首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SAR11 bacteria are abundant in marine environments, often accounting for 35% of total prokaryotes in the surface ocean, but little is known about their involvement in marine biogeochemical cycles. Previous studies reported that SAR11 bacteria are very small and potentially have few ribosomes, indicating that SAR11 bacteria could have low metabolic activities and could play a smaller role in the flux of dissolved organic matter than suggested by their abundance. To determine the ecological activity of SAR11 bacteria, we used a combination of microautoradiography and fluorescence in situ hybridization (Micro-FISH) to measure assimilation of (3)H-amino acids and [(35)S]dimethylsulfoniopropionate (DMSP) by SAR11 bacteria in the coastal North Atlantic Ocean and the Sargasso Sea. We found that SAR11 bacteria were often abundant in surface waters, accounting for 25% of all prokaryotes on average. SAR11 bacteria were typically as large as, if not larger than, other prokaryotes. Additionally, more than half of SAR11 bacteria assimilated dissolved amino acids and DMSP, whereas about 40% of other prokaryotes assimilated these compounds. Due to their high abundance and activity, SAR11 bacteria were responsible for about 50% of amino acid assimilation and 30% of DMSP assimilation in surface waters. The contribution of SAR11 bacteria to amino acid assimilation was greater than would be expected based on their overall abundance, implying that SAR11 bacteria outcompete other prokaryotes for these labile compounds. These data suggest that SAR11 bacteria are highly active and play a significant role in C, N, and S cycling in the ocean.  相似文献   

2.
Members of the SAR11 clade often dominate the composition of marine microbial communities, yet their contribution to biomass production and the flux of dissolved organic matter (DOM) is unclear. In addition, little is known about the specific components of the DOM pool utilized by SAR11 bacteria. To better understand the role of SAR11 bacteria in the flux of DOM, we examined the assimilation of leucine (a measure of biomass production), as well as free amino acids, protein, and glucose, by SAR11 bacteria in the Northwest Atlantic Ocean. We found that when SAR11 bacteria were >25% of total prokaryotes, they accounted for about 30 to 50% of leucine incorporation, suggesting that SAR11 bacteria were major contributors to bacterial biomass production and the DOM flux. Specific growth rates of SAR11 bacteria either equaled or exceeded growth rates for the total prokaryotic community. In addition, SAR11 bacteria were typically responsible for a greater portion of amino acid assimilation (34 to 61%) and glucose assimilation (45 to 57%) than of protein assimilation (< or = 34%). These data suggest that SAR11 bacteria do not utilize various components of the DOM pool equally and may be more important to the flux of low-molecular-weight monomers than to that of high-molecular-weight polymers.  相似文献   

3.
Members of the SAR11 clade often dominate the composition of marine microbial communities, yet their contribution to biomass production and the flux of dissolved organic matter (DOM) is unclear. In addition, little is known about the specific components of the DOM pool utilized by SAR11 bacteria. To better understand the role of SAR11 bacteria in the flux of DOM, we examined the assimilation of leucine (a measure of biomass production), as well as free amino acids, protein, and glucose, by SAR11 bacteria in the Northwest Atlantic Ocean. We found that when SAR11 bacteria were >25% of total prokaryotes, they accounted for about 30 to 50% of leucine incorporation, suggesting that SAR11 bacteria were major contributors to bacterial biomass production and the DOM flux. Specific growth rates of SAR11 bacteria either equaled or exceeded growth rates for the total prokaryotic community. In addition, SAR11 bacteria were typically responsible for a greater portion of amino acid assimilation (34 to 61%) and glucose assimilation (45 to 57%) than of protein assimilation (≤34%). These data suggest that SAR11 bacteria do not utilize various components of the DOM pool equally and may be more important to the flux of low-molecular-weight monomers than to that of high-molecular-weight polymers.  相似文献   

4.
The influence of solar ultraviolet radiation and photosynthetically active radiation (PAR) on summertime marine bacterial uptake and assimilation of sulfur from radiolabeled dimethlysulfoniopropionate (35S-DMSP) was studied at four Arctic and two Antarctic stations. Incubations with 3H-leucine were also conducted for comparative purposes as a measurement of bacterial activity. Arctic waters were characterized by large numbers of colonial Phaeocystis pouchetii and higher DMSP concentrations than in the two diatom-dominated Antarctic samples. Exposure to full sunlight radiation (280–700?nm), and to a lesser extent to PAR?+?UVA (320–700?nm), generally decreased the bacterial assimilation of 3H-leucine with respect to darkness, and caused variable effects on 35S-DMSP assimilation. By using a single-cell approach involving microautoradiography we found high percentages of sulfur assimilating cells within the bacterial groups Gammaproteobacteria, Bacteroidetes, SAR11 and Roseobacter despite the varying DMSP concentrations between Arctic and Antarctic samples. The dominant SAR11 clade contributed 50–70% of the cells assimilating both substrates in the Arctic stations, whereas either Gammaproteobacteria or SAR11 were the largest contributors to 3H-leucine uptake in samples from the two Antarctic stations. Only one station was analyzed for single-cell 35S-DMSP assimilation in Antarctica, and Gammaproteobacteria were major contributors to its uptake, providing the first evidence for Antarctic bacteria actively taking up 35S-DMSP. PAR?+?UVA repeatedly increased the number of SAR11 cells assimilating 3H-leucine. This pattern also occurred with other 35S-DMSP assimilating groups, though not so consistently. Our results support a widespread capability of polar bacteria to assimilate DMSP-sulfur during the season of maximum DMSP concentrations, and show for the first time that all major polar taxa can be highly active at this assimilation under the appropriate circumstances. Our findings further confirm the role of sunlight as a modulator of heterotrophic carbon and sulfur fluxes in the surface ocean.  相似文献   

5.
Dimethylsulfoniopropionate (DMSP) is mainly produced by marine phytoplankton but is released into the microbial food web and degraded by marine bacteria to dimethyl sulfide (DMS) and other products. To reveal the abundance and distribution of bacterial DMSP degradation genes and the corresponding bacterial communities in relation to DMS and DMSP concentrations in seawater, we collected surface seawater samples from DMS hot spot sites during a cruise across the Pacific Ocean. We analyzed the genes encoding DMSP lyase (dddP) and DMSP demethylase (dmdA), which are responsible for the transformation of DMSP to DMS and DMSP assimilation, respectively. The averaged abundance (±standard deviation) of these DMSP degradation genes relative to that of the 16S rRNA genes was 33% ± 12%. The abundances of these genes showed large spatial variations. dddP genes showed more variation in abundances than dmdA genes. Multidimensional analysis based on the abundances of DMSP degradation genes and environmental factors revealed that the distribution pattern of these genes was influenced by chlorophyll a concentrations and temperatures. dddP genes, dmdA subclade C/2 genes, and dmdA subclade D genes exhibited significant correlations with the marine Roseobacter clade, SAR11 subgroup Ib, and SAR11 subgroup Ia, respectively. SAR11 subgroups Ia and Ib, which possessed dmdA genes, were suggested to be the main potential DMSP consumers. The Roseobacter clade members possessing dddP genes in oligotrophic subtropical regions were possible DMS producers. These results suggest that DMSP degradation genes are abundant and widely distributed in the surface seawater and that the marine bacteria possessing these genes influence the degradation of DMSP and regulate the emissions of DMS in subtropical gyres of the Pacific Ocean.  相似文献   

6.
The bacteria associated with oceanic algal blooms are acknowledged to play important roles in carbon, nitrogen, and sulfur cycling, yet little information is available on their identities or phylogenetic affiliations. Three culture-independent methods were used to characterize bacteria from a dimethylsulfoniopropionate (DMSP)-producing algal bloom in the North Atlantic. Group-specific 16S rRNA-targeted oligonucleotides, 16S ribosomal DNA (rDNA) clone libraries, and terminal restriction fragment length polymorphism analysis all indicated that the marine Roseobacter lineage was numerically important in the heterotrophic bacterial community, averaging >20% of the 16S rDNA sampled. Two other groups of heterotrophic bacteria, the SAR86 and SAR11 clades, were also shown by the three 16S rRNA-based methods to be abundant in the bloom community. In surface waters, the Roseobacter, SAR86, and SAR11 lineages together accounted for over 50% of the bacterial rDNA and showed little spatial variability in abundance despite variations in the dominant algal species. Depth profiles indicated that Roseobacter phylotype abundance decreased with depth and was positively correlated with chlorophyll a, DMSP, and total organic sulfur (dimethyl sulfide plus DMSP plus dimethyl sulfoxide) concentrations. Based on these data and previous physiological studies of cultured Roseobacter strains, we hypothesize that this lineage plays a role in cycling organic sulfur compounds produced within the bloom. Three other abundant bacterial phylotypes (representing a cyanobacterium and two members of the alpha Proteobacteria) were primarily associated with chlorophyll-rich surface waters of the bloom (0 to 50 m), while two others (representing Cytophagales and delta Proteobacteria) were primarily found in deeper waters (200 to 500 m).  相似文献   

7.
A laboratory grazing experiment was conducted with the aim of quantifying the sulfur assimilation by a herbivore protist feeding on a dimethylsulfoniopropionate (DMSP)‐containing phytoplankter. When supplied with dissolved 35S‐DMSP, cultures of an axenic strain of the diatom Thalassiosira pseudonana took up 60–95% of the added radioisotope and accumulated it untransformed in the cytoplasm. Radiolabelled diatom cells were offered as prey to the heterotrophic dinoflagellate Oxyrrhis marina. After 32 h in the dark, all the prey had been grazed and digested, leaving only radiolabelled O. marina in the grazing bottles and thus providing an estimate of the percentage of DMSP‐sulfur retained by the predator. Subsequent precipitation with cold trichloroacetic acid (TCA) provided the fraction of retained DMSP‐S that had been assimilated into the micrograzer macromolecules. In parallel incubations with predator and dissolved 35S‐DMSP only (no prey), O. marina (and their closely associated bacteria) took up the radiolabelled substrate osmotrophically to an activity of 0.04 dpm cell?1 and assimilated it all into macromolecules. By correcting grazing 35S‐DMSP assimilation for osmotrophic 35S‐DMSP assimilation, and comparing it with the ingested radioisotope, the percentage of ingested DMSP‐sulfur retained and assimilated by the predator was determined to be 32 ± 4%. This is the first study that provides direct evidence that ingestion of a DMSP‐containing prey supplies structural sulfur to a herbivore protist and that quantifies this assimilative supply at one‐third of ingested DMSP.  相似文献   

8.
The contribution of major phylogenetic groups to heterotrophic bacteria assimilating sulfur from dissolved dimethylsulfoniopropionate (DMSP) and assimilating leucine was analysed in surface seawaters from Blanes Bay (NW Mediterranean) over an annual study between March 2003 and April 2004. The percentage of bacteria assimilating DMSP-S showed a strong seasonal pattern, with a steady increase from winter (8 +/- 5%) to summer (23 +/- 3%). The same seasonal pattern was observed for the rate of DMSP-S assimilation. The annual average percentage of DMSP-S-assimilating bacteria (16 +/- 8%) was lower than the corresponding percentage of leucine-assimilating cells (35 +/- 16%), suggesting that not all bacteria synthesizing protein incorporated DMSP-S. Smaller differences between both percentages were recorded in summer. Members of the Alphaproteobacteria (Roseobacter and SAR11) and Gammaproteobacteria groups accounted for most of bacterial DMSP-S-assimilating cells over the year. All major bacterial groups showed an increase of the percentage of cells assimilating DMSP-S during summer, and contributed to the increase of the DMSP-S assimilation rate in this period. In these primarily P-limited waters, enrichment with P + DMSP resulted in a stimulation of bacterial heterotrophic production comparable to, or higher than, that with P + glucose in summer, while during the rest of the year P + glucose induced a stronger response. This suggested that DMSP was more important a S and C source for bacteria in the warm stratified season. Overall, our results suggest that DMSP-S assimilation is controlled by the contribution of DMSP to S (and C) sources rather than by the phylogenetic composition of the bacterioplankton.  相似文献   

9.
The bacteria associated with oceanic algal blooms are acknowledged to play important roles in carbon, nitrogen, and sulfur cycling, yet little information is available on their identities or phylogenetic affiliations. Three culture-independent methods were used to characterize bacteria from a dimethylsulfoniopropionate (DMSP)-producing algal bloom in the North Atlantic. Group-specific 16S rRNA-targeted oligonucleotides, 16S ribosomal DNA (rDNA) clone libraries, and terminal restriction fragment length polymorphism analysis all indicated that the marine Roseobacter lineage was numerically important in the heterotrophic bacterial community, averaging >20% of the 16S rDNA sampled. Two other groups of heterotrophic bacteria, the SAR86 and SAR11 clades, were also shown by the three 16S rRNA-based methods to be abundant in the bloom community. In surface waters, the Roseobacter, SAR86, and SAR11 lineages together accounted for over 50% of the bacterial rDNA and showed little spatial variability in abundance despite variations in the dominant algal species. Depth profiles indicated that Roseobacter phylotype abundance decreased with depth and was positively correlated with chlorophyll a, DMSP, and total organic sulfur (dimethyl sulfide plus DMSP plus dimethyl sulfoxide) concentrations. Based on these data and previous physiological studies of cultured Roseobacter strains, we hypothesize that this lineage plays a role in cycling organic sulfur compounds produced within the bloom. Three other abundant bacterial phylotypes (representing a cyanobacterium and two members of the α Proteobacteria) were primarily associated with chlorophyll-rich surface waters of the bloom (0 to 50 m), while two others (representing Cytophagales and δ Proteobacteria) were primarily found in deeper waters (200 to 500 m).  相似文献   

10.
We examined the contribution of photoheterotrophic microbes--those capable of light-mediated assimilation of organic compounds--to bacterial production and amino acid assimilation along a transect from Florida to Iceland from 28 May to 9 July 2005. Bacterial production (leucine incorporation at a 20 nM final concentration) was on average 30% higher in light than in dark-incubated samples, but the effect varied greatly (3% to 60%). To further characterize this light effect, we examined the abundance of potential photoheterotrophs and measured their contribution to bacterial production and amino acid assimilation (0.5 nM addition) using flow cytometry. Prochlorococcus and Synechococcus were abundant in surface waters where light-dependent leucine incorporation was observed, whereas aerobic anoxygenic phototrophic bacteria were abundant but did not correlate with the light effect. The per-cell assimilation rates of Prochlorococcus and Synechococcus were comparable to or higher than those of other prokaryotes, especially in the light. Picoeukaryotes also took up leucine (20 nM) and other amino acids (0.5 nM), but rates normalized to biovolume were much lower than those of prokaryotes. Prochlorococcus was responsible for 80% of light-stimulated bacterial production and amino acid assimilation in surface waters south of the Azores, while Synechococcus accounted for on average 12% of total assimilation. However, nearly 40% of the light-stimulated leucine assimilation was not accounted for by these groups, suggesting that assimilation by other microbes is also affected by light. Our results clarify the contribution of cyanobacteria to photoheterotrophy and highlight the potential role of other photoheterotrophs in biomass production and dissolved-organic-matter assimilation.  相似文献   

11.
In order to identify bacteria that assimilate dissolved inorganic carbon (DIC) in the northeast Pacific Ocean, stable isotope probing (SIP) experiments were conducted on water collected from 3 different sites off the Oregon and Washington coasts in May 2010, and one site off the Oregon Coast in September 2008 and March 2009. Samples were incubated in the dark with 2 mM 13C-NaHCO3, doubling the average concentration of DIC typically found in the ocean. Our results revealed a surprising diversity of marine bacteria actively assimilating DIC in the dark within the Pacific Northwest coastal waters, indicating that DIC fixation is relevant for the metabolism of different marine bacterial lineages, including putatively heterotrophic taxa. Furthermore, dark DIC-assimilating assemblages were widespread among diverse bacterial classes. Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes dominated the active DIC-assimilating communities across the samples. Actinobacteria, Betaproteobacteria, Deltaproteobacteria, Planctomycetes, and Verrucomicrobia were also implicated in DIC assimilation. Alteromonadales and Oceanospirillales contributed significantly to the DIC-assimilating Gammaproteobacteria within May 2010 clone libraries. 16S rRNA gene sequences related to the sulfur-oxidizing symbionts Arctic96BD-19 were observed in all active DIC assimilating clone libraries. Among the Alphaproteobacteria, clones related to the ubiquitous SAR11 clade were found actively assimilating DIC in all samples. Although not a dominant contributor to our active clone libraries, Betaproteobacteria, when identified, were predominantly comprised of Burkholderia. DIC-assimilating bacteria among Deltaproteobacteria included members of the SAR324 cluster. Our research suggests that DIC assimilation is ubiquitous among many bacterial groups in the coastal waters of the Pacific Northwest marine environment and may represent a significant metabolic process.  相似文献   

12.
An expanded analysis of oceanic metagenomic data indicates that the majority of prokaryotic cells in marine surface waters have the genetic capability to demethylate dimethylsulfoniopropionate (DMSP). The 1701 homologues of the DMSP demethylase gene, dmdA , identified in the (2007) Global Ocean Sampling (GOS) metagenome, are sufficient for 58% (±9%) of sampled cells to participate in this critical step in the marine sulfur cycle. This remarkable frequency of DMSP-demethylating cells is in accordance with biogeochemical data indicating that marine phytoplankton direct up to 10% of fixed carbon to DMSP synthesis, and that most of this DMSP is subsequently degraded by bacteria via demethylation. The GOS metagenomic data also revealed a new cluster of dmdA sequences (designated Clade E) that implicates marine gammaproteobacteria in DMSP demethylation, along with previously recognized alphaproteobacterial groups Roseobacter and SAR11. Analyses of G+C content and gene order indicate that lateral gene transfer is likely responsible for the wide distribution of dmdA among diverse taxa, contributing to the homogenization of biogeochemical roles among heterotrophic marine bacterioplankton. Candidate genes for the competing bacterial degradation process that converts DMSP to the climate-active gas dimethylsulfide (DMS) ( dddD and dddL ) occur infrequently in the (2007) GOS metagenome, suggesting either that the key DMS-producing bacterial genes are yet to be identified or that DMS formation by free-living bacterioplankton is insignificant relative to their demethylation activity.  相似文献   

13.
The organosulfur compound dimethylsulfoniopropionate (DMSP) is produced by phytoplankton and is ubiquitous in the surface ocean. Once released from phytoplankton, marine bacteria degrade DMSP by either the cleavage pathway to form the volatile gas dimethylsulfide (DMS) or the demethylation pathway, yielding methanethiol (MeSH), which is readily assimilated or oxidized. The enzyme DmdB, a methylmercaptopropionate (MMPA)-coenzyme A (CoA) ligase, catalyzes the second step in the demethylation pathway and is a major regulatory point. The two forms of DmdB present in the marine roseobacter Ruegeria pomeroyi DSS-3, RPO_DmdB1 and RPO_DmdB2, and the single form in the SAR11 clade bacterium “Candidatus Pelagibacter ubique” HTCC1062, PU_DmdB1, were characterized in detail. DmdB enzymes were also examined from Ruegeria lacuscaerulensis ITI-1157, Pseudomonas aeruginosa PAO1, and Burkholderia thailandensis E264. The DmdB enzymes separated into two phylogenetic clades. All enzymes had activity with MMPA and were sensitive to inhibition by salts, but there was no correlation between the clades and substrate specificity or salt sensitivity. All Ruegeria species enzymes were inhibited by physiological concentrations (70 mM) of DMSP. However, ADP reversed the inhibition of RPO_DmdB1, suggesting that this enzyme was responsive to cellular energy charge. MMPA reversed the inhibition of RPO_DmdB2 as well as both R. lacuscaerulensis ITI-1157 DmdB enzymes, suggesting that a complex regulatory system exists in marine bacteria. In contrast, the DmdBs of the non-DMSP-metabolizing P. aeruginosa PAO1 and B. thailandensis E264 were not inhibited by DMSP, suggesting that DMSP inhibition is a specific adaptation of DmdBs from marine bacteria.  相似文献   

14.
Organic sulfur compounds are present in all aquatic systems, but their use as sources of sulfur for bacteria is generally not considered important because of the high sulfate concentrations in natural waters. This study investigated whether dimethylsulfoniopropionate (DMSP), an algal osmolyte that is abundant and rapidly cycled in seawater, is used as a source of sulfur by bacterioplankton. Natural populations of bacterioplankton from subtropical and temperate marine waters rapidly incorporated 15 to 40% of the sulfur from tracer-level additions of [35S]DMSP into a macromolecule fraction. Tests with proteinase K and chloramphenicol showed that the sulfur from DMSP was incorporated into proteins, and analysis of protein hydrolysis products by high-pressure liquid chromatography showed that methionine was the major labeled amino acid produced from [35S]DMSP. Bacterial strains isolated from coastal seawater and belonging to the α-subdivision of the division Proteobacteria incorporated DMSP sulfur into protein only if they were capable of degrading DMSP to methanethiol (MeSH), whereas MeSH was rapidly incorporated into macromolecules by all tested strains and by natural bacterioplankton. These findings indicate that the demethylation/demethiolation pathway of DMSP degradation is important for sulfur assimilation and that MeSH is a key intermediate in the pathway leading to protein sulfur. Incorporation of sulfur from DMSP and MeSH by natural populations was inhibited by nanomolar levels of other reduced sulfur compounds including sulfide, methionine, homocysteine, cysteine, and cystathionine. In addition, propargylglycine and vinylglycine were potent inhibitors of incorporation of sulfur from DMSP and MeSH, suggesting involvement of the enzyme cystathionine γ-synthetase in sulfur assimilation by natural populations. Experiments with [methyl-3H]MeSH and [35S]MeSH showed that the entire methiol group of MeSH was efficiently incorporated into methionine, a reaction consistent with activity of cystathionine γ-synthetase. Field data from the Gulf of Mexico indicated that natural turnover of DMSP supplied a major fraction of the sulfur required for bacterial growth in surface waters. Our study highlights a remarkable adaptation by marine bacteria: they exploit nanomolar levels of reduced sulfur in apparent preference to sulfate, which is present at 106- to 107-fold higher concentrations.  相似文献   

15.
Organic sulfur compounds are present in all aquatic systems, but their use as sources of sulfur for bacteria is generally not considered important because of the high sulfate concentrations in natural waters. This study investigated whether dimethylsulfoniopropionate (DMSP), an algal osmolyte that is abundant and rapidly cycled in seawater, is used as a source of sulfur by bacterioplankton. Natural populations of bacterioplankton from subtropical and temperate marine waters rapidly incorporated 15 to 40% of the sulfur from tracer-level additions of [(35)S]DMSP into a macromolecule fraction. Tests with proteinase K and chloramphenicol showed that the sulfur from DMSP was incorporated into proteins, and analysis of protein hydrolysis products by high-pressure liquid chromatography showed that methionine was the major labeled amino acid produced from [(35)S]DMSP. Bacterial strains isolated from coastal seawater and belonging to the alpha-subdivision of the division Proteobacteria incorporated DMSP sulfur into protein only if they were capable of degrading DMSP to methanethiol (MeSH), whereas MeSH was rapidly incorporated into macromolecules by all tested strains and by natural bacterioplankton. These findings indicate that the demethylation/demethiolation pathway of DMSP degradation is important for sulfur assimilation and that MeSH is a key intermediate in the pathway leading to protein sulfur. Incorporation of sulfur from DMSP and MeSH by natural populations was inhibited by nanomolar levels of other reduced sulfur compounds including sulfide, methionine, homocysteine, cysteine, and cystathionine. In addition, propargylglycine and vinylglycine were potent inhibitors of incorporation of sulfur from DMSP and MeSH, suggesting involvement of the enzyme cystathionine gamma-synthetase in sulfur assimilation by natural populations. Experiments with [methyl-(3)H]MeSH and [(35)S]MeSH showed that the entire methiol group of MeSH was efficiently incorporated into methionine, a reaction consistent with activity of cystathionine gamma-synthetase. Field data from the Gulf of Mexico indicated that natural turnover of DMSP supplied a major fraction of the sulfur required for bacterial growth in surface waters. Our study highlights a remarkable adaptation by marine bacteria: they exploit nanomolar levels of reduced sulfur in apparent preference to sulfate, which is present at 10(6)- to 10(7)-fold higher concentrations.  相似文献   

16.
Abundant proteorhodopsin genes in the North Atlantic Ocean   总被引:5,自引:0,他引:5  
Proteorhodopsin (PR) is a light-driven proton pump that has been found in a variety of marine bacteria, including Pelagibacter ubique , a member of the ubiquitous SAR11 clade. The goals of this study were to explore the diversity of PR genes and to estimate their abundance in the North Atlantic Ocean using quantitative polymerase chain reaction (QPCR). We found that PR genes in the western portion of the Sargasso Sea could be grouped into 27 clusters, but five clades had the most sequences. Sets of specific QPCR primers were designed to examine the abundance of PR genes in the following four of the five clades: SAR11 ( P. ubique and other SAR11 Alphaproteobacteria ), BACRED17H8 ( Alphaproteobacteria ), HOT2C01 ( Alphaproteobacteria ) and an uncultured subgroup of the Flavobacteria . Two groups (SAR11 and HOT2C01) dominated PR gene abundance in oligotrophic waters, but were significantly less abundant in nutrient- and chlorophyll-rich waters. The other two groups (BACRED17H8 and Flavobacteria subgroup NASB) were less abundant in all waters. Together, these four PR gene types were found in 50% of all bacteria in the Sargasso Sea. We found a significant negative correlation between total PR gene abundance and nutrients and chlorophyll but no significant correlation with light intensity for three of the four PR types in the depth profiles north of the Sargasso Sea. Our data suggest that PR is common in the North Atlantic Ocean, especially in SAR11 bacteria and another marine alphaproteobacterial group (HOT2C01), and that these PR-bearing bacteria are most abundant in oligotrophic waters.  相似文献   

17.
Fungi are ubiquitous in the ocean and hypothesized to be important members of marine ecosystems, but their roles in the marine carbon cycle are poorly understood. Here, we use 13C DNA stable isotope probing coupled with phylogenetic analyses to investigate carbon assimilation within diverse communities of planktonic and benthic fungi in the Benguela Upwelling System (Namibia). Across the redox stratified water column and in the underlying sediments, assimilation of 13C-labeled carbon from diatom extracellular polymeric substances (13C-dEPS) by fungi correlated with the expression of fungal genes encoding carbohydrate-active enzymes. Phylogenetic analysis of genes from 13C-labeled metagenomes revealed saprotrophic lineages related to the facultative yeast Malassezia were the main fungal foragers of pelagic dEPS. In contrast, fungi living in the underlying sulfidic sediments assimilated more 13C-labeled carbon from chemosynthetic bacteria compared to dEPS. This coincided with a unique seafloor fungal community and dissolved organic matter composition compared to the water column, and a 100-fold increased fungal abundance within the subseafloor sulfide-nitrate transition zone. The subseafloor fungi feeding on 13C-labeled chemolithoautotrophs under anoxic conditions were affiliated with Chytridiomycota and Mucoromycota that encode cellulolytic and proteolytic enzymes, revealing polysaccharide and protein-degrading fungi that can anaerobically decompose chemosynthetic necromass. These subseafloor fungi, therefore, appear to be specialized in organic matter that is produced in the sediments. Our findings reveal that the phylogenetic diversity of fungi across redox stratified marine ecosystems translates into functionally relevant mechanisms helping to structure carbon flow from primary producers in marine microbiomes from the surface ocean to the subseafloor.Subject terms: Microbial ecology, Fungal ecology, Microbiome, Biogeochemistry  相似文献   

18.
Dimethyl sulfide (DMS) is a climatically active gas released into the atmosphere from oceans. It is produced mainly by bacterial enzymatic cleavage of dimethylsulfoniopropionate (DMSP), and six DMSP lyases have been identified to date. To determine the biogeographical distribution of bacteria relevant to DMS production, we investigated the diversity of dddP—the most abundant DMS-producing gene—in the northwestern Pacific Ocean using newly developed primers and the pyrosequencing method. Consistent with previous studies, the major dddP-containing bacteria in coastal areas were those belonging to the Roseobacter clade. However, genotypes closely related to the SAR116 group were found to represent a large portion of dddP-containing bacteria in the surface waters of the oligotrophic ocean. The addition of DMSP to a culture of the SAR116 strain Candidatus Puniceispirillum marinum IMCC1322 resulted in the production of DMS and upregulated expression of the dddP gene. Considering the large area of oligotrophic water and the wide distribution of the SAR116 group in oceans worldwide, we propose that these bacteria may play an important role in oceanic DMS production and biogeochemical sulfur cycles, especially via bacteria-mediated DMSP degradation.  相似文献   

19.
20.
We examined the contribution of photoheterotrophic microbes—those capable of light-mediated assimilation of organic compounds—to bacterial production and amino acid assimilation along a transect from Florida to Iceland from 28 May to 9 July 2005. Bacterial production (leucine incorporation at a 20 nM final concentration) was on average 30% higher in light than in dark-incubated samples, but the effect varied greatly (3% to 60%). To further characterize this light effect, we examined the abundance of potential photoheterotrophs and measured their contribution to bacterial production and amino acid assimilation (0.5 nM addition) using flow cytometry. Prochlorococcus and Synechococcus were abundant in surface waters where light-dependent leucine incorporation was observed, whereas aerobic anoxygenic phototrophic bacteria were abundant but did not correlate with the light effect. The per-cell assimilation rates of Prochlorococcus and Synechococcus were comparable to or higher than those of other prokaryotes, especially in the light. Picoeukaryotes also took up leucine (20 nM) and other amino acids (0.5 nM), but rates normalized to biovolume were much lower than those of prokaryotes. Prochlorococcus was responsible for 80% of light-stimulated bacterial production and amino acid assimilation in surface waters south of the Azores, while Synechococcus accounted for on average 12% of total assimilation. However, nearly 40% of the light-stimulated leucine assimilation was not accounted for by these groups, suggesting that assimilation by other microbes is also affected by light. Our results clarify the contribution of cyanobacteria to photoheterotrophy and highlight the potential role of other photoheterotrophs in biomass production and dissolved-organic-matter assimilation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号