首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This review describes and summarizes data on the structure and properties of water under normal conditions, at high salt concentration and under high pressure. We correlate the observed conformational changes in nucleic acids with changes in water structure and activity, and suggest a mechanism of conformational transitions of nucleic acids which accounts for changes in the water structure. From the biophysical, biochemical and crystallographic data we conclude that the Z-DNA form can be induced only at low water activity produced by high salt concentrations or high pressure, and accompanied by the stabilizing conjugative effect of the cytidine O4' electrons of the CG base pairs.  相似文献   

2.
We analysed conformational changes of yeast tRNA(Phe) induced by high hydrostatic pressure (HHP) measured by Fourier-transform infrared (FTIR) and fluorescence spectroscopies. High pressure influences RNA conformation without other cofactors, such as metal ions and salts. FTIR spectra of yeast tRNA(Phe) recorded at high hydrostatic pressure up to 13 kbar with and without magnesium ions showed a shift of the bands towards higher frequencies. That blue shift is due to an increase a higher energy of bonds as a result of shortening of hydrogen bonds followed by dehydration of tRNA. The fluorescence spectra of Y-base tRNA(Phe) at high pressure up to 3 kbar showed a decrease of the intensity band at 430 nm as a consequence of conformational rearrangement of the anticodon loop leading to exposure of Y-base side chain to the solution. We suggest that structural transition of nucleic acids is driven by the changes of water structure from tetrahedral to a cubic-like geometry induced by high pressure and, in consequence, due to economy of hydration.  相似文献   

3.
Human butyrylcholinesterase is a nonspecific enzyme of clinical, pharmacological and toxicological significance. Although the enzyme is relatively stable, its activity is affected by numerous factors, including pressure. In this work, hydrostatic pressure dependence of the intrinsic tryptophan fluorescence in native and salted human butyrylcholinesterase was studied up to the maximum pressure at ambient temperature of about 1200 MPa. A correlated large shift toward long wavelengths and broadening observed at pressures between 200 and 700 MPa was interpreted as due to high pressure-induced denaturation of the protein, leading to an enhanced exposure of tryptophan residues into polar solvent environment. This transient process in native butyrylcholinesterase presumably involves conformational changes of the enzyme at both tertiary and secondary structure levels. Pressure-induced mixing of emitting local indole electronic transitions with quenching charge transfer states likely describes the accompanying fluorescence quenching that reveals different course from spectral changes. All the pressure-induced changes turned irreversible after passing a mid-point pressure of about 400 ± 50 MPa. Addition of either 0.1 M ammonium sulphate (a kosmotropic salt) or 0.1 M lithium thiocyanate (a chaotropic salt) to native enzyme similarly destabilized its structure.  相似文献   

4.
We have investigated the acid- and base-induced conformational transitions of equinatoxin II (EqTxII), a pore-forming protein, by a combination of CD-spectroscopy, ultrasonic velocimetry, high precision densimetry, viscometry, gel electrophoresis, and hemolytic activity assays. Between pH 7 and 2, EqTxII does not exhibit any significant structural changes. Below pH 2, EqTxII undergoes a native-to-partially unfolded transition with a concomitant loss of its rigid tertiary structure and the formation of a non-native secondary structure containing additional alpha-helix. The acid-induced denatured state of EqTxII exhibits a higher intrinsic viscosity and a lower adiabatic compressibility than the native state. Above 50 degrees C, the acid-induced denatured state of EqTxII reversibly denatures to a more unfolded state as judged by the far UV CD spectrum of the protein. At alkaline pH, EqTxII undergoes two base-induced conformational transitions. The first transition occurs between pH 7 and 10 and results in a partial disruption of tertiary structure, while the secondary structure remains largely preserved. The second transition occurs between pH II and 13 and results in the complete loss of tertiary structure and the formation of a non-native, more alpha-helical secondary structure. The acid- and base-induced partially unfolded states of EqTxII form water-soluble oligomers at low salt, while at high salt (> 350 mM NaCl), the acid-induced denatured state precipitates. The hemolytic activity assay shows that the acid- and base-induced denatured states of EqTxII exhibit significantly reduced activity compared to the native state.  相似文献   

5.
We used FTIR spectroscopy to comparatively study the hydration of films prepared from nucleic acids (DNA and double-stranded RNA) and lipids (phosphatidylcholines and phosphatidylethanolamines chosen as the most abundant ones) at room temperature by varying the ambient relative humidity in terms of solvent-induced structural changes. The nucleic acids and phospholipids both display examples of polymorphism on the one hand and structural conservatism on the other; even closely related representatives behave differently in this respect. DNA undergoes a hydration-driven A-B conformational transition, but RNA maintains an A-like structure independently of the water activity. Similarly, a main transition between the solid and liquid-crystalline phases can be induced lyotropically in certain phosphatidylcholines, while their phosphatidylethanolamine counterparts do not exhibit chain melting under the same conditions. A principal difference concerning the structural changes that occur in the studied biomolecules is given by the relevant water-substrate stoichiometries. These are rather high in DNA and often low in phospholipids, suggesting different mechanisms of action of the hydration water that appears to induce structural changes on global- and local-mode levels, respectively.  相似文献   

6.
Molecular dynamics simulations on DNA and RNA that include solvent are now being performed under realistic environmental conditions of water activity and salt. Improvements to force-fields and treatments of long-range interactions have significantly increased the reliability of simulations. New studies of sequence effects, axis bending, solvation and conformational transitions have appeared.  相似文献   

7.
Formation and stabilization of RNA structure in the cell depends on its interaction with solvent and metal ions. High hydrostatic pressure (HHP) is a convenient tool in an analysis of the role of small molecules in the structure stabilization of biological macromolecules. Analysis of HHP effect and various concentrations of ions showed that water induce formation of the active ribozyme structure. So, it is clear that water is the driving force of conformational changes of nucleic acid.  相似文献   

8.
Cold shock proteins (Csps) are assumed to play a central role in the regulation of gene expression under cold shock conditions. Acting as single-stranded nucleic acid-binding proteins, they trigger the translation process and are therefore involved in the compensation of the influence of low temperatures (cold shock) upon the cell metabolism. However, it is unknown so far how Csps are switched on and off as a function of temperature. The aim of the present study is the study of possible structural changes responsible for this switching process. (1)H-(15)N HSQC spectra recorded at different temperatures and chemical-shift analysis have indicated subtle conformational changes for the cold-shock protein from the hyperthermophilic bacterium Thermotoga maritima (TmCsp) when the temperature is elevated from 303 K to its physiological temperature (343 K). The three-dimensional structure of TmCsp was determined by nuclear magnetic resonance (NMR) spectroscopy at 343 K to obtain quantitative information concerning these structural changes. By use of residual dipolar couplings, the loss of NOE information at high temperature could be compensated successfully. Most pronounced conformational changes compared with room-temperature conditions are observed for amino acid residues closely neighbored to two characteristic beta-bulges and a well-defined loop region of the protein. Because the residues shown to be responsible for the interaction of TmCsp with single-stranded nucleic acids can almost exclusively be found within these regions, nucleic acid-binding activity might be down-regulated with increasing temperature by the described conformational changes.  相似文献   

9.
The tertiary structure of nucleic acids results from an equilibrium between electrostatic interactions of phosphates, stacking interactions of bases, hydrogen bonds between polar atoms and water molecules. Water interactions with ribonucleic acid play a key role in its structure formation, stabilization and dynamics. We used high hydrostatic pressure and osmotic pressure to analyze changes in RNA hydration. We analyzed the lead catalyzed hydrolysis of tRNAPhe from S. cerevisiae as well as hydrolytic activity of leadzyme. Pb(II) induced hydrolysis of the single phosphodiester bond in tRNAPhe is accompanied by release of 98 water molecules, while other molecule, leadzyme releases 86.  相似文献   

10.
Conformational transitions and functional stability of the bile salt hydrolase (BSH; cholylglycine EC: 3.5.1.24) from Bifidobacterium longum (BlBSH) cloned and expressed in E. coli were studied under thermal, chemical and pH-mediated denaturation conditions using fluorescence and CD spectroscopy. Thermal and Gdn-HCl-mediated denaturation of BlBSH is a multistep process of inactivation and unfolding. The inactivation and unfolding of the enzyme was found to be irreversible. Enzyme activity seems sensitive to even minor conformational changes at the active site. Thermal denaturation as such did not result in any insoluble protein aggregates. However, on treating with 0.25 - 1 M Gdn-HCl the enzyme showed increasing aggregation at temperatures of 40 - 55 degrees C indicating more complex structural changes taking place in the presence of chemical denaturants. The enzyme secondary structure was still intact at acidic pH (pH 1 - 3). The perturbation in the tertiary structure at the acidic pH was detected through freshly formed solvent exposed hydrophobic patches on the enzyme. These changes could be due to the formation of an acid-induced molten globule-like state.  相似文献   

11.
The structural and functional properties of arginine kinase (AK) in alkaline conditions in the absence or presence of salt have been investigated. The conformational changes of AK during alkaline unfolding and salt-induced folding at alkaline pH were monitored using intrinsic fluorescence emission, binding of the fluorescence probe 1-anilino-8-naphthalenesulfonate and circular dichroism. The results for the alkaline unfolded enzyme showed that much lower pH (11.0) was required to cause the complete loss of AK activity than was required to cause an obvious conformational change of the enzyme. Compared with the completely unfolded state in 5 M urea, the high pH denatured enzyme had some residual secondary and tertiary structure even at pH 13.0. Increasing the ionic strength by adding salt at pH 12.75 resulted in the formation of a relatively compact tertiary structure and a little new secondary structure with hydrophobic surface enhancement. These results indicate that the partially folded state formed under alkaline conditions may have similarities to the molten globule state which is compact, but it has a poorly defined tertiary structure and a native-like secondary structure.  相似文献   

12.
Protein folding and conformational changes are influenced by protein-water interactions and, as such, the energetics of protein function are necessarily linked to water activity. Here, we have chosen the helix-coil transition in poly(glutamic acid) as a model system to investigate the importance of hydration to protein structure by using the osmotic stress method combined with circular dichroism spectroscopy. Osmotic stress is applied using poly(ethylene glycol), molecular weight of 400, as the osmolyte. The energetics of the helix-coil transition under applied osmotic stress allows us to calculate the change in the number of preferentially included water molecules per residue accompanying the thermally induced conformational change. We find that osmotic stress raises the helix-coil transition temperature by favoring the more compact α-helical state over the more hydrated coil state. The contribution of other forces to α-helix stability also are explored by varying pH and studying a random copolymer, poly(glutamic acid-r-alanine). In this article, we clearly show the influence of osmotic pressure on the peptide folding equilibrium. Our results suggest that to study protein folding in vitro, the osmotic pressure, in addition to pH and salt concentration, should be controlled to better approximate the crowded environment inside cells.  相似文献   

13.
Understanding the intermolecular interaction potential, V(r), of proteins under the influence of temperature, pressure, and salt concentration is essential for understanding protein aggregation, crystallization, and protein phase behavior in general. Here, we report small-angle x-ray scattering studies on dense lysozyme solutions of high ionic strength as a function of temperature and pressure. We show that the interaction potential changes in a nonlinear fashion over a wide range of temperatures, salt, and protein concentrations. Neither temperature nor protein and salt concentration lead to marked changes in the pressure dependence of V(r), indicating that changes of the water structure dominate the pressure dependence of the intermolecular forces. Furthermore, by analysis of the temperature, pressure, and ionic strength dependence of the normalized second virial coefficient, b2, we show that the interaction can be fine-tuned by pressure, which can be used to optimize b2 values for controlled protein crystallization.  相似文献   

14.
Hydrophobins are amphiphilic proteins secreted by filamentous fungi in a soluble form, which can self-assemble at hydrophilic/hydrophobic or water/air interfaces to form amphiphilic layers that have multiple biological roles. We have investigated the conformational changes that occur upon self-assembly of six hydrophobins that form functional amyloid fibrils with a rodlet morphology. These hydrophobins are present in the cell wall of spores from different fungal species. From available structures and NMR chemical shifts, we established the secondary structures of the monomeric forms of these proteins and monitored their conformational changes upon amyloid rodlet formation or thermal transitions using synchrotron radiation circular dichroism and Fourier-transform infrared spectroscopy (FT-IR). Thermal transitions were followed by synchrotron radiation circular dichroism in quartz cells that allowed for microbubbles and hence water/air interfaces to form and showed irreversible conformations that differed from the rodlet state for most of the proteins. In contrast, thermal transitions on hermetic calcium fluoride cells showed reversible conformational changes. Heating hydrophobin solutions with a water/air interface on a silicon crystal surface in FT-IR experiments resulted in a gain in β-sheet content typical of amyloid fibrils for all except one protein. Rodlet formation was further confirmed by electron microscopy. FT-IR spectra of pre-formed hydrophobin rodlet preparations also showed a gain in β-sheet characteristic of the amyloid cross-β structure. Our results indicate that hydrophobins are capable of significant conformational plasticity and the nature of the assemblies formed by these surface-active proteins is highly dependent on the interface at which self-assembly takes place.  相似文献   

15.
The appearance of the slow mode, revealed by dynamic light scattering (DLS) measurements in Micrococcus luteus DNA with high GC content, and the effect of guanine sequences on changes of DNA physical state and conformational transitions were investigated. We used two different spectroscopic approaches: DLS, to evidence the relatively slowly diffusing particles arising at high salt concentration, ascribable to the formation of large unspecific molecular aggregates, and circular dichroism spectroscopy, to identify these entities. Our results bring us to conclude that a peculiar, unconventional, structural transition, due to the presence of long guanine stretches, in a well-defined experimental condition, can occur. We comment on the biological implications to detect, by spectroscopic measurements, such an unusual structure involved in the stability, protection and replication maintenance along the human telomeric G-rich strand.  相似文献   

16.
Structure of cubic insulin crystals in glucose solutions.   总被引:1,自引:0,他引:1       下载免费PDF全文
X-ray structures of cubic insulin crystals in high concentrations of glucose at different pH levels and temperatures have been refined to high resolution. We have identified one glucose-binding site near the N-terminus of the A-chain whose occupancy is pH dependent. The effects of reduced water activity on the ordered protein and solvent structures have been examined. Our analysis showed no notable conformational changes in the ordered protein structures or ordered solvent molecules near the protein surface, but the presence of glucose does have a significant effect on the overall density distribution of the bulk solvent in the solvent-accessible volume. We compared the structure of cubic insulin at room temperature and liquid-nitrogen temperature, under identical solvent conditions, using glucose as a cryoprotectant. In this case, we found that the average temperature factor of the protein is reduced and more water molecules can be identified, but there are no significant changes in the protein conformation.  相似文献   

17.
Macgregor RB 《Biopolymers》1998,48(4):253-263
In comparison to other biomolecules, the effect of hydrostatic pressure on the conformational stability of DNA and RNA has received scant attention. However, the increasing interest in the hydration of biological molecules has resulted in a concomitant increase in the number of investigations of the effect of pressure upon the structure of nucleic acids. In this review, studies concerning the effect of pressure on DNA and RNA oligomers and polymers are presented. The greatest amount of research has been directed at studying the effect of pressure on the stability of the double helix. In general, under most conditions, the helical form of DNA or RNA is stabilized by pressure. The extent of stabilization is small relative to the effect of pressure on other biomolecular systems such as lipid membranes or protein quaternary structure. The absence of a larger pressure effect arises, in part because the state of ionization does not change as a function of the helical state. Initial experiments have also appeared on the effect of pressure upon helix-formation kinetics, B-Z and A-Z equilibria, and DNA topology. Fourier-transform ir spectroscopy of DNA polymers under high pressure has yielded data that showing that pressure does not induce large-scale structural changes.  相似文献   

18.
Pressures in the 100 MPa range are known to have an enormous number of effects on the action of proteins, but straightforward means for determining the structural basis of these effects have been lacking. Here, crystallography has been used to probe effects of pressure on sperm whale myoglobin structure. A comparison of pressure effects with those seen at low pH suggests that structural changes under pressure are interpretable as a shift in the populations of conformational substates. Furthermore, a novel high-pressure protein crystal-cooling method has been used to show low-temperature metastability, providing an alternative to room temperature, beryllium pressure cell-based techniques. The change in protein structure due to pressure is not purely compressive and involves conformational changes important to protein activity. Correlation with low-pH structures suggests observed structural changes are associated with global conformational substates. Methods developed here open up a direct avenue for exploration of the effects of pressure on proteins.  相似文献   

19.
Y Goto  Y Hagihara 《Biochemistry》1992,31(3):732-738
It is known that, while melittin at micromolar concentrations is unfolded under conditions of low ionic strength at neutral pH, it adopts a tetrameric alpha-helical structure under conditions of high ionic strength, at alkaline pH, or at high peptide concentrations. To understand the mechanism of the conformational transition of melittin, we examined in detail the conformation of melittin under various conditions by far-UV circular dichroism at 20 degrees C. We found that the helical conformation is also stabilized by strong acids such as perchloric acid. The effects of various acids varied largely and were similar to those of the corresponding salts, indicating that the anions are responsible for the salt- or acid-induced transitions. The order of effectiveness of various monovalent anions was consistent with the electroselectivity series of anions toward anion-exchange resins, indicating that the anion binding is responsible for the salt- or acid-induced transitions. From the NaCl-, HCl-, and alkaline pH-induced conformational transitions, we constructed a phase diagram of the anion- and pH-dependent conformational transition. The phase diagram was similar in shape to that of acid-denatured apomyoglobin [Goto, Y., & Fink, A.L. (1990) J. Mol. Biol. 214, 803-805] or that of the amphiphilic Lys, Leu model polypeptide [Goto, Y., & Aimoto, S. (1991) J. Mol. Biol. 218, 387-396], suggesting a common mechanism of the conformational transition. The anion-, pH-, and peptide concentration-dependent conformational transition of melittin was explained on the basis of an equation in which the conformational transition is linked to proton and anion binding to the titratable groups.  相似文献   

20.
The process of pressure-induced denaturation of carboxypeptidase Y and the role of the carbohydrate moiety in its response to pressure and low temperature were investigated by measuring in situ the catalytic activity and, the intrinsic and 8-anilino-1-naphthalene sulfonic acid binding fluorescences. Pressure-induced denaturation of carboxypeptidase Y is a process involving at least three transitions. Low pressures (below 150 MPa) induced slight conformational changes characterized by a slight decrease in the center of the spectral mass of intrinsic fluorescence, whereas no changes in 8-anilino-1-naphthalene sulfonic acid binding fluorescence were observed and 80% of the catalytic activity remained. Higher pressure (150-500 MPa) induced further conformational changes, characterized by a large decrease in the center of the spectral mass of intrinsic fluorescence, a large increase in the 8-anilino-1-naphthalene sulfonic acid binding fluorescence and the loss of all catalytic activity. Thus, this intermediate exhibited characteristics of molten globule-like state. A further increase, in pressure (above 550 MPa) induced transition from this first molten globule-like state to a second molten globule-like state. This two-stage denaturation process can be explained by assuming the existence of two independent structural domains in the carboxypeptidase molecule. A similar three-transition process was found for unglycosylated carboxypeptidase Y, but, the first two transitions clearly occurred at lower pressures than those for glycosylated carboxypeptidase Y. These findings indicate that the carbohydrate moiety protects carboxypeptidase Y against pressure-induced denaturation. The origin of the protective effects is discussed based on the known crystallographic structure of CPY.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号