首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Enterogenic Escherichia coli (ETEC) F18 strains are the main pathogenic bacteria causing severe diarrhea in humans and domestic animals. However, the information about synonymous codon usage pattern of ETEC F18 genome remains unclear. We conducted a genome-wide analysis of synonymous codon usage patterns in the ETEC F18 strain SRA: SAMN02471895. After filtering of the complete genome sequence, 4327 coding sequences were analyzed using multivariate statistical methods to calculate synonymous codon usage patterns and to evaluate the influence of various factors in shaping the codon usage. The mean GC content was 51.38%, with a slight preference for G/C-ending codons. Twenty-two codons were determined as ‘‘optimal codons”. ENC plots showed some of the genes were on or close to the expected curve, while only points with low-ENC values were below the curve. PR2 analysis showed that GC and AT were not used proportionally, suggesting major roles for mutational pressure and natural selection in shaping usage. Neutrality plots showed a significant correlation between GC12 and GC3, suggesting that mutational pressure is responsible for nucleotide composition in shaping the strength of codon usage. Translational selection was the main factor shaping the codon usage pattern of ETEC F18 genome, while other factors such as protein length, GRAVY and ARO values also influenced codon usage to some extent. We analyzed the codon usage pattern systematically and identified the factors shaping codon usage bias in the ETEC F18 genome. Such information further elucidates the mechanisms of synonymous codon usage bias and provides the basis of molecular genetic engineering and evolutionary studies.  相似文献   

2.
The present study has been aimed to the comparative analysis of high GC composition containing Corynebacterium genomes and their evolutionary study by exploring codon and amino acid usage patterns. Phylogenetic study by MLSA approach, indel analysis and BLAST matrix differentiated Corynebacterium species in pathogenic and non-pathogenic clusters. Correspondence analysis on synonymous codon usage reveals that, gene length, optimal codon frequencies and tRNA abundance affect the gene expression of Corynebacterium. Most of the optimal codons as well as translationally optimal codons are C ending i.e. RNY (R-purine, N-any nucleotide base, and Y-pyrimidine) and reveal translational selection pressure on codon bias of Corynebacterium. Amino acid usage is affected by hydrophobicity, aromaticity, protein energy cost, etc. Highly expressed genes followed the cost minimization hypothesis and are less diverged at their synonymous positions of codons. Functional analysis of core genes shows significant difference in pathogenic and non-pathogenic Corynebacterium. The study reveals close relationship between non-pathogenic and opportunistic pathogenic Corynebaterium as well as between molecular evolution and survival niches of the organism.  相似文献   

3.
The helicase gene of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is not only involved in viral DNA replication, but also plays a role in viral host range. To identify the codon usage bias of helicase of AcMNPV, the codon usage bias of helicase was especially studies in AcMNPV and 41 reference strains of baculoviruses by calculating the codon adaptation index (CAI), effective number of codon (ENc), relative synonymous codon usage (RSCU), and other indices. The helicase of baculovirus is less biased (mean ENc?=?50.539?>?40; mean CAI?=?0.246). AcMNPV helicase has a strong bias toward the synonymous codons with G and C at the third codon position (GC3s?=?53.6%). The plot of GC3s against ENc values revealed that GC compositional constraints are the main factor that determines the codon usage bias of major of helicase. Several indicators supported that the codon usage pattern of helicase is mainly subject to mutation pressure. Analysis of variation in codon usage and amino acid composition indicated AcMNPV helicase shows the significant preference for one or more postulated codons for each amino acid. A cluster analysis based on RSCU values suggested that AcMNPV is evolutionarily closer to members of group I alphabaculovirus. Comparison of the codon usage pattern among E. coli, yeast, mouse, human and AcMNPV showed that yeast is a suitable expression system for AcMNPV helicase. AcMNPV helicase shows weak codon usage bias. This study may help in elucidating the functional mechanism of AcMNPV helicase and the evolution of baculovirus helicases.  相似文献   

4.
Codon usage bias refers to the differences in the occurrence frequency of synonymous codons. To understand the patterns of codon usage in mitochondrial genes we used bioinformatic approaches to analyze the protein coding sequences of W. bancrofti and S. haematobium as no work was reported earlier. It was found that the ENC value ranged from 43 to 60 with a mean of 46.91 in W. bancrofti but varied from 49 to 60 with a mean of 45.17 in S. haematobium, respectively. In W. bancrofti a significant positive correlation was found between ENC and GC3% (r = 0.826**, p < 0.01), but in S. haematobium significant correlation was found between ENC and GC3% (r = 0.983**, p < 0.01). Principal component analysis suggests that the pattern of codon usage significantly differed between W. bancrofti and S. haematobium. Neutrality plot reveals that natural selection played a major role while mutation pressure played a minor role in codon usage pattern in the mitochondrial protein coding genes of W. bancrofti and S. haematobium. Various factors namely nucleotide composition, natural selection and mutation pressure affected the codon usage pattern.  相似文献   

5.
The red-necked phalarope is a wonderful species with specific morphological characters and lifestyles. Mitochondrial genomes, encoding necessary proteins involved in the system of energy metabolism, are important for the evolution and adaption of species. In this study, we determined the complete mitogenome sequence of Phalaropus lobatus (Charadriiformes: Scolopacidae). The circular genome is 16714 bp in size, containing 13 PCGs, two ribosomal RNAs and 22 tRNAs and a high AT-rich control region. The AT skew and GC skew of major strand is positive and negative respectively. Most of PCGs are biased towards A-rich except ND1. A codon usage analysis shows that 3 start codons (ATG, GTG and ATA), 4 stop codons (TAA, TAG, AGG, AGA) and two incomplete terminate codons (T–). Twenty two transfer RNAs have the typical cloverleaf structure, and a total of ten base pairs are mismatched throughout the nine tRNA genes. The phylogenetic tree based on 13 PCGs and 2 rRNA genes indicates that monophyly of the family and genus Phalaropus is close to genus Xenus plus Tringa. The analysis of selective pressure shows 13 protein-coding genes are evolving under the purifying selection and P. lobatus is different from other Scolopacidae species on the selective pressure of gene ND4. This study helps us know the inherent mechanism of mitochondrial structure and natural selection.  相似文献   

6.

Background

Synonymous codon usage varies widely between genomes, and also between genes within genomes. Although there is now a large body of data on variations in codon usage, it is still not clear if the observed patterns reflect the effects of positive Darwinian selection acting at the level of translational efficiency or whether these patterns are due simply to the effects of mutational bias. In this study, we have included both intra-genomic and inter-genomic comparisons of codon usage. This allows us to distinguish more efficiently between the effects of nucleotide bias and translational selection.

Results

We show that there is an extreme degree of heterogeneity in codon usage patterns within the rice genome, and that this heterogeneity is highly correlated with differences in nucleotide content (particularly GC content) between the genes. In contrast to the situation observed within the rice genome, Arabidopsis genes show relatively little variation in both codon usage and nucleotide content. By exploiting a combination of intra-genomic and inter-genomic comparisons, we provide evidence that the differences in codon usage among the rice genes reflect a relatively rapid evolutionary increase in the GC content of some rice genes. We also noted that the degree of codon bias was negatively correlated with gene length.

Conclusion

Our results show that mutational bias can cause a dramatic evolutionary divergence in codon usage patterns within a period of approximately two hundred million years.The heterogeneity of codon usage patterns within the rice genome can be explained by a balance between genome-wide mutational biases and negative selection against these biased mutations. The strength of the negative selection is proportional to the length of the coding sequences. Our results indicate that the large variations in synonymous codon usage are not related to selection acting on the translational efficiency of synonymous codons.
  相似文献   

7.
Codon bias is the non-random use of synonymous codons, a phenomenon that has been observed in species as diverse as bacteria, plants and mammals. The preferential use of particular synonymous codons may reflect neutral mechanisms (e.g. mutational bias, G|C-biased gene conversion, genetic drift) and/or selection for mRNA stability, translational efficiency and accuracy. The extent to which these different factors influence codon usage is unknown, so we dissected the contribution of mutational bias and selection towards codon bias in genes from 15 eudicots, 4 monocots and 2 mosses. We analysed the frequency of mononucleotides, dinucleotides and trinucleotides and investigated whether the compositional genomic background could account for the observed codon usage profiles. Neutral forces such as mutational pressure and G|C-biased gene conversion appeared to underlie most of the observed codon bias, although there was also evidence for the selection of optimal translational efficiency and mRNA folding. Our data confirmed the compositional differences between monocots and dicots, with the former featuring in general a lower background compositional bias but a higher overall codon bias.  相似文献   

8.
9.
Codon usage bias (CUB) is an omnipresent phenomenon, which occurs in nearly all organisms. Previous studies of codon bias in Plasmodium species were based on a limited dataset. This study uses whole genome datasets for comparative genome analysis of six Plasmodium species using CUB and other related methods for the first time. Codon usage bias, compositional variation in translated amino acid frequency, effective number of codons and optimal codons are analyzed for P.falciparum, P.vivax, P.knowlesi, P.berghei, P.chabaudii and P.yoelli. A plot of effective number of codons versus GC3 shows their differential codon usage pattern arises due to a combination of mutational and translational selection pressure. The increased relative usage of adenine and thymine ending optimal codons in highly expressed genes of P.falciparum is the result of higher composition biased pressure, and usage of guanine and cytosine bases at third codon position can be explained by translational selection pressure acting on them. While higher usage of adenine and thymine bases at third codon position in optimal codons of P.vivax highlights the role of translational selection pressure apart from composition biased mutation pressure in shaping their codon usage pattern. The frequency of those amino acids that are encoded by AT ending codons are significantly high in P.falciparum due to action of high composition biased mutational pressure compared with other Plasmodium species. The CUB variation in the three rodent parasites, P.berghei, P.chabaudii and P.yoelli is strikingly similar to that of P.falciparum. The simian and human malarial parasite, P.knowlesi shows a variation in codon usage bias similar to P.vivax but on closer study there are differences confirmed by the method of Principal Component Analysis (PCA).

Abbreviations

CDS - Coding sequences, GC1 - GC composition at first site of codon, GC2 - GC composition at second site of codon, GC3 - GC composition at third site of codon, Ala - Alanine, Arg - Arginine, Asn - Asparagine, Asp - Aspartic acid, Cys - Cysteine, Gln - Glutamine Glu - Glutamic acid Gly - Glycine His - Histidine Ile - Isoleucine Leu - Leucine Lys - Lysine Met - Methionine Phe - Phenylalanine Pro - Proline Ser - Serine Thr - Threonine Trp - Tryptophan Tyr - Tyrosine Val - Valine.  相似文献   

10.
11.

Background

The available data demonstrate that even in universal metabolic pathways, some species-specific regulatory features of structural genes are present. For instance, in the anthocyanin biosynthesis pathway (ABP), genes may be regulated by ABP-specific regulatory factors, and their expression levels may be strongly associated with anthocyanin pigmentation, or they may be expressed independently of pigmentation. A dataset of orthologous ABP genes (Chs, Chi, F3h, F3’h, Dfr, Ans) from monocot and dicot plant species that have distinct gene regulation patterns and different types of pollination was constructed to test whether these factors affect the evolution of the genes.

Results

Using a maximum likelihood approach, we demonstrated that although the whole set of the ABP genes is under purifying selection, with greater selection acting on the upstream genes than on the downstream genes, genes from distinct groups of plant species experienced different strengths of selective pressure. The selective pressure on the genes was higher in dicots than in monocots (F3h and further downstream genes) and in pollinator-dependent plants than in pollinator-independent species (Chi and further downstream genes), suggesting an important role of pollination type in the evolution of the anthocyanin biosynthesis gene network. Contrasting effects of the regulation patterns on evolution were detected for the F3h and Dfr genes, with greater selective pressure on the F3h gene in plant species where the gene expression was not strongly associated with pigmentation and greater selective pressure on Dfr in plant species where the gene expression was associated with pigmentation.

Conclusions

We demonstrated the effects of pollination type and patterns of regulation on the evolution of the ABP genes, but the evolution of some of the genes could not be explained in the framework of these factors, such as the weaker selective pressure acting on Chs in species that attract pollinators or the stronger selective pressure on F3h in plant species where the gene expression was not associated with pigmentation. The observations suggest that additional factors could affect the evolution of these genes. One such factor could be an effect of gene duplication with further division of functions among gene copies and relaxed selective pressure acting on them. Additional tests with an appropriate dataset combining data on duplicated gene sequences and their functions in the flavonoid biosynthesis pathway are required to test this hypothesis.
  相似文献   

12.
The complete mitochondrial genome of Ampittia dioscorides (Lepidoptera: Hesperiidae) was determined. The sequenced genome is a circular molecule of 15313 bp, containing 13 protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes, and an A + T-rich region. The gene arrangements and transcribing directions are identical to those in most of the reported lepidopteran mitogenomes. The base composition of the whole genome and genes or regions are also similar to those in other lepidopteran species. All the PCGs are initiated by typical ATN codons; the exception being COI, which begins with a CGA codon. Eight genes (ND2, ATPase8, ATPase6, COIII, ND5, ND4L, ND6, and Cytb) end with a TAA stop codon, and two genes (ND1 and ND3) end with TAG. The remaining three genes (COI and COII, which end with TA-, and ND4, which ends with T-) have incomplete stop codons. All tRNAs have the typical clover-leaf structure of mitochondrial tRNAs, with the exception of tRNASer(AGY). On the basis of the concatenated nucleotide and amino acid sequences of the 13 PCGs and wingless gene of 22 butterfly species, maximum parsimony (MP) and Bayesian inference (BI) trees were constructed, respectively. Both MP and BI trees had the same topological structure: ((((Nymphalidae + Danaidae) + Lycaenidae) + Pieridae) + Papilionidae) + Hesperiidae). The results provide support for Hesperiidae as a superfamily-level taxon.  相似文献   

13.
Patterns of codon usage bias in three dicot and four monocot plant species   总被引:9,自引:0,他引:9  
Codon usage in nuclear genes of four monocot and three dicot species was analyzed to find general patterns in codon choice of plant species. Codon bias was correlated with GC content at the third codon position. GC contents were higher in monocot species than in dicot species at all codon positions. The high GC contents of monocot species might be the result of relatively strong mutational bias that occurred in the lineage of the Poaceae species. In both dicot and monocot species, the effective number of codons (ENCs) for most genes was similar to that for the expected ENCs based on the GC content at the third codon positions. G and C ending codons were detected as the "preferred" codons in monocot species, as in Drosophila. Also, many "preferred" codons are the same in dicot species. Pyrimidine (C and T) is used more frequently than purine (G and A) in four-fold degenerate codon groups.  相似文献   

14.

Background

Species of Paris Sect. Marmorata are valuable medicinal plants to synthesize steroidal saponins with effective pharmacological therapy. However, the wild resources of the species are threatened by plundering exploitation before the molecular genetics studies uncover the genomes and evolutionary significance. Thus, the availability of complete chloroplast genome sequences of Sect. Marmorata is necessary and crucial to the understanding the plastome evolution of this section and facilitating future population genetics studies. Here, we determined chloroplast genomes of Sect. Marmorata, and conducted the whole chloroplast genome comparison.

Results

This study presented detailed sequences and structural variations of chloroplast genomes of Sect. Marmorata. Over 40 large repeats and approximately 130 simple sequence repeats as well as a group of genomic hotspots were detected. Inverted repeat contraction of this section was inferred via comparing the chloroplast genomes with the one of P. verticillata. Additionally, almost all the plastid protein coding genes were found to prefer ending with A/U. Mutation bias and selection pressure predominately shaped the codon bias of most genes. And most of the genes underwent purifying selection, whereas photosynthetic genes experienced a relatively relaxed purifying selection.

Conclusions

Repeat sequences and hotspot regions can be scanned to detect the intraspecific and interspecific variability, and selected to infer the phylogenetic relationships of Sect. Marmorata and other species in subgenus Daiswa. Mutation and natural selection were the main forces to drive the codon bias pattern of most plastid protein coding genes. Therefore, this study enhances the understanding about evolution of Sect. Marmorata from the chloroplast genome, and provide genomic insights into genetic analyses of Sect. Marmorata.
  相似文献   

15.
Plant carotenoid cleavage dioxygenase (CCD) catalyses the formation of industrially important apocarotenoids. Here, we applied codon-based classification for 72 CCD genes from 35 plant species using hierarchical clustering analysis. The codon adaptation index (CAI) and relative codon bias (RCB) were utilized to estimate the level of gene expression. The codon-based cluster tree result shows neatly clustered subclass of CCD genes except BoCCD1 gene of Bixa orellana. Correlation analysis of CAI values with RCB indicates an overall low-level expression of CCD across different species. Similarly, the closeness in the codon cluster with same CAI values was not reflected in 3-D structural report of selected CCD genes. These finding not only enhances our insights into the classification of CCD gene across the species but also identifies the critical factors responsible for this variation, which could aid in prediction of gene expression and function for newly reported CCD genes.  相似文献   

16.
Lipases are physiologically important and ubiquitous enzymes that share a conserved domain and are classified into eight different families based on their amino acid sequences and fundamental biological properties. The Lipase3 family of lipases was reported to possess a canonical fold typical of α/β hydrolases and a typical catalytic triad, suggesting a distinct evolutionary origin for this family. Genes in the Lipase3 family do not have the same functions, but maintain the conserved Lipase3 domain. There have been extensive studies of Lipase3 structures and functions, but little is known about their evolutionary histories. In this study, all lipases within five plant species were identified, and their phylogenetic relationships and genetic properties were analyzed and used to group them into distinct evolutionary families. Each identified lipase family contained at least one dicot and monocot Lipase3 protein, indicating that the gene family was established before the split of dicots and monocots. Similar intron/exon numbers and predicted protein sequence lengths were found within individual groups. Twenty-four tandem Lipase3 gene duplications were identified, implying that the distinctive function of Lipase3 genes appears to be a consequence of translocation and neofunctionalization after gene duplication. The functional genes EDS1, PAD4, and SAG101 that are reportedly involved in pathogen response were all located in the same group. The nucleotide diversity (Dxy) and the ratio of nonsynonymous to synonymous nucleotide substitutions rates (Ka/Ks) of the three genes were significantly greater than the average across the genomes. We further observed evidence for selection maintaining diversity on three genes in the Toll-Interleukin-1 receptor type of nucleotide binding/leucine-rich repeat immune receptor (TIR-NBS LRR) immunity-response signaling pathway, indicating that they could be vulnerable to pathogen effectors.  相似文献   

17.
The lengths of meristematic (lm) and fully-elongated cells (le) were measured in the roots of 118 monocot and dicot species of herbaceous plants from 20 angiosperm families. The results were analyzed using the data on haploid DNA content (Cval) for the same species from the website (http://data.kew.org/cvalues). The distribution range of lm, le, and Cval was wider in monocot plants compared to dicots. Values of lm and le in monocot and lm in dicot species correlated positively with Cval. Dependence of lm and le on Cval was similar in diploid and polyploid species, both monocots and dicots. The average length of root cells differed less than the root length.  相似文献   

18.
Synonymous codon usage of 53 protein coding genes in chloroplast genome of Coffea arabica was analyzed for the first time to find out the possible factors contributing codon bias. All preferred synonymous codons were found to use A/T ending codons as chloroplast genomes are rich in AT. No difference in preference for preferred codons was observed in any of the two strands, viz., leading and lagging strands. Complex correlations between total base compositions (A, T, G, C, GC) and silent base contents (A3, T3, G3, C3, GC3) revealed that compositional constraints played crucial role in shaping the codon usage pattern of C. arabica chloroplast genome. ENC Vs GC3 plot grouped majority of the analyzed genes on or just below the left side of the expected GC3 curve indicating the influence of base compositional constraints in regulating codon usage. But some of the genes lie distantly below the continuous curve confirmed the influence of some other factors on the codon usage across those genes. Influence of compositional constraints was further confirmed by correspondence analysis as axis 1 and 3 had significant correlations with silent base contents. Correlation of ENC with axis 1, 4 and CAI with 1, 2 prognosticated the minor influence of selection in nature but exact separation of highly and lowly expressed genes could not be seen. From the present study, we concluded that mutational pressure combined with weak selection influenced the pattern of synonymous codon usage across the genes in the chloroplast genomes of C. arabica.  相似文献   

19.
20.
Hepatitis C virus infection (HCV) alarmingly increases worldwide; it causes chronic hepatitis, liver cirrhosis and hepatocellular carcinoma, so there is urgent need of developing effective and sufficient quantity of vaccine. HCV envelope protein E2 is the main target for developing as a vaccine candidate. Presently recombinant proteins can successfully be used as a vaccine for many diseases. This concern, it is challenging to produce sufficient quantities of many recombinant proteins from their expression hosts. One of the main factors affecting the success of expression of foreign genes in heterologous hosts is the divergence of codon usage of the target gene from that used in the expression system. In this study, we optimized the various genotypes of HCV envelope protein E2 gene according to the codon usage of Pichia pastoris and predicted the expression level. Synonymous codon usage of E2 adapted to that used by P. pastoris was estimated using the relative synonymous codon usage value (RSCU), codon adaptation index (CAI) and effective number of codon (ENC). The CAI of optimized HCV E2 sequences was enhanced from 0.638 to 0.833 and %GC was decreased from 56.05 to 44.05; this was significantly (p < 0.01) different from the native sequences. Codon with RSCU value less than one was replaced with most preferred synonymous codons. The ENC values of optimized HCV E2 sequences varied from 47.00 to 47.50, with a mean value of 47.15 and an SD of 0.14. Our study suggested that, from the measured values of predicted expression level, the codon optimized HCV E2 protein could be produced in sufficient quantity in the expression host; knowledge of the codon usage patterns of E2 of various genotypes facilitate the production of a promising unique vaccine candidate for HCV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号