首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Gill arches and the gill rakers of a sluggish, carnivorous catfish, Rita rita, show significant differences of their surface ultrastructure, which are recognized adaptive modifications in relation to food and feeding ecology of fish. Gill rakers on the first and second pairs of gill arches are borne on the oral side and are long and stout at the epi-ceratobranchial union. Gill rakers on the third and fourth pairs of gill arches, in contrast, are borne on the oral and aboral sides and are relatively delicate and short. Long and stout gill rakers on the first and second pairs of gill arches are considered primarily to prevent entry of undesirably large food items into the pharynx. Two types of taste buds, Type I and Type II, occur on the gill arches and the gill rakers. The raised taste buds, located at the apical ends of the gill rakers on the third, fourth, and the fifth pairs of gill arches could increase gustatory efficiency in the pharynx. Differences in the distribution of taste buds on the pharyngeal sides of different gill arches indicate that the posterior part of the pharynx plays a more crucial role in gustation than does the anterior part. Co-occurrence of teeth and taste buds on the epi- and hypopharyngeal bones denotes that food processing and gustation occur simultaneously in the pharynx. Villiform and caniform teeth on the epi- and hypopharyngeal bones are associated with a complex food-processing cycle. Mucous secretions, oozing through mucous cell openings, provide lubrication facilitating smooth passage of food through the pharynx. The angle of curvature at the epi-ceratobranchial union of the first to fourth pairs of gill arches could assist the ventral drag of ceratobranchials in lowering of the pharyngeal floor, thus resulting in a great expansion of the pharynx, as needed to accommodate the large quantities of food captured.  相似文献   

2.
Odontesthes argentinensis was collected from Mar Chiquita Coastal Lagoon, the Southernmost coastal Atlantic Lagoon of Argentina. The morphology of the gills was analyzed by scanning electron microscopy. The morphology of the superficial structures of the gill filaments and pharyngeal region of the gill arch was discussed and related to their functional aspects. The gills arches are structurally similar to those of other teleosts and bring out the osmoregulatory capacity of this species. The epithelium that covers the surface of the filaments and the pharyngeal region of the gill arch is formed by polygonal pavement cells with conspicuous microridges. These folds in the membrane are not denoted in the epithelium of the respiratory lamellae. Apical crypts of chloride cells are present on the afferent and interlamellar filament surfaces, but are absent elsewhere on the gill arch. The highest density of mucous cells is observed into the gill filament and the pharyngeal region which indicates the existence of a protective strategy of the respiratory lamellae and the pharynx. The epithelium of the gill arches and the rakers is studded with spines. There are taste buds along the whole pharyngeal region that may be associated with their participation in tasting at this zone.  相似文献   

3.
4.
The surface ultrastructure of the gill arches of the killifish, Fundulus heteroclitus, adapted to seawater or freshwater, was found to be similar to that reported for other euryhaline teleosts. Two rows of gill filaments (about 42 filaments per row) extended posterolaterally, and two rows of gill rakers (about 10 rakers per row) extended anteromedially from each arch. Leaf-like respiratory lamellae protruded along both sides of each filament, from its base to its apex. The distributions, sizes, and numbers of various surface cells and structures were also determined. All surfaces were covered by a mosaic of pavement cells, which measured about 7 X 4 microns and exhibited concentrically arranged surface ridges. Taste buds were especially prominent on the rakers and the pharyngeal surfaces of the first and second gill arches, but were often replaced by horny spines on the third and fourth gill arches. Apical crypts of chloride cells occurred mostly on the surfaces of the gill filaments adjacent to the afferent artery of the filament. In seawater adapted killifish, crypts resembled narrow, deep holes along the borders of adjacent pavement cells, had openings of about 2 microns2, and occurred at a frequency of about 1 per 70 microns2 of surface area. In freshwater fish, the crypts usually had larger openings (about 10 microns2), occurred less frequently (1 per 123 microns2), and exhibited many cellular projections in their interiors. Changes in crypt morphology may be related to the ion transport function of chloride cells.  相似文献   

5.
Mugil curema, M. liza, and M. platanus were collected from the southeastern and southern coast of Brazil. The second gill arches were analyzed by scanning electron microscopy and histology. The highest density of chloride and mucus-secreting cells was observed in the gill filaments of M. liza and M. platanus. Spines are scarce and were found only in the pharyngeal region of M. curema. The dorsal angle of curvature of the simple projections is most reduced in the rakers of M. liza and M. platanus. The raker borderline on the internal side of the arches of M. curema has grooves that do not occur in the other two species. On the external side of the branchial arches, the borders of the rakers of M. liza and M. platanus are smooth. The shape of the rakers is characteristic for each species: in M. curema, it resembles the letter "D"; in M. liza, it is trapezoidal, and in M. platanus, it is triangular. Thus there is a morphologic similarity between M. liza and M. platanus, and both differ from M. curema. All three species show elongated and extremely elaborated rakers that are placed next to each other and turned toward the opercular cavity. There are few taste buds and only several mucus-secreting cells along the whole pharyngeal region. These characteristics suggest that these species do not select food chemically but obtain it mechanically with the rakers and aggregate it with mucus.  相似文献   

6.
The general morphology and surface ultrastructure of the gills of adult and larvae medaka (Oryzias latipes) were studied in freshwater and seawater using scanning electron microscopy. The gills of all examined fish were structurally similar to those of other teleosts and consisted of four pairs of arches supporting (i) filaments bearing lamellae and (ii) rakers containing taste buds. Three cell types, specifically pavement cells, mitochondria‐rich cells (MRCs), and mucous cells, constituted the surface layer of the gill epithelium. Several distinctive characteristics of medaka gills were noted, including the presence of regularly distributed outgrowth on the lamellae, enlarged filament tips, the absence of microridges in most pavement cells in the filament and lamellae and the presence of MRCs in the arch at the filament base. A rapid mode of development was recorded in the gills of larval fish. At hatching, the larvae already had four arches with rudimentary filaments, rakers, and taste buds. The rudimentary lamellae appeared within 2 days after hatching. These results suggest the early involvement of larval gills in respiratory and osmoregulation activities. The responses of the macrostructures and microstructures of gills to seawater acclimation were similar in larvae and adult fish and included modification of the apical surface of MRCs, confirming the importance of these cells in osmoregulation. The potential roles of these peculiarities of the macrostructures and microstructures of medaka gills in the major functions of this organ, such as respiration and osmoregulation, are discussed.  相似文献   

7.
The innervation pattern of the respiratory gill arches of the carp (Cyprinus carpio) is described. The gill region is innervated by the branchial branches of the glossopharyngeal and vagal nerves. Each branchial nerve divides at the level of or just distal to the epibranchial ganglion into: 1) a pretrematic branch, 2) a dorsal pharyngeal branch, and 3) a posttrematic branch. The dorsal pharyngeal branch innervates the palatal organ in the roof of the buccal cavity. The pretrematic and posttrematic branches innervate the posterior and anterior halves, respectively, of the gill arches bordering a gill slit. Each branch splits into an internal and an external part. The internal bundle innervates the buccal side of the gill arch, including the gill rakers. The external bundle terminates in the gill filaments. The epibranchial motor branch, a small nerve bundle containing only motor fibers, circumvents the ganglion and anastomoses distally with the posttrematic branch. The detailed course and branching patterns of these branches are described.  相似文献   

8.
North temperate fish in post‐glacial lakes are textbook examples for rapid parallel adaptive radiation into multiple trophic specialists within individual lakes. Speciation repeatedly proceeded along the benthic–limnetic habitat axis, and benthic–limnetic sister species diverge in the number of gill rakers. Yet, the utility of different numbers of gill rakers for consuming benthic vs. limnetic food has only very rarely been experimentally demonstrated. We bred and raised families of a benthic–limnetic species pair of whitefish under common garden conditions to test whether these species (i) show heritable differentiation in feeding efficiency on zooplankton, and (ii) whether variation in feeding efficiency is predicted by variation in gill raker numbers. We used zooplankton of three different size classes to investigate prey size dependency of divergence in feeding efficiency and to investigate the effect strength of variation in the number of gill rakers. Our results show strong interspecific differences in feeding efficiency. These differences are largest when fish were tested with the smallest zooplankton. Importantly, feeding efficiency is significantly positively correlated with the number of gill rakers when using small zooplankton, also when species identity is statistically controlled for. Our results support the hypothesis that a larger number of gill rakers are of adaptive significance for feeding on zooplankton and provide one of the first experimental demonstrations of trait utility of gill raker number when fish feed on zooplankton. These results are consistent with the suggested importance of divergent selection driven feeding adaptation during adaptive radiation of fish in post‐glacial lakes.  相似文献   

9.
Glycoproteins (GPs) were visualised histochemically in the secretory cells – the mucous goblet cells (the type A and the type B), the serous goblet cells, the club cells and the epithelial cells in the gill epithelium of Rita rita. The type A mucous goblet cells, the type B mucous goblet cells and the epithelial cells elaborate GPs with oxidizable vicinal diols and GPs with sialic acid residue without O-acyl substitution. In addition, GPs with O-sulphate esters are elaborated by the type A and GPs with O-acyl sugars by the type B mucous goblet cells. GPs are absent in the serous goblet cells and are with oxidizable vicinal diols in low moieties in the club cells. The analysis of the results elucidates interesting differences in the composition and concentration of GPs in the mucus elaborated by the epithelium of the gill arches and the gill rakers; and the gill filaments and the secondary lamellae indicating the potential importance of the glycoproteins at these locations. GPs elaborated on the surfaces of the gill arches and the gill rakers could be associated to assist in feeding activities and on the surfaces of the gill filaments and the secondary lamellae in the respiratory activity.  相似文献   

10.
Synopsis Suspension-feeding fishes use gill structures for both respiration (lamellae) and food capture (rakers). During hypoxic exposure in eutrophic lakes or poorly circulated sloughs, many fishes, including Sacramento blackfish, Orthodon microlepidotus, increase their gill water flows, in part by increasing ventilatory stroke volumes. Stroke volume increases could compromise particle sieving efficiency by spreading interdigitated gill rakers from adjacent gill arches, although blackfish capture food particles by raker-guided water flows to a sticky buccal root. Using van Dam-type respirometers, blackfish respiratory variables and feeding efficiency (Artemia nauplii) were measured under normoxia (> 130 torr PO2) and hypoxia (60 torr PO2). Compared with non-feeding, normoxic conditions, gill ventilation volume, frequency, stroke volume, and gape all increased, while O2 uptake efficiency decreased, during hypoxia and during feeding. O2 consumption increased during feeding treatments, and % uptake of nauplii showed no difference between normoxic and hypoxic groups. Thus, blackfish display respiratory adaptations, including increased ventilatory stroke volumes, to survive in hypoxic environments such as Clear Lake, California. Importantly, they have also evolved a particle capture mechanism that allows efficient suspension-feeding under both normoxic and hypoxic conditions.  相似文献   

11.
The development of gill rakers in the herring, Clupea harengus L. was followed from the larva to the adult. The first rakers appear on the gill arches at a total length ( t.l .) of about 16 mm. Their number then increases rapidly until the fish are about 50 mm t.l . when the rate of addition becomes much slower. The length of individual rakers and the space between them continues to increase throughout life. The rakers on the first gill arch account for almost 60% of the whole filtering area. The observed particle retention capabilities of the fish when filter-feeding were lower than those expected on the basis of the estimated spaces between the rakers. Several reasons are suggested for the discrepancy.  相似文献   

12.
The suspension-feeding cichlids Oreochromis aureus (blue tilapia) and Oreochromis esculentus (ngege tilapia) are able to selectively retain small food particles. The gill rakers and microbranchiospines of these species have been assumed to function as filters. However, surgical removal of these oral structures, which also removed associated mucus, did not significantly affect the total number of 11–200 μm particles ingested by the fish. This result supports the hypothesis that the branchial arch surfaces themselves play an important role in crossflow filtration. Both species selectively retained microspheres greater than 50 μm with gill rakers and microbranchiospines intact as well as removed, demonstrating that neither these structures nor mucus are necessary for size selectivity to occur during biological crossflow filtration. After removal of the gill rakers and microbranchiospines, O. esculentus retained significantly more microspheres 51–70 μm in diameter and fewer 91–130 μm microspheres compared to retention with intact structures, but the particle size selectivity of O. aureus was not affected significantly. These results support conclusions from previous computational fluid dynamics simulations indicating that particle size can have marked effects on particle trajectory and retention inside the fish oropharyngeal cavity during crossflow filtration. The substantial inter-individual variability in particle retention by suspension-feeding fish is an unexplored area of research with the potential to increase our understanding of the factors influencing particle retention during biological filtration.  相似文献   

13.
The existence of a layer of mucus covering the gill lamellae of healthy rainbow trout (Oncorhynchus mykiss) was investigated. Using cryo-scanning electron microscopy, a smooth, undulating, thin layer was observed which completely covered gill filaments and lamellae, thereby obscuring epithelial microridges. After processing cryopreserved gill arches in glutaraldehyde for conventional scanning electron microscopy, the layer was no longer present and epithelial microridges were clearly visible. The identity of this layer was investigated using cryopreserved gills which were treated in one of two ways. First, gills were incubated with a rabbit antiserum to gill mucus, with normal rabbit serum, or with phosphate-buffered saline. Following fixation in glutaraldehyde and processing, only the gill tissue incubated with the mucus-specific antiserum was still covered with the smooth layer. The layer was also retained on the gills of fish anesthetized in a solution containing mucusspecific antiserum and then processes in glutaraldehyde for conventional scanning electron microscopy. The tenacious nature of the mucous layer was demonstrated by its stability following exposure to formalin and a cationic detergent. Second, the presence of this layer was confirmed on gill tissue which was cryopreserved, followed by freeze-substitution and vapor fixation, and then examined by transmission electron microscopy.  相似文献   

14.
15.
Hox genes are expressed in domains with clear anterior borders exhibiting 3'-->5' hierarchy in hindbrain and in the pharyngeal area commonly in vertebrate embryos. Teleost embryos form seven pharyngeal arches, the mandibular arch, hyoid arch and the gill arches 1-5. We previously reported that, in Japanese flounder (Paralichthys olivaceus) embryos, Hoxd-4 is expressed from rhombomere 7 to the spinal cord in the central nervous system and at gill arches 2-5. At present, the hierarchy of Hox genes at gill arches 3-5 of teleost fish is unclear. Here, we investigated the expression domains of Hoxb-5 in the flounder embryo by whole-mount in situ hybridization to gain insight into the Hox code at gill arches. The initial signal indicating Hoxb-5 expression was identified in the spinal cord at hatching, corresponding with the prim-5 stage of zebrafish. Then, intense signals were detected from the anterior part of the spinal cord and from the posterior part of the pharyngeal area at 36 h after hatching. By serially sectioning the hybridized embryos, it was found that signal in the pharyngeal area came from the most posterior gill arch 5. Therefore, it is speculated that Hoxb-5 functions in regional identification of gill arch 5 in this teleost.  相似文献   

16.
Peripheral O2 chemoreceptors initiate adaptive cardiorespiratory responses to hypoxia in vertebrates. Morphological and physiological evidence suggests that, in fish, neuroepithelial cells (NECs) of the gill perform this role. We conducted a comparative examination in three species of teleosts (zebrafish, goldfish and trout) and larvae of the amphibian Xenopus laevis, using whole-mount gill preparations and confocal immunofluorescence, to elucidate the distribution, morphology and innervation of gill NECs. Nerve fibres were immunolabelled with the neuronal marker zn-12 and were associated with serotonin-immunoreactive NECs in the gills of all species tested. With the exception of trout, innervated NECs were present on all gill arches in the filaments and respiratory lamellae in fish and on homologous structures in Xenopus (i.e. gill “tufts”, including respiratory terminal branches). Thus, the distribution and innervation of NECs of the internal gills of amphibians and teleosts are relatively well conserved, suggesting an important role for gill NECs as O2 chemoreceptors in aquatic vertebrates. Furthermore, the size and density of gill NECs is variable among teleosts and developmental stages of Xenopus larvae and may be dependent on general gill dimensions or environmental conditions. This report constitutes the first comparative study of gill NECs in fish and amphibians and highlights the significance of gill NECs as an evolutionary model for studying O2 sensing in vertebrates. We acknowledge the Natural Sciences and Engineering Research Council (NSERC) of Canada for funding through an operating grant to C.A.N., and the NSERC and the Ontario Graduate Scholarship (OGS) program for postgraduate scholarships to M.G.J.  相似文献   

17.
Three lineages of cartilaginous fishes have independently evolved filter feeding (Lamniformes: Megachasma and Cetorhinus, Orectolobiformes: Rhincodon, and Mobulidae: Manta and Mobula); and the structure of the branchial filters is different in each group. The filter in Rhincodon typus has been described; species within the Lamniformes have simple filamentous filters, but the anatomy and ultrastructure of the branchial filter in the mobulid rays varies and is of functional interest. In most fishes, branchial gill rakers are elongated structures located along the anterior ceratobranchial and/or epibranchial arches; however, mobulid gill rakers are highly modified, flattened, lobe‐like structures located on the anterior and posterior epibranchial elements as well as the ceratobranchials. The ultrastructure of the filter lobes can be smooth or covered by a layer of microcilia, and some are denticulated along the dorsal and ventral lobe surface. Flow through the mobulid oropharyngeal cavity differs from other filter‐feeding fishes in that water must rapidly deviate from the free stream direction. There is an abrupt 90° turn from the initial inflowing path to move through the laterally directed branchial filter pores, over the gill tissue, and out the ventrally located gill slits. The deviation in the flow must result in tangential shearing stress across the filter surface. This implies that mobulids can use cross‐flow filtration in which this shearing force serves as a mechanism to resuspend food particles initially caught by sieving or another capture mode. These particles will be transported by the cross filter flow toward the esophagus. We propose that species with cilia on the rakers augment the shear mediated movement of particles along the filter with ciliary transport. J. Morphol. 274:1026–1043, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
The buccal cavity of an herbivorous fish, Cirrhinus mrigala, was investigated by scanning electron microscopy to determine its surface ultrastructure. The buccal cavity shows significant adaptive modifications in relation to food and feeding ecology of the fish. The buccal cavity of the fish is of modest size and limited capacity, which is considered an adaptation with respect to the small‐sized food items primarily consumed by the fish that could be accommodated in a small space. Modification of surface epithelial cells, on the upper jaw, into characteristic structures—the unculi—is considered an adaptation to browse or scrap, to grasp food materials, e.g., algal felts, and to protect the epithelial surface against abrasions, likely to occur during their characteristic feeding behavior. Differentiation of the highly specialized lamellar organ on the anterior region of the palate could be an adaptation playing a significant role in the selection, retention, and sorting out of palatable food particles from the unpalatable items ingested by the fish. The filamentous epithelial projections and the lingulate epithelial projections on the palatal organ in the posterior region of the palate are considered to serve a critical function in final selection, handling, maneuvering, and propelling the food particles toward the esophagus. The abundance of different categories of taste buds in the buccal cavity suggests that gustation is well developed and the fish is highly responsive in the evaluation and the selection of the preferred palatable food items. The secretions of mucous cells in the buccal cavity are associated with multiple functions—particle entrapment, lubrication of the buccal epithelium and food particles to assist smooth passage of food, and to protect the epithelium from possible abrasion. These morphological characteristics ensure efficient working of the buccal cavity in the assessment of the quality and palatability of ingested food, their retention and transport toward the esophagus. Such an adaptation may be essential in conducting the function most basic to the survival of the individuals and species—feeding. J. Morphol. 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
Summary Both primary and secondary (tongue) bars of the pharyngeal gill basket are covered by epithelial cells that are continuous with the cells that line the atrium. Anterior and posterior faces of the gill bars are covered with lateral ciliated cells, which possess a single cilium, ringed by microvilli, and an elaborate basal mitochondria-rootlet apparatus. Pharyngeal faces of the gill bars are covered with ciliated pharyngeal cells, atrial faces by mucus secreting atrial cells. The surface epithelium rests on a stromal septum, a flattened tube of basal lamina which dilates to form the visceral blood vessel (along the pharyngeal face) and skeletal blood vessel (along the atrial face). This basal lamina surrounds paired skeletal rods which run through the longitudinal axis of the gill bars near the atrial face. Between the skeletal rods and atrial cells of primary gill bars is a coelomic channel lined by epithelioid coelomic cells. Neuronal processes, some with neurosecretory granules, are located among the bases of the atrial cells. Some axons may contact lateral ciliated cells where the latter meet atrial cells, but synaptoid endings have not been found here or elsewhere in the gill bars. Nervous tissue has not been identified among lateral ciliated cells even though ciliary activity of these cells is supposedly regulated by atrial nervous tissue.Supported by a Cottrell College Science Program Grant from Research Corporation. We thank Nancy Kelly and Gerhard Ott for excellent technical assistance and are grateful for the facilities provided by the Department of Zoology and Seaver Science Center, Pomona College.  相似文献   

20.
SEM studies were made on the gills of freshwater mullets,Rhinomugil corsula andSicamugil cascasia, to correlate surface ultrastructure of various gill units with their probable functions. Two types of lamellated gill rakers of the former fish are suited for plankton feeding and the short, stumpy and transversely beaded gill rakers of the latter reflect the varied food and feeding habit of the fish.R. corsula has numerous mucous glands on the epithelium covering the gill arch and gill filaments,S. cascasia has fewer. In accordance with the differences in the density and distribution of the mucous glands, the microridged epithelial cells also show variations in their architectural plan. In both species the epithelium of the secondary lamellae is smooth, probably an adaptation for better gaseous exchange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号