首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Inflammatory response plays an important role in the pathogenesis of secondary damage after traumatic brain injury (TBI). The inflammasome is a multiprotein complex involved in innate immunity and a number of studies have suggested that the inflammasome plays a critical role in a host inflammatory signaling. Nucleotide-binding domain, leucine-rich repeat, pyrin domain containing 3 (NLRP3) is a key component of the NLRP3-inflammasome, which also includes apoptotic speck-containing protein (ASC) with a cysteine protease (caspase) -activating recruitment domain and pro-caspase1. Activation of the NLRP3-inflammasome causes the processing and release of the interleukin 1 beta (IL-1β) and interleukin 18 (IL-18). Based on this, we hypothesized that the NLRP3-inflammasome could participate in the inflammatory response following TBI. However, the expression of NLRP3-inflammasome in cerebral cortex after TBI is not well known. Rats were randomly divided into control, sham and TBI groups (including 6 h, 1 day, 3 day and 7 day sub-group). TBI model was induced, and animals were sacrificed at each time point respectively. The expression of NLRP3-inflammasome was measured by quantitative real-time polymerase chain reaction, western blot and immunohistochemistry respectively. Immunofluorescent double labeling was performed to identify the cell types of NLRP3-inflammasome’s expression. Moreover, enzyme linked immunosorbent assay was used to detect the alterations of IL-1β and IL-18 at each time point post-injury. The results showed that, TBI could induce assembly of NLRP3-inflammasome complex, increased expression of ASC, activation of caspase1, and processing of IL-1β and IL-18. These results suggested that NLRP3-inflammasome might play an important role in the inflammation induced by TBI and could be a target for TBI therapy.  相似文献   

2.
We reported that the ethanol-induced innate immune response by activating TLR4 signaling triggers gliosis and neuroinflammation. Ethanol also activates other immune receptors, such as NOD-like-receptors, and specifically NLRP3-inflammasome in astroglial cells, to stimulate caspase-1 cleavage and IL-1β and IL-18 cytokines production. Yet, whether microglia NLRs are also sensitive to the ethanol effects that contribute to neuroinflammation is uncertain. Using cerebral cortexes of the chronic alcohol-fed WT and TLR4?/? mice, we demonstrated that chronic ethanol treatment enhanced TLR4 mediated-NLRP3/Caspase-1 complex activation, and up-regulated pro-inflammatory cytokines and chemokines levels. Ethanol-induced NLRP3-inflammasome activation and mitochondria-ROS generation were also observed in cultured microglial cells. The up-regulation of CD45high/CD11b+ cell populations and matrix metalloproteinase-9 levels was also noted in the cortexes of the ethanol-treated WT mice. Notably, elimination of the TLR4 function abolished most ethanol-induced neuroinflammatory effects. Thus, our results demonstrate that ethanol triggers TLR4-mediated NLRP3-inflammasome activation in glial cells, and suggest that microglia stimulation may compromise the permeability of blood–brain barrier events to contribute to ethanol-induced neuroinflammation and brain damage.  相似文献   

3.
4.
IntroductionInterleukin-1β (IL-1β) is a major inflammatory cytokine, produced predominantly by innate immune cells through NLRP3-inflammasome activation. Both intrinsic and extrinsic danger signals may activate NLRP3. Genetic variations in NLRP3-inflammasome components have been reported to influence rheumatoid arthritis (RA) susceptibility and severity. We sought to assess the activity of NLRP3-inflammasome in patients with active RA compared to healthy individuals.MethodIntracellular protein expression of NLRP3, ASC, pro- and active caspase-1, pro- and active IL-1β was assessed by immunoblotting both at baseline and upon inflammasome activation. NLRP3 function (IL-1β secretion) was assessed upon priming of TLR2 (Pam(3)CysSK(4), TLR3 (poly(I:C)) or TLR4 (LPS) and ATP sequential treatment. We used caspase inhibitors (casp-1, 3/7 and 8) to assess their contribution to IL-1β maturation. All experiments were performed in whole blood cells.ResultsActive RA patients (n = 11) expressed higher basal intracellular levels of NLRP3 (p < 0.008), ASC (p < 0.003), active caspase-1 (p < 0.02) and pro-IL-1β (p < 0.001). Upon priming with TLR4 (LPS) and ATP, RA-derived cell extracts (n = 7) displayed increased expression of NLRP3 (p < 0.01) and active caspase-1 (p < 0.001). Secreted IL-1β in culture supernatants from whole blood cells activated with TLR4 (LPS) or TLR3 agonist (poly(I:C)) plus ATP was higher in RA patients (n = 20) versus controls (n = 18) (p < 0.02 for both). Caspase-1 inhibition significantly reduced IL-1β secretion induced by all stimuli, whereas caspase-8 inhibition affected only TLR4 and TLR3 cell priming.ConclusionPatients with active RA have increased expression of NLRP3 and NLRP3-mediated IL-1β secretion in whole blood cells upon stimulation via TLR3 and TLR4 but not TLR2. In these patients, IL-1β secretion seems to be predominately driven by caspase-1 and caspase-8. Targeting NLRP3 or downstream caspases may be of benefit in suppressing IL-1β production in RA.  相似文献   

5.

Background

The Q705K polymorphism in NLRP3 has been implicated in several chronic inflammatory diseases. In this study we determine the functional role of this commonly occurring polymorphism using an in-vitro system.

Principal Findings

NLRP3-WT and NLRP3-Q705K were retrovirally transduced into the human monocytic cell line THP-1, followed by the assessment of IL-1β and IL-18 levels in the cell culture supernatant. THP-1 cells expressing the above NLRP3 variants were sorted based upon Green Fluorescent Protein (GFP) expression. Cytokine response to alum (one of the most widely used adjuvants in vaccines) in the cells stably expressing NLRP3-WT and NLRP3-Q705K were determined. IL-1β and IL-18 levels were found to be elevated in THP-1 cells transduced with NLRP3-Q705K compared to the NLRP3-WT. Upon exposure to alum, THP-1 cells stably expressing NLRP3-Q705K displayed an increased release of IL-1β, IL-18 and TNF-α, in a caspase-1 and IL-1 receptor-dependent manner.

Conclusions

Collectively, these findings show that the Q705K polymorphism in NLRP3 is a gain-of-function alteration leading to an overactive NLRP3 inflammasome. The option of IL-1β blockade may be considered in patients with chronic inflammatory disorders that are unresponsive to conventional treatments.  相似文献   

6.
Escherichia coli heat-labile enterotoxin (LT) is a powerful mucosal adjuvant; however, it is associated with toxic effects when delivered intranasally, and its mechanism of action is poorly understood. In this article, we demonstrate that LT acts as a highly effective adjuvant when administered parenterally, promoting Ag-specific IL-17, as well as IFN-γ, IL-4, and IL-10 production in response to coadministered Ags. We found that the adjuvant activity of LT was mediated in part by inducing dendritic cell (DC) activation; LT promoted CD80 and CD86 expression by DCs and enhanced IL-1α, IL-1β, and IL-23 production. An LT mutant, LTK63, that lacks enzyme activity was less effective than the wild-type toxin in promoting DC maturation and the development of Ag-specific Th17 cells. LT enhanced IL-23 and IL-1α production from DCs via activation of ERK MAPK and IL-1β secretion through activation of caspase-1 and the NLRP3 inflammasome. These cytokines played a major role in promoting Th17 responses by LT and LTK63. The induction of Th17 cells in vivo in response to LT and LTK63 as adjuvants was significantly reduced in IL-1RI-deficient mice. Finally, using a murine respiratory infection model, we demonstrated that LT can act as a highly effective adjuvant for a pertussis vaccine, promoting Ag-specific Th17 cells and protection against Bordetella pertussis challenge, which was significantly reduced in IL-17-defective mice. Our findings provide clear evidence that LT can promote protective immune responses in part through induction of innate IL-1 and, consequently, Th17 cells.  相似文献   

7.
Komune N  Ichinohe T  Ito M  Yanagi Y 《Journal of virology》2011,85(24):13019-13026
Inflammasomes are cytosolic protein complexes that stimulate the activation of caspase-1, which in turn induces the secretion of the inflammatory cytokines Interleukin-1β (IL-1β) and IL-18. Recent studies have indicated that the inflammasome known as the NOD-like-receptor-family, pyrin domain-containing 3 (NLRP3) inflammasome recognizes several RNA viruses, including the influenza and encephalomyocarditis viruses, whereas the retinoic acid-inducible gene I (RIG-I) inflammasome may detect vesicular stomatitis virus. We demonstrate that measles virus (MV) infection induces caspase-1-dependent IL-1β secretion in the human macrophage-like cell line THP-1. Gene knockdown experiments indicated that IL-1β secretion in MV-infected THP-1 cells was mediated by the NLRP3 inflammasome but not the RIG-I inflammasome. MV produces the nonstructural V protein, which has been shown to antagonize host innate immune responses. The recombinant MV lacking the V protein induced more IL-1β than the parental virus. THP-1 cells stably expressing the V protein suppressed NLRP3 inflammasome-mediated IL-1β secretion. Furthermore, coimmunoprecipitation assays revealed that the V protein interacts with NLRP3 through its carboxyl-terminal domain. NLRP3 was located in cytoplasmic granular structures in THP-1 cells stably expressing the V protein, but upon inflammasome activation, NLRP3 was redistributed to the perinuclear region, where it colocalized with the V protein. These results indicate that the V protein of MV suppresses NLRP3 inflammasome-mediated IL-1β secretion by directly or indirectly interacting with NLRP3.  相似文献   

8.
In a previous report, we observed that the phytol-derived immunostimulant, PHIS-01 (phytanol), is a nontoxic oil-in-water adjuvant which is superior to most commercial adjuvants. In contrast, the parent diterpene alcohol phytol, though highly effective as an adjuvant, is relatively toxic. To assess the importance of the polar functional group in PHIS-01, we prepared two new compounds PHIS-02 (phytanyl amine) and PHIS-03 (phytanyl mannose). All three phytol derivatives proved to be excellent adjuvants, but differed in solubility and mode of action. To delineate their molecular signatures in the local microenvironment, we performed inflammasome and cytokine microarray analyses with the peritoneal fluid of mice treated with alum or the phytol compounds above, in the presence or absence of soluble protein antigens. We report here that the phytol derivatives had a significant time-dependent impact on the host chemokine–cytokine microenvironment and subsequently on specific humoral responses. Moreover, the inclusion of protein immunogens induced further changes in host microenvironments, including rapid (<2 h) expression of cytokines and chemotactic factors (IL-6, MCP-1, KC, MIP-1, and LIX), implying mobilization and activation of neutrophils, and monocytes. PHIS-01 proved to be the most effective in this regard. Inflammatory cytokine cascades were dominant even after 24 h possibly to facilitate involvement of the acquired immune system with the release of B-lymphocyte chemo-attractant BLC, T-cell activation-3 chemokines TCA, IL-4, IL-12, and TIMP-1. We also noted enhanced expression of NLRP genes including NLRP3 with both alum and phytol derivatives (particularly PHIS-01).  相似文献   

9.
Adjuvants are vaccine additives that stimulate the immune system without having any specific antigenic effect of itself. In this study we show that alum adjuvant induces the release of IL-1beta from macrophages and dendritic cells and that this is abrogated in cells lacking various NALP3 inflammasome components. The NALP3 inflammasome is also required in vivo for the innate immune response to OVA in alum. The early production of IL-1beta and the influx of inflammatory cells into the peritoneal cavity is strongly reduced in NALP3-deficient mice. The activation of adaptive cellular immunity to OVA-alum is initiated by monocytic dendritic cell precursors that induce the expansion of Ag-specific T cells in a NALP3-dependent way. We propose that, in addition to TLR stimulators, agonists of the NALP3 inflammasome should also be considered as vaccine adjuvants.  相似文献   

10.
Activation of caspase-1 and subsequent processing and secretion of the pro-inflammatory cytokine IL-1beta is triggered upon assembly of the inflammasome complex. It is generally believed that bacterial lipopolysaccharides (LPS) are activators of the inflammasome through stimulation of Toll-like receptor 4 (TLR4). Like TLRs, NALP3/Cryopyrin, which is a key component of the inflammasome, contains Leucine-Rich-Repeats (LRRs). LRRs are frequently used to sense bacterial components, thus raising the possibility that bacteria directly activate the inflammasome. Here, we show that bacterial peptidoglycans (PGN), but surprisingly not LPS, induce NALP3-mediated activation of caspase-1 and maturation of proIL-1beta. Activation is independent of TLRs because the PGN degradation product muramyl dipeptide (MDP), which is not sensed by TLRs, is the minimal-activating structure. Macrophages from a patient with Muckle-Wells syndrome, an autoinflammatory disease associated with mutations in the NALP3/Cryopyrin gene, show increased IL-1beta secretion in the presence of MDP. The activation of the NALP3-inflammasome by MDP may be the basis of the potent adjuvant activity of MDP.  相似文献   

11.
Aluminum hydroxide salts (alum) have been added to inactivated vaccines as safe and effective adjuvants to increase the effectiveness of vaccination. However, the exact cell types and immunological factors that initiate mucosal immune responses to alum adjuvants are unclear. In this study, the mechanism of action of alum adjuvant in nasal vaccination was investigated. Alum has been shown to act as a powerful and unique adjuvant when added to a nasal influenza split vaccine in mice. Alum is cytotoxic in the alveoli and stimulates the release of damage-associated molecular patterns, such as dsDNA, interleukin (IL)-1α, and IL-33. We found that Ag-specific IgA antibody (Ab) production was markedly reduced in IL-33-deficient mice. However, no decrease was observed in Ag-specific IgA Ab production with DNase I treatment, and no decrease was observed in IL-1α/β or IL-6 production in IL-33-deficient mice. From the experimental results of primary cultured cells and immunofluorescence staining, although IL-1α was secreted by alveolar macrophage necroptosis, IL-33 release was observed in alveolar epithelial cell necroptosis but not in alveolar macrophages. Alum- or IL-33-dependent Ag uptake enhancement and elevation of OX40L expression were not observed. By stimulating the release of IL-33, alum induced Th2 immunity via IL-5 and IL-13 production in group 2 innate lymphoid cells (ILC2s) and increased MHC class II expression in antigen-presenting cells (APCs) in the lung. Our results suggest that IL-33 secretion by epithelial cell necroptosis initiates APC- and ILC2-mediated T cell activation, which is important for the enhancement of Ag-specific IgA Ab production by alum.  相似文献   

12.
The efficacy of a vaccine is generally dependent on an adjuvant, which enhances the immune functions and alum has been widely used in human immunization. Alum activates the intracellular stress sensors inflammasomes, but whether these are responsible for the adjuvanticity is controversial. The objectives of this investigation were to examine the hypothesis that alum-mediated adjuvanticity is a function of stress and conversely that stress agents will elicit adjuvanticity. The investigation was carried out in BALB/c mice by SC immunization with ovalbumin (OVA) mixed with alum. This elicited inflammasomes, with significant activation of caspase 1, production of IL-1β, and adjuvanticity, demonstrated by enhancing OVA-specific serum IgG antibodies, CD4(+) T cells, and proliferation. The novel finding that alum induced HSP70 suggests that stress is involved in the mechanism of adjuvanticity. This was confirmed by inhibition studies with PES (phenylethynesulfonamide), which disrupts inducible HSP70 function, and inhibited both inflammasomes and the adjuvant function. Parallel studies were pursued with an oxidative agent (sodium arsenite), K-releasing agent (Gramicidin) and a metal ionophore (dithiocarbamate). All 3 stress agents induced HSP70, inflammasomes, and the adjuvant functions. Furthermore, up-regulation of membrane associated IL-15 on DC and CD40L on T cells in the animals treated with alum or the stress agents mediate the interactions between splenic CD11c DC and CD4(+) or CD8(+) T cells. The results suggest that the three stress agents elicit HSP70, a hallmark of stress, as well as inflammasomes and adjuvanticity, commensurate with those of alum, which may provide an alternative strategy in developing novel adjuvants.  相似文献   

13.
Community Acquired Methicillin Resistant Staphylococcus aureus (CA-MRSA) causes severe necrotizing infections of the skin, soft tissues, and lungs. Staphylococcal α-hemolysin is an essential virulence factor in mouse models of CA-MRSA necrotizing pneumonia. S. aureus α-hemolysin has long been known to induce inflammatory signaling and cell death in host organisms, however the mechanism underlying these signaling events were not well understood. Using highly purified recombinant α-hemolysin, we now demonstrate that α-hemolysin activates the Nucleotide-binding domain and leucine-rich repeat containing gene family, pyrin domain containing 3 protein (NLRP3)-inflammasome, a host inflammatory signaling complex involved in responses to pathogens and endogenous danger signals. Non-cytolytic mutant α-hemolysin molecules fail to elicit NLRP3-inflammasome signaling, demonstrating that the responses are not due to non-specific activation of this innate immune signaling system by bacterially derived proteins. In monocyte-derived cells from humans and mice, inflammasome assembly in response to α-hemolysin results in activation of the cysteine proteinase, caspase-1. We also show that inflammasome activation by α-hemolysin works in conjunction with signaling by other CA-MRSA-derived Pathogen Associated Molecular Patterns (PAMPs) to induce secretion of pro-inflammatory cytokines IL-1β and IL-18. Additionally, α-hemolysin induces cell death in these cells through an NLRP3-dependent program of cellular necrosis, resulting in the release of endogenous pro-inflammatory molecules, like the chromatin-associated protein, High-mobility group box 1 (HMGB1). These studies link the activity of a major S. aureus virulence factor to a specific host signaling pathway. The cellular events linked to inflammasome activity have clear relevance to the disease processes associated with CA-MRSA including tissue necrosis and inflammation.  相似文献   

14.
Shikonin is a highly lipophilic naphtoquinone found in the roots of Lithospermum erythrorhizon used for its pleiotropic effects in traditional Chinese medicine. Based on its reported antipyretic and anti-inflammatory properties, we investigated whether shikonin suppresses the activation of NLRP3 inflammasome. Inflammasomes are cytosolic protein complexes that serve as scaffolds for recruitment and activation of caspase-1, which, in turn, results in cleavage and secretion of proinflammatory cytokines IL-1β and IL-18. NLRP3 inflammasome activation involves two steps: priming, i.e. the activation of NF-κB pathway, and inflammasome assembly. While shikonin has previously been reported to suppress the priming step, we demonstrated that shikonin also inhibits the second step of inflammasome activation induced by soluble and particulate NLRP3 instigators in primed immortalized murine bone marrow-derived macrophages. Shikonin decreased NLRP3 inflammasome activation in response to nigericin more potently than acetylshikonin. Our results showed that shikonin also inhibits AIM2 inflammasome activation by double stranded DNA. Shikonin inhibited ASC speck formation and caspase-1 activation in murine macrophages and suppressed the activity of isolated caspase-1, demonstrating that it directly targets caspase-1. Complexing shikonin with β-lactoglobulin reduced its toxicity while preserving the inhibitory effect on NLRP3 inflammasome activation, suggesting that shikonin with improved bioavailability might be interesting for therapeutic applications in inflammasome-mediated conditions.  相似文献   

15.
Basic calcium phosphate (BCP) crystals are associated with severe osteoarthritis and acute periarticular inflammation. Three main forms of BCP crystals have been identified from pathological tissues: octacalcium phosphate, carbonate-substituted apatite, and hydroxyapatite. We investigated the proinflammatory effects of these BCP crystals in vitro with special regard to the involvement of the NLRP3-inflammasome in THP-1 cells, primary human monocytes and macrophages, and mouse bone marrow-derived macrophages (BMDM). THP-1 cells stimulated with BCP crystals produced IL-1β in a dose-dependent manner. Similarly, primary human cells and BMDM from wild-type mice also produced high concentrations of IL-1β after crystal stimulation. THP-1 cells transfected with short hairpin RNA against the components of the NLRP3 inflammasome and mouse BMDM from mice deficient for NLRP3, apoptosis-associated speck-like protein, or caspase-1 did not produce IL-1β after BCP crystal stimulation. BCP crystals induced macrophage apoptosis/necrosis as demonstrated by MTT and flow cytometric analysis. Collectively, these results demonstrate that BCP crystals induce IL-1β secretion through activating the NLRP3 inflammasome. Furthermore, we speculate that IL-1 blockade could be a novel strategy to inhibit BCP-induced inflammation in human disease.  相似文献   

16.

Background

Chronic inflammation of the arterial wall is a key element in the pathogenesis of atherosclerosis, yet the factors that trigger and sustain the inflammation remain elusive. Inflammasomes are cytoplasmic caspase-1-activating protein complexes that promote maturation and secretion of the proinflammatory cytokines interleukin(IL)-1β and IL-18. The most intensively studied inflammasome, NLRP3 inflammasome, is activated by diverse substances, including crystalline and particulate materials. As cholesterol crystals are abundant in atherosclerotic lesions, and IL-1β has been linked to atherogenesis, we explored the possibility that cholesterol crystals promote inflammation by activating the inflammasome pathway.

Principal Findings

Here we show that human macrophages avidly phagocytose cholesterol crystals and store the ingested cholesterol as cholesteryl esters. Importantly, cholesterol crystals induced dose-dependent secretion of mature IL-1β from human monocytes and macrophages. The cholesterol crystal-induced secretion of IL-1β was caspase-1-dependent, suggesting the involvement of an inflammasome-mediated pathway. Silencing of the NLRP3 receptor, the crucial component in NLRP3 inflammasome, completely abolished crystal-induced IL-1β secretion, thus identifying NLRP3 inflammasome as the cholesterol crystal-responsive element in macrophages. The crystals were shown to induce leakage of the lysosomal protease cathepsin B into the cytoplasm and inhibition of this enzyme reduced cholesterol crystal-induced IL-1β secretion, suggesting that NLRP3 inflammasome activation occurred via lysosomal destabilization.

Conclusions

The cholesterol crystal-induced inflammasome activation in macrophages may represent an important link between cholesterol metabolism and inflammation in atherosclerotic lesions.  相似文献   

17.
Nod-like receptors (NLRs) comprise a large family of intracellular pattern- recognition receptors. Members of the NLR family assemble into large multiprotein complexes, termed the inflammasomes. The NLR family, pyrin domain-containing 3 (NLRP3) is triggered by a diverse set of molecules and signals, and forms the NLRP3 inflammasome. Recent studies have indicated that both DNA and RNA viruses stimulate the NLRP3 inflammasome, leading to the secretion of interleukin 1 beta (IL-1β) and IL-18 following the activation of caspase-1. We previously demonstrated that the proton-selective ion channel M2 protein of influenza virus activates the NLRP3 inflammasome. However, the precise mechanism by which NLRP3 recognizes viral infections remains to be defined. Here, we demonstrate that encephalomyocarditis virus (EMCV), a positive strand RNA virus of the family Picornaviridae, activates the NLRP3 inflammasome in mouse dendritic cells and macrophages. Although transfection with RNA from EMCV virions or EMCV-infected cells induced robust expression of type I interferons in macrophages, it failed to stimulate secretion of IL-1β. Instead, the EMCV viroporin 2B was sufficient to cause inflammasome activation in lipopolysaccharide-primed macrophages. While cells untransfected or transfected with the gene encoding the EMCV non-structural protein 2A or 2C expressed NLRP3 uniformly throughout the cytoplasm, NLRP3 was redistributed to the perinuclear space in cells transfected with the gene encoding the EMCV 2B or influenza virus M2 protein. 2B proteins of other picornaviruses, poliovirus and enterovirus 71, also caused the NLRP3 redistribution. Elevation of the intracellular Ca2+ level, but not mitochondrial reactive oxygen species and lysosomal cathepsin B, was important in EMCV-induced NLRP3 inflammasome activation. Chelation of extracellular Ca2+ did not reduce virus-induced IL-1β secretion. These results indicate that EMCV activates the NLRP3 inflammasome by stimulating Ca2+ flux from intracellular storages to the cytosol, and highlight the importance of viroporins, transmembrane pore-forming viral proteins, in virus-induced NLRP3 inflammasome activation.  相似文献   

18.
Paracoccidioidomycosis (PCM) is a systemic mycosis caused by thermally dimorphic fungi of the genus Paracoccidioides that affects predominantly 30-60-year-old male rural workers. The main clinical forms of the disease are acute/subacute, chronic (CF); almost all CF patients develop pulmonary fibrosis, and they also exhibit emphysema due to smoke. An important cytokine in this context, IL-1β, different from the others, is produced by an intracellular multimolecular complex called inflammasome that is activated by pathogens and/or host signs of damage. Inflammasome has been recognized for its contribution to chronic inflammatory diseases, from that, we hypothesized that this activation could be involved in paracoccidioidomycosis, contributing to chronic inflammation. While inflammasome activation has been demonstrated in experimental models of Paracoccidioides brasiliensis infection, no information is available in patients, leading us to investigate the participation of NLRP3-inflammasome machinery in CF/PCM patients from a Brazilian endemic area. Our findings showed increased priming in mRNA levels of NLRP3 inflammasome genes by monocytes of PCM patients in vitro than healthy controls. Similar intracellular protein expression of NLRP3, CASP-1, ASC, and IL-1β were also observed in freshly isolated monocytes of PCM patients and smoker controls. Increased expression of NLRP3 and ASC was observed in monocytes from PCM patients under hypoxia in comparison with smoker controls. For the first time, we showed that primed monocytes of CF-PCM patients were associated with enhanced expression of components of NLRP3-inflammasome due to smoke. Also, hypoxemia boosted this machinery. These findings reinforce the systemic low-grade inflammation activation observed in PCM during and after treatment.  相似文献   

19.
Chronic inflammation and persistent oxidative stress contribute to the development and progression of vascular proliferative diseases. We hypothesized that the proinflammatory cytokine interleukin (IL)-17A induces oxidative stress and amplifies inflammatory signaling in human aortic smooth muscle cells (SMC) via TRAF3IP2-mediated NLRP3/caspase-1-dependent mitogenic and migratory proinflammatory cytokines IL-1β and IL-18. Further, we hypothesized that these maladaptive changes are prevented by empagliflozin (EMPA), an SGLT2 (Sodium/Glucose Cotransporter 2) inhibitor. Supporting our hypotheses, exposure of cultured SMC to IL-17A promoted proliferation and migration via TRAF3IP2, TRAF3IP2-dependent superoxide and hydrogen peroxide production, NLRP3 expression, caspase-1 activation, and IL-1β and IL-18 secretion. Furthermore, NLRP3 knockdown, caspase-1 inhibition, and pretreatment with IL-1β and IL-18 neutralizing antibodies and IL-18BP, each attenuated IL-17A-induced SMC migration and proliferation. Importantly, SMC express SGLT2, and pre-treatment with EMPA attenuated IL-17A/TRAF3IP2-dependent oxidative stress, NLRP3 expression, caspase-1 activation, IL-1β and IL-18 secretion, and SMC proliferation and migration. Importantly, silencing SGLT2 attenuated EMPA-mediated inhibition of IL-17A-induced cytokine secretion and SMC proliferation and migration. EMPA exerted these beneficial antioxidant, anti-inflammatory, anti-mitogenic and anti-migratory effects under normal glucose conditions and without inducing cell death. These results suggest the therapeutic potential of EMPA in vascular proliferative diseases.  相似文献   

20.
Microglia are important innate immune effectors against invading CNS pathogens, such as Staphylococcus aureus (S. aureus), a common etiological agent of brain abscesses typified by widespread inflammation and necrosis. The NLRP3 inflammasome is a protein complex involved in IL-1β and IL-18 processing following exposure to both pathogen- and danger-associated molecular patterns. Although previous studies from our laboratory have established that IL-1β is a major cytokine product of S. aureus-activated microglia and is pivotal for eliciting protective anti-bacterial immunity during brain abscess development, the molecular machinery responsible for cytokine release remains to be determined. Therefore, the functional role of the NLRP3 inflammasome and its adaptor protein apoptosis-associated speck-like protein (ASC) in eliciting IL-1β and IL-18 release was examined in primary microglia. Interestingly, we found that IL-1β, but not IL-18 production, was significantly attenuated in both NLRP3 and ASC knockout microglia following exposure to live S. aureus. NLRP3 inflammasome activation was partially dependent on autocrine/paracrine ATP release and α- and γ-hemolysins produced by live bacteria. A cathepsin B inhibitor attenuated IL-β release from NLRP3 and ASC knockout microglia, demonstrating the existence of alternative inflammasome-independent mechanisms for IL-1β processing. In contrast, microglial IL-18 secretion occurred independently of cathepsin B and inflammasome action. Collectively, these results demonstrate that microglial IL-1β processing is regulated by multiple pathways and diverges from mechanisms utilized for IL-18 cleavage. Understanding the molecular events that regulate IL-1β production is important for modulating this potent proinflammatory cytokine during CNS disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号