首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The antiarrhythmic effects of captopril, a sulphydrylcontaining angiotensin converting enzyme (ACE) inhibitor, were compared with those of the non-sulphydryl-containing ACE inhibitor lisinopril and the sulphydryl-containing agent glutathione in an in vivo rat model of coronary artery ligation. To produce arrhythmia, the left main coronary artery was occluded for 7 min, followed by 7 min of reperfusion. Captopril (3 mg kg-1) and lisinopril (0.1, 0.3 or 1 mg kg-1) caused marked decreases in mean arterial blood pressure (BP) and heart rate, whereas glutathione (5 mg kg-) had no effect on them. The incidence of ventricular tachycardia (VT) on ischemia and reperfusion was significantly reduced by captopril and lisinopril. Captopril and 1 mg kg-1 lisinopril also significantly decreased the number of VEB during occlusion and the duration of VT on reperfusion, respectively. These drugs also attenuated the incidence of reversible ventricular fibrillation (VF) and the number of ventricular ectopic beats (VEB) during reperfusion. However, glutathione only reduced the incidence of VT on reperfusion, significantly. These results suggest that, in this experimental model, ACE inhibitors limit the arrhythmias following ischemia-reperfusion and free radical scavenging action of these drugs does not have a major contributory role in their protective effect.  相似文献   

2.
It has been found that pretreatment with a delta 1-opioid receptor agonist, DPDPE, in dose of 0.1 mg/kg intravenously 15 min before heart isolation, prevents appearance of reperfusion, ventricular arrhythmias during total global ischemia (45 min) and reperfusion (10 min) of isolated rat heart. This effect was dose-dependent. Addition of DPDPE to the perfusion solution in a final concentration of 0.1 mg/L and/or 0.5 mg/L 15 min before ischemia also decreased the incidence of reperfusion arrhythmias in a concentration-dependent manner. Addition of DPDPE to the perfusion solution in a final concentration of 0.1 mg/L also decreased creatine kinase levels in the coronary sinus. However DPDPE had no cardio-protective effect in concentration of 0.5 mg/L or after intravenous administration. A previous intravenous injection of DPDPE in dose of 0.5 mg/kg exacerbated reperfusion-induced contractile dysfunction of isolated heart but exerted no effect in dose of 0.1 mg/kg. Previous perfusion of the rat isolated heart by DPDPE in concentration of 0.1 mg/L and 0.5 mg/L 15 min before ischemia also exacerbated myocardial contractile dysfunction during reperfusion. It is proposed that the antiarrhythmic, cardio-protective and negative inotropic effect of DPDPE during reperfusion may be due to stimulation of cardiac delta-1 receptors.  相似文献   

3.
In albino rats, infarctoid myocardial lesions were produced by intraperitoneal (i.p.) administration of isoproterenol (75 mg/kg, during 3 days). In other groups, the descending anterior left coronary artery was ligated. In both experimental settings, the intracerebroventricular (i.c.v.) administration of (+/-) propranolol (100-200-300 microg/animal/day, during 7 days) or (+/-) verapamil (40-80-160 microg/animal/day, during 7 days) afforded a significant protection (with the exception of the lowest dose) on the investigated parameters: arrhythmias, ischemic zone (in coronary ligated rats), lactate dehydrogenase and aspartate aminotransferase activity of the serum, focal necrosis (in isoproterenol treated rats). This protective activity is lower than that afforded by i.p. administered (+/-) propranolol (5 mg/kg, during seven days) or (+/-) verapamil (5 mg/kg, during seven days). From these data it may be concluded that (+/-) propranolol and (+/-) verapamil have a protective action on the experimental myocardial ischemia and necrosis in rats, not only when the drugs come in direct contact with the heart, but also acting upon the central nervous system.  相似文献   

4.
The effect of the chronic and acute antioxidant tempol (superoxide dismutase mimetic) treatment on cardiac ischemic tolerance was investigated in adult male Wistar rats. The first experimental group was given tempol (1 mM) in drinking water for three weeks, the second group received tempol (100 mg/kg, i.v.) 10 min before test ischemia, and control rats received the same volume of solvent. Anesthetized open-chest animals (pentobarbitone 60 mg/kg, i.p.) were subjected to 20-min coronary artery occlusion and 3-h reperfusion for infarct size determination. Ventricular arrhythmias were monitored during ischemia and at the beginning (5 min) of reperfusion. Acute tempol administration shifted the time profile of ischemic arrhythmias to the later phase and significantly increased the number of ischemic and reperfusion premature ventricular complexes, respectively (504+/-127 and 84+/-21) as compared with the chronically treated group (218+/-36 and 47+/-7) or controls (197+/-26 and 31+/-7). Acute tempol-treated rats exhibited a tendency to decrease infarct size (P = 0.087). The mechanism of proarrhythmic tempol action during ischemia and reperfusion remains to be elucidated.  相似文献   

5.
Varga E  Nagy N  Lazar J  Czifra G  Bak I  Biro T  Tosaki A 《Life sciences》2004,75(20):2411-2423
We investigated the contribution of dexamethasone treatment on the recovery of postischemic cardiac function and the development of reperfusion-induced arrhythmias in ischemic/reperfused isolated rat hearts. Rats were treated with 2 mg/kg of intraperitoneal injection of dexamethasone, and 24 hours later, hearts were isolated according to the 'working' mode, perfused, and subjected to 30 min global ischemia followed by 120 min reperfusion. Cardiac function including heart rate, coronary flow, aortic flow, and left ventricular developed pressure were recorded. After 60 min and 120 min reperfusion, 2 mg/kg of dexamethasone significantly improved the postischemic recovery of aortic flow and left ventricular developed pressure from their control values of 10.7 +/- 0.3 ml/min and 10.5 +/- 0.3 kPa to 22.2 +/- 0.3 ml/min (p < 0.05) and 14.3 +/- 0.5 kPa (p < 0.05), 19.3 +/- 0.3 ml/min (p < 0.05) and 12.3 +/- 0.5 kPa (p < 0.05), respectively. Heart rate and coronary flow did not show a significant change in postischemic recovery after 60 or 120 min reperfusion. In rats treated with 0.5 mg/kg of actinomycin D injected i.v., one hour before the dexamethasone injection, suppressed the dexamethasone-induced cardiac protection. Electrocardiograms were monitored to determine the incidence of reperfusion-induced ventricular fibrillation. Dexamethasone pretreatment significantly reduces the occurrence of ventricular fibrillation. Cytochrome c release was also observed in the cytoplasm. The results suggest that the inhibition of cytochrome c release is involved in the dexamethasone-induced cardiac protection.  相似文献   

6.
It was found that pretreatment of rats with selective agonist of kappa1-opioid receptors (OR) (-)--U--50.488 decreased the incidence of ischemic (10 min) and reperfusion (10 min) ventricular arrhythmias. The selective kappa2-OR agonist GR-89696 had no effect on the incidence of ventricular arrhythmias during a 10-min coronary artery occlusion and following reperfusion in anesthetized rats. The effect of (-)--U-50.488 was abolished by the selective kappa1-OR antagonist of non-binaltorphimine and the non-selective peripheral OR antagonist naloxone methiodide. Perfusion of isolated rat heart with (-)--U-50.488 did not affect arrhythmias during ischemia and reperfusion. The authors suggest that stimulation of kappa1-opioid receptors located outside the central nervous system increases heart resistance against arrhythmogenic action of ischemia/reperfusion, antiarrhythmic action of (-)--U-50.488 being mediated through extracardiac opioid receptors.  相似文献   

7.
It has been shown that mu-opioid receptor stimulation by intravenous administration of the selective mu receptor agonist DALDA in a dose of 0.1 mg/kg prevented ischemic and reperfusion arrhythmias in rats subjected to coronary artery occlusion (10 min) and reperfusion (10 min), and also increased the ventricular fibrillation threshold in rats with postinfarction cardiac fibrosis. These effects were abolished by pre-treatment with the selective mu receptor antagonist CTAP in a dose of 0.5 mg/kg or by prior injection of the opioid receptor antagonist naloxone methiodide (2 mg/kg) which does not penetrate the blood-braib barrier. Both antagonists by themselves had no effect on the incidence of occlusion or reperfusion-induced arrhythmias or on the ventricular fibrillation threshold. Pre-treatment with ATP-sensitive K+ channel (KATP channel) blocker glibenclamide in a dose of 0.3 mg/kg completely abolished the antiarrhythmic effect of DALDA. We believe that DALDA prevents occurrence of electrical instability during ischemia and reperfusion and increases the ventricular fibrillation threshold in rats with postinfarction cardiac fibrosis via stimulation of peripheral mu-opioid receptor which appear to be coupled to the KATP channel.  相似文献   

8.
The effect of a synthetic antioxidant, ionol (2,4-ditrebutyl-4-methylphenol) on cardiac arrhythmias induced by 10-minute occlusion of the left coronary artery followed by 5 minutes of reperfusion (RP) was investigated. The study was performed on male Wistar rats, 250-300 g body weight. The animals were ventilated with room air under urethan anesthesia. RP induced more severe ventricular arrhythmias than ischemia (IS). During RP ventricular fibrillation developed in 12 and during IS in 2 out of 24 animals. Other types of arrhythmias--tachycardia and extrasystole--were also more pronounced during RP than during IS. Preadministration of animals with ionol (60 mg/kg, per os) abolished completely ventricular fibrillation during IS and RP. Ionol reduced considerably the incidence of tachycardia and extrasystole, shortening their duration 5-7-fold. The data suggest that the activation of lipid peroxidation may play an important role in the pathogenesis of cardiac fibrillation and open prospects for the prevention and treatment of cardiac arrhythmias with antioxidants.  相似文献   

9.
Oxidative stress plays an important role in the pathogenesis of myocardial ischemia and infarction. Antioxidants might then be beneficial in the prevention of these diseases. Astringinin (3,3',4',5-tetrahydroxystilbene), a resveratrol (3,4',5-trihydroxystilbene) analogue with considerably higher antioxidative activity and free radical scavenging capacity, was introduced to examine its cardioprotective effects in ischemia or ischemia-reperfusion (I/R) rats. In the present study, the left main coronary artery was occluded by the following procedures: (i) 30 min occlusion, (ii) 5 min occlusion followed by 30 min reperfusion, and (iii) 4 h occlusion. Animals were infused with and without astringinin before coronary artery occlusion. Mortality, and the severity of ischemia- and I/R-induced arrhythmias were compared. Pretreatment of astringinin dramatically reduced the incidence and duration of ventricular tachycardia (VT) and ventricular fibrillation (VF) during either ischemia or I/R period. Astringinin at 2.5 x 10(-5) and 2.5 x 10(-4) g/kg completely prevented the mortality of animals during ischemia or I/R. During the same period, astringinin pretreatment also increased nitric oxide (NO) and decreased lactate dehydrogenase (LDH) levels in the carotid blood. In animals subjected to 4 h coronary occlusion, the cardiac infarct size (expressed as a percentage of occluded zone) was reduced from 44.4 + or - 4.1% to 19.1 + or - 2.4% by astringinin (2.5 x 10(-4) g/kg). We conclude that, astringinin is a potent antiarrhythmic agent with cardioprotective activity in ischemic and ischemic-reperfused rat heart. The beneficial effects of astringinin in the ischemic and ischemic-reperfused hearts may be correlated with its antioxidant activity and upregulation of NO production.  相似文献   

10.
The aim of this study was to report the cardiorespiratory events observed during coronary artery occlusion and reperfusion in a minimally invasive closed chest myocardial occlusion-reperfusion model in rhesus monkeys. We hypothesized that a minimally invasive technique may lead to fewer cardiac arrhythmias and complications. Eight male rhesus macaques 10-15 kg and 10-15 years old were sedated with ketamine (2 mg/kg), midazolam (1.3 mg/kg), atropine (0.01 mg/kg) and buprenorphine 0.02 mg/kg intramuscularly. Etomidate 1-2 mg/kg was injected intravenously to allow tracheal intubation. Anaesthesia was maintained with isoflurane. Pulse oximetry, electrocardiogram (ECG), heart rate, mean arterial blood pressure (MAP), inspired isoflurane fractions (F(I)ISO) and core temperature were recorded every 10 min. The coronary artery occlusion was induced by a balloon-tipped catheter advanced via the femoral artery into the left anterior descending artery and inflated to completely occlude the vessel for 20-50 min (IT) before reperfusion. Sequences of elevated ST segment, QRS complex prolongation, ventricular premature complexes and ventricular fibrillation were observed with a lower incidence than previously described in the literature. IT was (min: 17; max: 50) min long. F(I)ISO was lower than the minimal alveolar concentration in these species. Hypotension (MAP < 70 mmHg) and hypothermia (T°C < 36°C) were observed in all macaques. This minimally invasive closed chest model was successful in providing better cardiorespiratory physiological parameters than reported in previous models. The benefit (achieving ischaemia) versus risk (lethal arrhythmia) of the duration of the coronary occlusion should be considered.  相似文献   

11.
Dexrazoxane (DEX), an inhibitor of topoisomerase II and intracellular iron chelator, is believed to reduce the formation of reactive oxygen species (ROS) and protects the heart from the toxicity of anthracycline antineoplastics. As ROS also play a role in the pathogenesis of cardiac ischaemia/reperfusion (I/R) injury, the aim was to find out whether DEX can improve cardiac ischaemic tolerance. DEX in a dose of 50, 150, or 450?mg·(kg body mass)(-1) was administered intravenously to rats 60?min before ischaemia. Myocardial infarct size and ventricular arrhythmias were assessed in anaesthetized open-chest animals subjected to 20?min coronary artery occlusion and 3?h reperfusion. Arrhythmias induced by I/R were also assessed in isolated perfused hearts. Only the highest dose of DEX significantly reduced infarct size from 53.9%?± 4.7% of the area at risk in controls to 37.5%?± 4.3% without affecting the myocardial markers of oxidative stress. On the other hand, the significant protective effect against reperfusion arrhythmias occurred only in perfused hearts with the dose of DEX of 150?mg·kg(-1), which also tended to limit the incidence of ischaemic arrhythmias. It is concluded that DEX in a narrow dose range can suppress arrhythmias in isolated hearts subjected to I/R, while a higher dose is needed to limit myocardial infarct size in open-chest rats.  相似文献   

12.
The role of prostaglandins in the antiarrhythmic effect of ischemic preconditioning (IP) was investigated in pentobarbital-anesthetized rats. In 5 unpreconditioned control rats, 30 min of occlusion of the left coronary artery elicited ventricular tachycardia (VT) and fibrillation (VF), with an average duration of VT and VF of 51 +/- 6 and 43 +/- 4 s, respectively. Frequent ventricular premature beats (VPBs; average 1,249 +/- 145) were also documented in these animals. Thirty minutes of reperfusion after the prolonged coronary occlusion in these animals caused more severe arrhythmias, including irreversible VF. In animals pretreated with IP (n = 5), which was achieved by 3 cycles of 3 min of occlusion followed by 5 min of reperfusion, 30 min of coronary artery occlusion caused neither VT nor VF, but occasional VPBs (average 2 +/- 1, p < 0.001 vs. control). Only occasional VPBs were observed during 30 min of reperfusion in this group. In animals pretreated with indomethacin (1 mg/kg i.v., n = 5) followed by IP, prolonged ischemia and reperfusion led to frequent VPBs but no VT or VF. The average number of VPBs during ischemia and reperfusion in this indomethacin-treated group was less than that of the controls but greater than the IP-only group (p < 0.01). In conclusion, prostaglandins appear to play a role in the protective effect of IP against VPBs during acute ischemia and reperfusion.  相似文献   

13.
The accumulation of oxygen free radicals and activation of neutrophils are strongly implicated as pathophysiological mechanisms mediating myocardial ischemia/reperfusion injury. Heme oxygenase-1 (HO-1) has been reported to play a protective role in oxidative tissue injuries. In this study, the cardioprotective activity of tetramethylpyrazine (TMP), an active ingredient of Chinese medicinal herb Ligusticum wallichii Franchat, was evaluated in an open-chest anesthetized rat model of myocardial ischemia/reperfusion injury. Pretreatment with TMP (5 and 10 mg/kg, i.v.) before left coronary artery occlusion significantly suppressed the occurrence of ventricular fibrillation. After 45 min of ischemia and 1 h of reperfusion, TMP (5 and 10 mg/kg) caused a significant reduction in infarct size and induced HO-1 expression in ischemic myocardium. The HO inhibitor ZnPP (50 μg/rat) markedly reversed the anti-infarct action of TMP. Superoxide anion production in ischemic myocardium after 10 min reperfusion was inhibited by TMP. Furthermore, TMP (200 and 500 μM) significantly suppressed fMLP (800 nM)-activated human neutrophil migration and respiratory burst. In conclusion, TMP suppresses ischemia-induced ventricular arrhythmias and reduces the infarct size resulting from ischemia/reperfusion injury in vivo. This cardioprotective activity of TMP may be associated with its antioxidant activity via induction of HO-1 and with its capacity for neutrophil inhibition.  相似文献   

14.
Isolated hearts, excised from spontaneously hypertensive male rats treated orally with cicletanine, a new furopyridine anti-hypertensive drug, were subjected to 30 min of global ischemia followed by 10 min of reperfusion. The effect of cicletanine on reperfusion-induced arrhythmias in relation to 6-keto-PGF1 alpha and thromboxane (TXB2) release was studied. After 30 min of global ischemia, the incidence (total) of ventricular fibrillation (VF) and ventricular tachycardia (VT) was reduced by 2-week pretreatment of the rats with 30 and 100 mg/kg of cicletanine (VF, 33% at 30 mg/kg and 25% at 100 mg/kg vs. 91% in untreated rats; VT, 42% at 30 mg/kg and 42% at 100 mg/kg vs. 100% in untreated rats), while lower doses of cicletanine (3 and 10 mg/kg) failed to reduce the incidence of reperfusion-induced rhythm disturbances. Reperfusion of the ischemic myocardium resulted in a fivefold increase of 6-keto-PGF1 alpha and TXB2 release in the perfusion effluent of fibrillated hearts but not in the perfusion effluent of nonfibrillated hearts. Cicletanine failed to influence the reperfusion-stimulated release of 6-keto-PGF1 alpha and TXB2. These results indicate that the anti-arrhythmic effect of cicletanine in the reperfused myocardium is not related to PGI2 and thromboxane A2 release.  相似文献   

15.
Diabetic heart is suggested to exhibit either increased or decreased resistance to ischemic injury. Ischemic preconditioning suppresses arrhythmias in the normal heart, whereas relatively little is known about its effects in the diseased myocardium. Our objective was to investigate whether development of diabetes mellitus modifies the susceptibility to ischemia-induced arrhythmias and affects preconditioning in the rat heart. Following 1 and 9 weeks of streptozotocin-induced (45 mg/kg, i.v.) diabetes, the hearts were Langendorff-perfused at constant pressure of 70 mm Hg and subjected to test ischemia induced by 30 min occlusion of the left anterior descending (LAD) coronary artery. Preconditioning consisted of one cycle of 5 min ischemia and 10 min reperfusion, prior to test ischemia. Susceptibility to ischemia-induced arrhythmias was lower in 1-week diabetics: only 42 % of diabetic hearts exhibited ventricular tachycardia (VT) and 16 % had short episodes of ventricular fibrillation (VF) as compared to VT 100 % and VF 70 % (including sustained VF 36 %) in the non-diabetics (P<0.05). Development of the disease was associated with an increased incidence of VT (VT 92 %, not significantly different from non-diabetics) and longer total duration of VT and VF at 9-weeks, as compared to 1-week diabetics. Preconditioning effectively suppressed arrhythmias in the normal hearts (VT 33 %, VF 0 %). However, it did not provide any additional antiarrhythmic protection in the acute diabetes. On the other hand, in the preconditioned 9-weeks diabetic hearts, the incidence of arrhythmias tended to decrease (VT 50 %, transient VF 10 %) and their severity was reduced. Diabetic rat hearts are thus less susceptible to ischemia-induced arrhythmias in the acute phase of the disease. Development of diabetes attenuates increased ischemic tolerance, however, diabetic hearts in the chronic phase can benefit more from ischemic preconditioning, due to its persisting influence.  相似文献   

16.
Endothelin-1 (ET-1) is a potent vasoconstrictor peptide, which may also elicit severe ventricular arrhythmias. The aims of our study were to compare the effects of total left anterior descending coronary artery (LAD) occlusion to intracoronary (ic.) ET-1 administration and to investigate the pathomechanism of ET-1 induced arrhythmias in 3 groups of anesthetized, open-chest mongrel dogs. In group A (n=10) a total LAD occlusion was carried out for 30 min, followed by a 60 min reperfusion period. In groups B and C ET-1 was administered into LAD for 30 min at a rate of 30 pmol/min (n=6) and 60 pmol/min (n=8). Epi- and endocardial monophasic action potential (MAP) recordings were performed to detect electrophysiologic changes and ischemia Blood samples for lactate measurements were collected from the coronary sinus (CS) and from the femoral artery. Infrared imaging was applied to follow epimyocardial heat emission changes. At the end of the ET-1 infusion period coronary blood flow (CBF) was reduced significantly in groups B and C (deltaCBF30MIN B: 21+/-2%, p<0.05; C: 35+/-2%, p<0.05), paralleled by a significant epimyocardial temperature decrease in group C (deltaT30MIN: -0.65+/-0.29 degrees C, p<0.05). Two dogs died of ventricular fibrillation (VF) in the reperfusion period in group A. Ventricular premature contractions and non-sustained ventricular tachycardic episodes appeared in group B, whereas six dogs died of VF in group C. Significant CS lactate level elevation indicating ischemia was observed only in group A from the 30th min occlusion throughout the reperfusion period (control vs. 30 min: 1.3+/-0.29 vs. 2.2+/-0.37 mmol/l, p<0.05). Epi- and endocardial MAP durations (MAPD90) and left ventricular epicardial (LV(EPI)) upstroke velocity decreased significantly in group A in the occlusion period. ET-1 infusion significantly increased LV(EPI) MAPD90 in group B and both MAPD90-s in group C. In conclusion, ischemic MAP and CS lactate changes were observed only in group A. Although ET-1 reduced CBF significantly in groups B and C, neither MAP nor lactate indicated ischemic alterations. ET-1 induced major ventricular arrhythmias appeared before signs of myocardial ischemia developed, though reduced CBF presumably contributed to sustaining the arrhythmias.  相似文献   

17.
The present study was to test the hypothesis that anti-arrhythmic properties of verapamil may be accompanied by preserving connexin43 (Cx43) protein via calcium influx inhibition. In an in vivo study, myocardial ischemic arrhythmia was induced by occlusion of the left anterior descending (LAD) coronary artery for 45 min in Sprague-Dawley rats. Verapamil, a calcium channel antagonist, was injected i.v. into a femoral vein prior to ischemia. Effects of verapamil on arrhythmias induced by Bay K8644 (a calcium channel agonist) were also determined. In an ex vivo study, the isolated heart underwent an initial 10 min of baseline normal perfusion and was subjected to high calcium perfusion in the absence or presence of verapamil. Cardiac arrhythmia was measured by electrocardiogram (ECG) and Cx43 protein was determined by immunohistochemistry and western blotting. Administration of verapamil prior to myocardial ischemia significantly reduced the incidence of ventricular arrhythmias and total arrhythmia scores, with the reductions in heat rate, mean arterial pressure and left ventricular systolic pressure. Verapamil also inhibited arrhythmias induced by Bay K8644 and high calcium perfusion. Effect of verapamil on ischemic arrhythmia scores was abolished by heptanol, a Cx43 protein uncoupler and Gap 26, a Cx43 channels inhibitor. Immunohistochemistry data showed that ischemia-induced redistribution and reduced immunostaining of Cx43 were prevented by verapamil. In addition, diminished expression of Cx43 protein determined by western blotting was observed following myocardial ischemia in vivo or following high calcium perfusion ex vivo and was preserved after verapamil administration. Our data suggest that verapamil may confer an anti-arrhythmic effect via calcium influx inhibition, inhibition of oxygen consumption and accompanied by preservation of Cx43 protein.  相似文献   

18.
Isolated rat hearts were subjected to global ischemia (15 min) and reperfusion (20 min). Transmembrane potentials were recorded on the epicardial surface and contractile force was measured. Ischemia reduced the resting potential, the action potential (AP) amplitude and the AP duration (APD) in control animals. Pretreatment with synthetic antioxidant ionol (BHT, 50 mg/kg, per os) didn't influence the time course of changes in the resting potential and AP amplitude during ischemia, but significantly increased APD. In the pretreated group, 5 min after the aorta clamping, the APD at 50% and 90% levels of repolarization was 36% (p less than 0.05) and 13% (p less than 0.1) higher in comparison to the preischemic level and 10 min after clamping by 27% (p less than 0.1) and 29% (p less than 0.05), respectively. By the end of ischemia in the pretreated group, APD re-decreased almost to basal level, but in control group, it remained decreased. During reperfusion BHT improved the recovery of bioelectrical activity and the contractile function. The BHT 10-fold reduced the malignant arrhythmias duration and 2.5-fold the incidence of ventricular tachycardia and fibrillation during reperfusion. These results indicate that the induced by BHT increase in APD can contribute to the mechanism of BHT antiarrhythmic action.  相似文献   

19.
Inhalational anesthetic-induced preconditioning (APC) has been shown to reduce infarct size and attenuate contractile dysfunction caused by myocardial ischemia. Only a few studies have reported the effects of APC on arrhythmias during myocardial ischemia-reperfusion injury, focusing exclusively on reperfusion. Accordingly, the aim of the present study was to examine the influence of APC on ventricular arrhythmias evoked by regional no-flow ischemia. APC was induced in adult male Wistar rats by 12-min exposures to two different concentrations (0.5 and 1.0 MAC) of isoflurane followed by 30-min wash-out periods. Ventricular arrhythmias were assessed in the isolated perfused hearts during a 45-min regional ischemia and a subsequent 15-min reperfusion. Myocardial infarct size was determined after an additional 45 min of reperfusion. The incidence, severity and duration of ventricular arrhythmias during ischemia were markedly reduced by APC. The higher concentration of isoflurane had a larger effect on the incidence of ventricular fibrillation than the lower concentration. The incidence of ventricular tachycardia and reversible ventricular fibrillation during reperfusion was also significantly reduced by APC; the same was true for myocardial infarct size. In conclusion, we have shown that preconditioning with isoflurane confers profound protection against myocardial ischemia- and reperfusion-induced arrhythmias and lethal myocardial injury.  相似文献   

20.
To determine specificity of rodent models of arrhythmia for different Vaughan Williams classes of antiarrhythmic drugs, we tested 17 drugs from the four classes in one in vitro and four in vivo models. In the mouse chloroform-induced ventricular fibrillation model and in the guinea pig ouabain-induced arrhythmia model, drugs of classes I (amefalone, aprindine, lidocaine, mexiletine, phenytoin, procainamide, or quinidine), II (metoprolol or propranolol), and IV (bepridil) were active. Class III drugs (bretylium, clofilium, or melperone did not suppress ouabain arrhythmias, but were active in the mouse chloroform model. In the rat coronary artery ligation model, disopyramide (class I), amefalone and melperone significantly (P less than 0.05) reduced the number of extrasystoles. Propranolol, sotalol, and verapamil (class IV) were less effective. In the rat coronary artery ligation/reperfusion model, all four classes of antiarrhythmic agents were active in vitro (isolated heart) and in vivo (anesthetized rat). Thus, one model of automaticity, the guinea pig ouabain model, detected class I, II, and IV drugs, whereas another automaticity model, the mouse chloroform model, also detected class III agents. The model of reentry induced by ischemia plus reperfusion (rat coronary artery ligation reperfusion) can be recommended as a screen for new antiarrhythmic agents based on its sensitivity to all four classes of antiarrhythmic drugs. The Vaughan Williams class of an antiarrhythmic agent must be determined, however, by additional mechanism studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号