reduction in Akt1/PKB-alpha and GSK-3beta phosphorylation and insulin responsiveness after 24 h as compared to parental HepG2 cells. We report that the long-term TNF-alpha pre-incubation in both parental HepG2 and HepG2-CA-Akt/PKB-alpha cells leads to the reduction in the levels of IRS-1 without altering the levels of IRS-2. In order to understand the reason for the differential insulin resistance in both the cell types, the effect of long-term TNF-alpha treatment on the proteins upstream to Akt/PKB was investigated. TNF-alpha pre-incubation also showed reduced insulin-stimulated Tyr phosphorylation of insulin receptor (IR-beta) in both the cell types, moreover hyperphosphorylation of IRS-1 at Ser 312 residue was observed in TNF-alpha pre-incubated cells. As hyperphosphorylation of IRS-1 at Ser 312 can induce its degradation, it is possible that reduced insulin responsiveness after long-term TNF-alpha pre-incubation observed in this study is due to the decrease in IRS-1 levels.  相似文献   

6.
7.
In this study we examined the effect of the statin atorvastatin on the Akt/GSK-3β pathway. Our findings indicate that atorvastatin treatment for 15 days inhibited pressure overload-induced cardiac hypertrophy and prevented nuclear translocation of GATA4 and c-Jun and AP-1 DNA-binding activity. In addition, atorvastatin treatment prevented the increase in the phosphorylation of Akt and GSK-3β caused by cardiac hypertrophy, and this effect correlated with an increase in protein levels of phosphatase and tensin homolog on chromosome 10 (PTEN), which negatively regulates the phosphoinositide-3 kinase/Akt pathway. To test whether the inhibitory effect of atorvastatin on Akt and GSK-3β phosphorylation was direct we performed in vitro studies using embryonic rat heart-derived H9c2 cells, human AC16 cardiomyoblasts and neonatal rat cardiomyocytes. Preincubation of cells with atorvastatin prevented Akt/GSK-3β phosphorylation by different hypertrophic stimuli without affecting PTEN protein levels. However, atorvastatin prevented endogenous reactive oxygen species (ROS) generation and PTEN oxidation, a process that correlates with its inactivation, suggesting that atorvastatin prevents ROS-induced PTEN inactivation in acute treatments. These findings point to a new potential anti-hypertrophic effect of statins, which can prevent activation of the Akt/GSK-3β hypertrophic pathway by modulating PTEN activation by different mechanisms in chronic and acute treatments.  相似文献   

8.
AimsThe progressive accumulation of beta-amyloid peptide (Aβ), in the form of senile plaques, has been recognized as one of the major causes of Alzheimer's disease (AD) pathology. Increased production of Aβ and the aggregation of Aβ to oligomers have been reported to trigger neurotoxicity, oxidative damage and inflammation. Furthermore, Aβ-induced tau hyperphosphorylation and neurotoxicity are downstream of Aβ. Therefore, we studied the possible neuroprotective effects of caffeic acid against Aβ-induced toxicity.Main methodsTreatment of PC12 cells with 10 μM Aβ (25–35) for 24 h significantly decreased the cell viability; this was accompanied by an increase in intracellular calcium levels and tau phosphorylation with GSK-3β (glycogen synthase kinase-3β) activation (phosphorylation).Key findingsHowever, pretreatment of the PC12 cells with 10 and 20 μg/ml of caffeic acid, for 1 h prior to Aβ, significantly reversed the Aβ-induced neurotoxicity by attenuating the elevation of intracellular calcium levels and tau phosphorylation.SignificanceTaken together, these results suggest that caffeic acid protected the PC12 cells against Aβ-induced toxicity. In addition, the neuroprotective mechanisms of caffeic acid against Aβ attenuated intracellular calcium influx and decreased tau phosphorylation by the reduction of GSK-3β activation.  相似文献   

9.
Prostaglandin F2alpha (PGF2alpha) increases reactive oxygen species (ROS) and induces vascular smooth muscle cell (VSMC) hypertrophy by largely unknown mechanism(s). To investigate the signaling events governing PGF2alpha-induced VSMC hypertrophy we examined the ability of the PGF2alpha analog, fluprostenol to elicit phosphorylation of Akt, the mammalian target of rapamycin (mTOR), ribosomal protein S6 kinase (p70S6k), glycogen synthase kinase-3beta (GSK-3beta), phosphatase and tensin homolog (PTEN), extracellular signal-regulated kinase 1/2 (ERK1/2) and Jun N-terminal kinase (JNK) in growth arrested A7r5 VSMC. Fluprostenol-induced hypertrophy was associated with increased ROS, mTOR translocation from the nucleus to the cytoplasm, along with Akt, mTOR, GSK-3beta, PTEN and ERK1/2 but not JNK phosphorylation. Whereas inhibition of phosphatidylinositol 3-kinase (PI3K) by LY-294002 blocked fluprostenol-induced changes in total protein content, pre-treatment with rapamycin or with the MEK1/2 inhibitor U0126 did not. Taken together, these findings suggest that fluprostenol-induced changes in A7r5 hypertrophy involve mTOR translocation and occur through PI3K-dependent mechanisms.  相似文献   

10.
High-fat feeding (HFF) is a well-accepted model for nutritionally-induced insulin resistance. The purpose of this investigation was to assess the metabolic responses of female lean Zucker rats provided regular chow (4% fat) or a high-fat chow (50% fat) for 15 wk. HFF rats spontaneously adjusted food intake so that daily caloric intake matched that of chow-fed (CF) controls. HFF animals consumed more (P < 0.05) calories from fat (31.9 +/- 1.2 vs. 2.4 +/- 0.2 kcal/day) and had significantly greater final body weights (280 +/- 10 vs. 250 +/- 5 g) and total visceral fat (24 +/- 3 vs. 10 +/- 1 g). Fasting plasma insulin was 2.3-fold elevated in HFF rats. Glucose tolerance (58%) and whole body insulin sensitivity (75%) were markedly impaired in HFF animals. In HFF plantaris muscle, in vivo insulin receptor beta-subunit (IR-beta) and insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation and phosphorylation of Akt Ser473 and glycogen synthase kinase-3beta (GSK-3beta) Ser9, relative to circulating insulin levels, were decreased by 40-59%. In vitro insulin-stimulated glucose transport in HFF soleus was decreased by 54%, as were IRS-1 tyrosine phosphorylation (26%) and phosphorylation of Akt Ser473 (38%) and GSK-3beta Ser9 (25%), the latter indicative of GSK-3 overactivity. GSK-3 inhibition in HFF soleus using CT98014 increased insulin-stimulated glucose transport (28%), IRS-1 tyrosine phosphorylation (28%) and phosphorylation of Akt Ser473 (38%) and GSK-3beta Ser9 (48%). In summary, the female lean Zucker rat fed a high-fat diet represents an isocaloric model of nutritionally-induced insulin resistance associated with moderate visceral fat gain, hyperinsulinemia, and impairments of skeletal muscle insulin-signaling functionality, including GSK-3beta overactivity.  相似文献   

11.
The effect of Aβ25-35 peptide, in its fibrillar and non-fibrillar forms, on ganglioside expression in organotypic hippocampal slice cultures was investigated. Gangliosides were endogenously labeled with D-[1-C14] galactose and results showed that Aβ25-35 affected ganglioside expression, depending on the peptide aggregation state, that is, fibrillar Aβ25-35 caused an increase in GM3 labeling and a reduction in GD1b labeling, whereas the non-fibrillar form was able to enhance GM1 expression. Interestingly, GM1 exhibited a neuroprotective effect in this organotypic model, since pre-treatment of the hippocampal slices with GM1 10 μM was able to prevent the toxicity triggered by the fibrillar Aβ25-35, when measured by propidium iodide uptake protocol. With the purpose of further investigating a possible mechanism of action, we analyzed the effect of GM1 treatment (1, 6, 12 and 24 h) upon the Aβ-induced alterations on GSK3β dephosphorylation/activation state. Results demonstrated an important effect after 24-h incubation, with GM1 preventing the Aβ-induced dephosphorylation (activation) of GSK3β, a signaling pathway involved in apoptosis triggering and neuronal death in models of Alzheimer’s disease. Taken together, present results provide a new and important support for ganglioside participation in development of Alzheimer’s disease experimental models and suggest a protective role for GM1 in Aβ-induced toxicity. This may be useful for designing new therapeutic strategies for Alzheimer’s treatment.  相似文献   

12.
As a traditional therapeutic method, electroacupuncture (EA) has been adopted as an alternative therapy for stroke recovery. Here, we aimed to evaluate whether EA therapy at points of Quchi (LI11) and Zusanli (ST36) alleviated neuronal apoptosis by PTEN signaling pathway after ischemic stroke. A total of 72 male Sprague–Dawley rats were randomized into three groups, including sham group, MCAO group, and EA group. EA was initiated after 24 h of reperfusion for 3 consecutive days. At 72 h following ischemia/reperfusion, neurological deficits, infarct volumes, and TUNEL staining were evaluated and the PTEN pathway-related proteins together with apoptosis-related proteins were detected. The results indicated that EA treatment significantly decreased cerebral infarct volume, neurological deficits and alleviated proportion of apoptotic cells in cerebral ischemic rats. Furthermore, EA significantly up-regulated the phosphorylation levels of PDK1, Akt(Thr308), GSK-3β, and down-regulated the phosphorylation levels of PTEN, Akt(Ser473) in the peri-infarct cortex. EA treatment significantly reduced the up-regulation of caspase-3, cleaved-caspase-3, Bim, and reversed the reduction of Bcl-2 induced by the ischemic stroke. These findings suggest that EA treatment at points of Quchi (LI11)- and Zusanli (ST36)-induced neuroprotection might involve inhibition of apoptosis via PTEN pathway.  相似文献   

13.
14.
Zinc is an essential catalytic and structural element of many proteins and a signaling messenger that is released by neuronal activity at many central excitatory synapses. Excessive synaptic release of zinc followed by entry into vulnerable neurons contributes severe neuronal cell death. We have previously observed that zinc-induced neuronal cell death is accompanied by Akt activation in embryonic hippocampal progenitor (H19-7) cells. In the present study, we examined the role of Akt activation and its downstream signaling events during extracellular zinc-induced neuronal cell death. Treatment of H19-7 cells with 10 microM of zinc plus zinc ionophore, pyrithione, led to increased phosphorylation of Akt at Ser-473/Thr-308 and increased Akt kinase activity. Zinc-induced Akt activation was accompanied by increased Tyr-phosphorylated GSK-3beta as well as increased GSK-3beta kinase activity. Transient overexpression of a kinase-deficient Akt mutant remarkably suppressed GSK-3beta activation and cell death. Furthermore, tau phosphorylation, but not the degradation of beta-catenin, was dependent upon zinc-induced GSK-3beta activation and contributed to cell death. The current data suggest that, following exposure to zinc, the sequential activation of Akt and GSK-3beta plays an important role directing hippocampal neural precursor cell death.  相似文献   

15.
16.
Alveolar macrophages represent critical effector cells of innate immunity to infectious challenge in the lungs and recognize bacterial pathogens through pattern recognition receptors such as Toll-like receptors (TLRs). Phosphatidylinositol 3-kinase (PI3K) regulates TLR-mediated cytokine release, but whether HIV infection influences PI3K signaling pathway and alters TLR4-mediated macrophage response has not been investigated. In the current study, surface TLR4 expression were similar but TLR4 activation (lipid A, 10 microg/ml) resulted in lower TNF-alpha release by HIV+ human macrophages compared with healthy cells. Pharmacological inhibition of PI3K (LY294002) normalized TNF-alpha release in HIV+ macrophages and augments ERK1/2 mitogen-activated protein kinase phosphorylation in response to lipid A. Importantly, HIV+ macrophages demonstrated increased constitutive phosphatidylinositol 3,4,5-trisphosphate formation, increased phosphorylation of downstream signaling molecules Akt and glycogen synthase kinase-3beta (GSK-3beta) at Ser9, and reduced PTEN protein expression. As a functional assessment of GSK-3beta phosphorylation, TLR4-mediated interleukin-10 release was significantly higher in HIV+ human macrophages compared with healthy cells. Incubation of human macrophages with exogenous HIV Nef protein induced phosphorylation of Akt and GSK-3beta (whereas phosphorylation was reduced by PI3K inhibition) and promoted interleukin-10 release. Taken together, these data demonstrate increased constitutive activation of the PI3K signaling pathway in HIV+ macrophages and support the concept that PI3K activation (by HIV proteins such as Nef) may contribute to reduced TLR4-mediated TNF-alpha release in HIV+ human macrophages and impair host cell response to infectious challenge.  相似文献   

17.
Shin SY  Choi BH  Ko J  Kim SH  Kim YS  Lee YH 《Cellular signalling》2006,18(11):1876-1886
Clozapine (CZP), a dibenzodiazepine derivative with a piperazinyl side chain, is in clinical use as an antipsychotic drug. This study investigated the effect of CZP on the modulation of the PI3K/Akt/GSK-3beta pathway in PTEN-negative U-87MG glioblastoma cells. Treatment with CZP rapidly inhibited the basal and EGF-induced phosphorylation of Akt. The inhibition of Akt resulted in the dephosphorylation of GSK-3beta and increased GSK-3beta kinase activity. A voltage-sensitive Ca(2+) channel blocker and calmodulin (CaM) antagonists inhibited Akt phosphorylation, whereas elevation of the intracellular Ca(2+) concentration prevented CZP-induced dephosphorylation of Akt and GSK-3beta, suggesting that Ca(2+)/CaM participates in the inhibition of Akt by CZP in U-87MG cells. In addition, similar to LY294002, CZP arrested cell cycle progression at G0/G1 phase, which was accompanied by decreased expression of cyclin D1. The reduction in the cyclin D1 level induced by CZP was abrogated by the inhibition of GSK-3beta, the inhibition of proteasome-dependent proteolysis, or an increase in the intracellular Ca(2+) concentration. These results suggest that the antipsychotic drug CZP modulates the PI3K/Akt/GSK-3beta pathway by counteracting Ca(2+)/CaM in PTEN-negative U-87MG glioblastoma cells.  相似文献   

18.

Background

The present study examines the hypothesis that Akt (protein kinase B)/mTOR (mammalian target of rapamycin) signaling is increased in hypertrophic and decreased in atrophic denervated muscle. Protein expression and phosphorylation of Akt1, Akt2, glycogen synthase kinase-3beta (GSK-3beta), eukaryotic initiation factor 4E binding protein 1 (4EBP1), 70?kD ribosomal protein S6 kinase (p70S6K1) and ribosomal protein S6 (rpS6) were examined in six-days denervated mouse anterior tibial (atrophic) and hemidiaphragm (hypertrophic) muscles.

Results

In denervated hypertrophic muscle expression of total Akt1, Akt2, GSK-3beta, p70S6K1 and rpS6 proteins increased 2?C10 fold whereas total 4EBP1 protein remained unaltered. In denervated atrophic muscle Akt1 and Akt2 total protein increased 2?C16 fold. A small increase in expression of total rpS6 protein was also observed with no apparent changes in levels of total GSK-3beta, 4EBP1 or p70S6K1 proteins. The level of phosphorylated proteins increased 3?C13 fold for all the proteins in hypertrophic denervated muscle. No significant changes in phosphorylated Akt1 or GSK-3beta were detected in atrophic denervated muscle. The phosphorylation levels of Akt2, 4EBP1, p70S6K1 and rpS6 were increased 2?C18 fold in atrophic denervated muscle.

Conclusions

The results are consistent with increased Akt/mTOR signaling in hypertrophic skeletal muscle. Decreased levels of phosphorylated Akt (S473/S474) were not observed in denervated atrophic muscle and results downstream of mTOR indicate increased protein synthesis in denervated atrophic anterior tibial muscle as well as in denervated hypertrophic hemidiaphragm muscle. Increased protein degradation, rather than decreased protein synthesis, is likely to be responsible for the loss of muscle mass in denervated atrophic muscles.  相似文献   

19.
The subcellular localization of insulin signaling proteins is altered by various stimuli such as insulin, insulin-like growth factor I, and oxidative stress and is thought to be an important mechanism that can influence intracellular signal transduction and cellular function. This study examined the possibility that exercise may also alter the subcellular localization of insulin signaling proteins in human skeletal muscle. Nine untrained males performed 60 min of cycling exercise (approximately 67% peak pulmonary O2 uptake). Muscle biopsies were sampled at rest, immediately after exercise, and 3 h postexercise. Muscle was fractionated by centrifugation into the following crude fractions: cytosolic, nuclear, and a high-speed pellet containing membrane and cytoskeletal components. Fractions were analyzed for protein content of insulin receptor, insulin receptor substrate (IRS)-1 and -2, p85 subunit of phosphatidylinositol 3-kinase, Akt, and glycogen synthase kinase-3 (GSK-3). There was no significant change in the protein content of the insulin signaling proteins in any of the crude fractions after exercise or 3 h postexercise. Exercise had no significant effect on the phosphorylation of IRS-1 Tyr612 in any of the fractions. In contrast, exercise increased (P < 0.05) the phosphorylation of Akt Ser473 and GSK-3alpha/beta Ser9/21 in the cytosolic fraction only. In conclusion, exercise can increase phosphorylation of downstream insulin signaling proteins specifically in the cytosolic fraction but does not result in changes in the subcellular localization of insulin signaling proteins in human skeletal muscle. Change in the subcellular protein localization is therefore an unlikely mechanism to influence signal transduction pathways and cellular function in skeletal muscle after exercise.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号