首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abscisic acid (ABA) is the most important stress hormone in the regulation of plant adaptation to drought. Owing to the chemical instability and rapid catabolism of ABA, ABA mimic 1 (AM1) is frequently applied to enhance drought resistance in plants, but the molecular mechanisms governed by AM1 on improving drought resistance in Brassica napus are not entirely understood. To investigate the effect of AM1 on drought resistance at the physiological and molecular levels, exogenous ABA and AM1 were applied to the leaves of two B. napus genotypes (Q2 and Qinyou 8) given progressive drought stress. The results showed that the leaves of 50 µM ABA- and AM1-treated plants shared over 60% differential expressed genes and 90% of the enriched functional pathways in Qinyou 8 under drought. AM1 affected the expression of the genes involved in ABA signaling; they down-regulated pyrabactin resistance/PYR1-like (PYR/PYLs), up-regulated type 2C protein phosphatases (PP2Cs), partially up-regulated sucrose non-fermenting 1-related protein kinase 2s (SnRK2s), and down-regulated ABA-responsive element (ABRE)-binding protein/ABRE-binding factors (AREB/ABFs). Additionally, AM1 treatment repressed the expression of photosynthesis-related genes, those mainly associated with the light reaction process. Moreover, AM1 decreased the stomatal conductance, the net photosynthetic rate, and the transpiration rate, but increased the relative water content in leaves and increased survival rates of two genotypes under drought stress. Our findings suggest that AM1 has a potential to improve drought resistance in B. napus by triggering molecular and physiological responses to reduce water loss and impair growth, leading to increased survival rates.  相似文献   

2.
Leaf rust, caused by Puccinia triticina, is one of the most widespread diseases in common wheat globally. The Chinese wheat cultivar Zhoumai 22 is highly resistant to leaf rust at the seedling and adult stages. Seedlings of Zhoumai 22 and 36 lines with known leaf rust resistance genes were inoculated with 13 P. triticina races for gene postulation. The leaf rust response of Zhoumai 22 was different from those of the single gene lines. With the objective of identifying and mapping, the new gene(s) for resistance to leaf rust, F1, F2 plants and F2:3 lines from the cross Zhoumai 22/Chinese Spring were inoculated with Chinese P. triticina race FHDQ at the seedling stage. A single dominant gene, tentatively designated LrZH22, conferred resistance. To identify other possible genes in Zhoumai 22, ten P. triticina races avirulent on Zhoumai 22 were used to inoculate 24 F2:3 lines. The same gene conferred resistance to all ten avirulent races. A total of 1300 simple sequence repeat (SSR) markers and 36 EST markers on 2BS were used to test the parents, and resistant and susceptible bulks. Resistance gene LrZH22 was mapped in the chromosome bin 2BS1-0.53-0.75 and closely linked to six SSR markers (barc183, barc55, gwm148, gwm410, gwm374 and wmc474) and two EST markers (BF202681 and BE499478) on chromosome arm 2BS. The two closest flanking SSR loci were Xbarc55 and Xgwm374 with genetic distances of 2.4 and 4.8 cM from LrZH22, respectively. Six designated genes (Lr13, Lr16, Lr23, Lr35, Lr48 and Lr73) are located on chromosome arm 2BS. In seedling tests, LrZH22 was temperature sensitive, conferring resistance at high temperatures. The reaction pattern of Zhoumai 22 was different from that of RL 4031 (Lr13), RL 6005 (Lr16) and RL 6012 (Lr23), Lr35 and Lr48 are adult-plant resistance genes, and Lr73 is not sensitive to the temperature. Therefore, LrZH22 is likely to be a new leaf rust resistance gene or allele.  相似文献   

3.
4.
Idiopathic infantile hypercalcemia (IIH) is a mineral metabolism disorder characterized by severe hypercalcemia, failure to thrive, vomiting, dehydration, and nephrocalcinosis. The periodical increase in incidence of IIH, which occurred in the twentieth century in the United Kingdom, Poland, and West Germany, turned out to be a side effect of rickets over-prophylaxis. It was recently discovered that the condition is linked to two genes, CYP24A1 and SLC34A1. The aim of the study was to search for pathogenic variants of the genes in adult persons who were shortlisted in infancy as IIH caused by “hypersensitivity to vit. D”. All persons were found to carry mutations in CYP24A1 or SLC34A1, nine and two persons respectively. The changes were biallelic, with one exception. Incidence of IIH in Polish population estimated on the basis of allele frequency of recurrent p.R396W CYP24A1 variant, is 1:32,465 births. It indicates that at least a thousand homozygotes and compound heterozygotes with risk of IIH live in the country. Differences in mechanism of developing hypercalcemia indicate that its prevention may vary in both IIH defects. Theoretically, vit. D restriction is a first indication for CYP24A1 defect (which disturbs 1,25(OH)2D degradation) and phosphate supplementation for SLC34A1 defect (which impairs renal phosphate transport). In conclusion, we suggest that molecular testing for CYP24A1 and SLC34A1 mutations should be performed in each case of idiopathic hypercalcemia/hypercalciuria, both in children and adults, to determine the proper way for acute treatment and complications prevention.  相似文献   

5.
Mycobacterium avium subsp. paratuberculosis (MAP) causes major problem in a wide range of animal species. In ruminant livestock including cattle, it causes a chronic disease called Johne’s disease, or paratuberculosis (pTB) which is currently considered as potential zoonosis, causing Crohn’s disease in humans. MAP infection susceptibility is suspected to be controlled by host genetics. Thus, selecting individuals according to their genetic structure could help to obtain bovine populations that are increasingly resistant to MAP infection. The aim of the present work was to investigate the association between toll-like receptor (TLR) \({ 1}\) (+1380 G/A), TLR1 (+1446 C/A), TLR4 (+10 C/T), TLR9 (+1310 G/A) and solute carrier family 11 member 1 (SLC11A1) (+1066 C/G) mutations and MAP infection status in 813 cattle comprising East Anatolian Red crossbred, Anatolian Black crossbred and Holstein breed. TLR1 (+1380 G/A) mutation showed an association with bovine MAP (\(P\!<\!0.05\)). For the TLR1 (+1380 G/A) locus, the odds ratio for AG and AA genotypes versus GG genotypes were 2.31 (1.24–4.30; 95% confidence interval (CI)) and 0<0.001 (<0.001 to >999.999; 95% CI) which indicated that a proportion of AG homozygote was significantly higher in pTB-affected animals as compared with the control. General linear model analysis demonstrated higher MAP antibody response in TLR1 (+1380 AG) genotype as compared with TLR1 (+1380 GG) (\(P\!<\! 0.0001\)). Present findings suggest that selection against TLR1 (+1380 G/A) may reduce the risk of pTB in bovine herds.  相似文献   

6.
Helicobacter pylori infection could induce oxidative stress. Oxidative stress is involved in the pathogenesis of gastric diseases. Glutathione peroxidase 1 (GPX1), is part of the enzymatic antioxidant defense, preventing oxidative damage. The aim of the present study was to assess the association of GPX1 Pro198Leu genotypes with gastric cancer in patients with and without H. pylori infection in a population of Northern Iran. The present case-control study consisted of 50 patients with gastric cancer and 78 cancer-free subjects as controls. Extraction of DNA was performed on bioptic samples and the GPX1 genotypes were identified using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. The frequencies of GPX1 Pro/Pro, Pro/Leu and Leu/Leu genotypes in controls were 21.8, 71.8 and 6.4%, respectively. However, in gastric cancer patients, the frequencies of 34, 56 and 10% were observed for Pro/Pro, Pro/Leu and Leu/Leu genotypes, respectively (p?=?0.185). In 38 (76%) patients infected with H. pylori, the frequencies of Pro and Leu alleles were 94.7 and 3.3%, respectively. There was a higher frequency of combined genotype of Pro/Leu?+?Leu/Leu (94.7%) in H. pylori positive patients than that in patients without H. pylori infection (75%, p?=?0.047). The presence of this genotype tended to increase the risk of H. pylori related gastric cancer by 5.88–fold (p?=?0.069) in our population. Our findings indicated the absence of association between the GPX1 Pro198Leu polymorphism and the risk of gastric cancer in an Iranian population. However, we detected an association between H. pylori related gastric cancer with GPX1 Pro/Leu?+?Leu/Leu genotype.  相似文献   

7.

Key message

The quantitative barley leaf rust resistance gene, Rph26, was fine mapped within a H. bulbosum introgression on barley chromosome 1HL. This provides the tools for pyramiding with other resistance genes.

Abstract

A novel quantitative resistance gene, Rph26, effective against barley leaf rust (Puccinia hordei) was introgressed from Hordeum bulbosum into the barley (Hordeum vulgare) cultivar ‘Emir’. The effect of Rph26 was to reduce the observed symptoms of leaf rust infection (uredinium number and infection type). In addition, this resistance also increased the fungal latency period and reduced the fungal biomass within infected leaves. The resulting introgression line 200A12, containing Rph26, was backcrossed to its barley parental cultivar ‘Emir’ to create an F2 population focused on detecting interspecific recombination within the introgressed segment. A total of 1368 individuals from this F2 population were genotyped with flanking markers at either end of the 1HL introgression, resulting in the identification of 19 genotypes, which had undergone interspecific recombination within the original introgression. F3 seeds that were homozygous for the introgressions of reduced size were selected from each F2 recombinant and were used for subsequent genotyping and phenotyping. Rph26 was genetically mapped to the proximal end of the introgressed segment located at the distal end of chromosome 1HL. Molecular markers closely linked to Rph26 were identified and will enable this disease resistance gene to be combined with other sources of quantitative resistance to maximize the effectiveness and durability of leaf rust resistance in barley breeding. Heterozygous genotypes containing a single copy of Rph26 had an intermediate phenotype when compared with the homozygous resistant and susceptible genotypes, indicating an incompletely dominant inheritance.
  相似文献   

8.
Imprinted genes are characterized by monoallelic expression that is dependent on parental origin. Comparative analysis of imprinted genes between species is a powerful tool for understanding the biological significance of genomic imprinting. The slc38a4 gene encodes a neutral amino acid transporter and is identified as imprinted in mice. In this study, the imprinting status of SLC38A4 was assessed in bovine adult tissues and placenta using a polymorphism-based approach. Results indicate that SLC38A4 is not imprinted in eight adult bovine tissues including heart, liver, spleen, lung, kidney, muscle, fat, and brain. It was interesting to note that SLC38A4 showed polymorphic status in five heterogeneous placentas, with three exhibiting paternal monoallelic expression and two exhibiting biallelic expression. Monoallelic expression of imprinted genes is generally associated with allele-specific differentially methylation regions (DMRs) of CpG islands (CGIs)-encompassed promoter; therefore, the DNA methylation statuses of three CGIs in the SLC38A4 promoter and exon 1 region were tested in three placentas (two exhibiting paternal monoallelic and one showing biallelic expression of SLC38A4) and their corresponding paternal sperms. Unexpectedly, extreme hypomethylation (<?3%) of the DNA was observed in all the three detected placentas and their corresponding paternal sperms. The absence of DMR in bovine SLC38A4 promoter region implied that DNA methylation of these three CGIs does not directly or indirectly affect the polymorphic imprinting of SLC38A4 in bovine placenta. This suggested other epigenetic features other than DNA methylation are needed in regulating the imprinting of bovine SLC38A4, which is different from that of mouse with respect to a DMR existence at the mouse’s slc38a4 promoter region. Although further work is needed, this first characterization of polymorphic imprinting status of SLC38A4 in cattle placenta provides valuable information on investigating the genomic imprinting phenomenon itself.  相似文献   

9.
10.

Objective

To study Candida albicans genotypes using RAPD and their susceptibility to fluconazole in healthy pregnant women and in vulvovaginal candidiasis (VVC) patients after topical treatment with clotrimazole.

Methods

Vaginal swabs were collected at t = 0 and t = 1 (1 month later) in pregnant women (control group, n = 33), and before (t = 0), at 1 month (t = 1) and at 2 months (t = 2) after clotrimazole treatment in pregnant women with VVC.

Results

Candida albicans was isolated in 30% of healthy pregnant women and 80% of patients with VVC. A high genetic heterogeneity was observed in C. albicans genotypes between individuals. In patients with VVC, topical antifungal treatment with clotrimazole was clinically effective, but only in a 62% C. albicans was eradicated. In patients in which C. albicans was not eradicated, this microorganism persisted for 1 or 2 months after the antifungal treatment. The persistent colonies were not associated with a specific genotype, but they were associated with higher MICs in comparison with colonies isolated from the control group.

Conclusions

Therapy with topical clotrimazole, despite a good clinical outcome, could not eradicate completely C. albicans allowing the persistence of genotypes, with higher MICs to fluconazole. More studies with higher number of patients are needed to validate this preliminary finding.
  相似文献   

11.
Leaf rust of wheat, caused by Puccinia triticina, is an important disease throughout the world. The adult plant leaf rust resistance gene Lr48 reported in CSP44 was previously mapped in chromosome 2B, but the marker–gene association was weak. In this study, we confirmed the location of Lr48 to be in the short arm of chromosome 2B and identified closely linked markers suitable for use in breeding. The CSP44/WL711 recombinant inbred line (RIL) population (90 lines) showed monogenic segregation for Lr48. Twelve resistant and 12 susceptible RILs were used for selective genotyping using an iSelect 90K Infinium SNP assay. Closely linked SNPs were converted into Kompetitive allele-specific primers (KASP) and tested on the parental lines. KASP markers giving clear clusters for alternate genotypes were assayed on the entire RIL population. SNP markers IWB31002, IWB39832, IWB34324, IWB72894 and IWB36920 co-segregated with Lr48 and the marker IWB70147 was mapped 0.3 cM proximal to this gene. Closely linked KASP markers were tested on a set of Australian and Nordic wheat genotypes. The amplification of SNP alleles alternate to those linked with Lr48 in the majority of the Australian and Nordic wheat genotypes demonstrated the usefulness of these markers for marker-assisted pyramiding of Lr48 with other rust resistance genes.  相似文献   

12.

Key message

In the soybean cultivar Suweon 97, BCMV-resistance gene was fine-mapped to a 58.1-kb region co-localizing with the Soybean mosaic virus (SMV)-resistance gene, Rsv1-h raising a possibility that the same gene is utilized against both viral pathogens.

Abstract

Certain soybean cultivars exhibit resistance against soybean mosaic virus (SMV) or bean common mosaic virus (BCMV). Although several SMV-resistance loci have been reported, the understanding of the mechanism underlying BCMV resistance in soybean is limited. Here, by crossing a resistant cultivar Suweon 97 with a susceptible cultivar Williams 82 and inoculating 220 F2 individuals with a BCMV strain (HZZB011), we observed a 3:1 (resistant/susceptible) segregation ratio, suggesting that Suweon 97 possesses a single dominant resistance gene against BCMV. By performing bulked segregant analysis with 186 polymorphic simple sequence repeat (SSR) markers across the genome, the resistance gene was determined to be linked with marker BARSOYSSR_13_1109. Examining the genotypes of nearby SSR markers on all 220 F2 individuals then narrowed down the gene between markers BARSOYSSR_13_1109 and BARSOYSSR_13_1122. Furthermore, 14 previously established F2:3 lines showing crossovers between the two markers were assayed for their phenotypes upon BCMV inoculation. By developing six more SNP (single nucleotide polymorphism) markers, the resistance gene was finally delimited to a 58.1-kb interval flanked by BARSOYSSR_13_1114 and SNP-49. Five genes were annotated in this interval of the Williams 82 genome, including a characteristic coiled-coil nucleotide-binding site-leucine-rich repeat (CC-NBS-LRR, CNL)-type of resistance gene, Glyma13g184800. Coincidentally, the SMV-resistance allele Rsv1-h was previously mapped to almost the same region, thereby suggesting that soybean Suweon 97 likely relies on the same CNL-type R gene to resist both viral pathogens.
  相似文献   

13.
14.
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is an important disease of wheat worldwide. Host resistance is the best way to control the disease. Genetic analysis of F2 and F2:3 populations from an Avocet S/Jimai 22 cross indicated that stripe rust resistance in Jimai 22 was conferred by a single dominant gene, tentatively designated YrJ22. A total of 377 F2 plants and 127 F2:3 lines were tested with Chinese Pst race CYR32 and genotyped with simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers. A linkage map was constructed with five SSR and two SNP markers. Xwmc658 and IWA1348 flanked YrJ22 at genetic distances of 1.0 and 7.3 cM, proximally and distally, respectively. The chromosomal location was confirmed using Chinese Spring nulli-tetrasomic, ditelosomics and deletion lines. Seedling reactions to 21 Pst races demonstrated differences in specificity between YrJ22 and other resistance genes on chromosome 2AL, indicating that YrJ22 is likely to be a new wheat stripe rust resistance gene.  相似文献   

15.
The R1 gene for resistance to oomycete Phytophthora infestans (Mont.) de Bary, the causal agent of late blight disease of potato (Solanum tuberosum L.), was initially identified in S. demissum and potato varieties bred by introgressing the S. demissum germplasm. Later a sequence characterized amplified region (SCAR) marker R1-1205 of this gene was also found in S. stoloniferum and S. polytrichon. Here we describe the full-length R1 sequence cloned from S. stoloniferum. This sequence is translatable, and this evidence of structural gene integrity is reinforced by functional characterization of the S. stoloniferum R1 gene in an effectoromics experiment. When screened across a series of S. demissum and S. stoloniferum accessions, the R1 sequences differed by several single nucleotide polymorphisms and an indel; this indel served the basis for constructing SCAR markers R1-517 and R1-513 that reliably discerned two R1 orthologs. The demissum-specific marker R1-517 was found in all S. demissum accessions under study; it was also present in many demissum-derived potato varieties and hybrids. The stoloniferum-specific marker R1-513 was found in 27% of S. stoloniferum and S. polytrichon accessions; however, we failed to discern this marker in the genotypes of cultivated potato listing S. stoloniferum in their pedigrees. Most probably, such absence of R1-513 is best explained by an opportunistic breeding history of stoloniferum-derived founder lines, which were employed first and foremost in breeding for resistance to potato virus Y: eventually, these founder lines are devoid of the R1 gene.  相似文献   

16.
Rice blast is a serious disease caused by the filamentous ascomycetous fungus Magnaporthe oryzae. Incorporating disease resistance genes in rice varieties and characterizing the distribution of M. oryzae isolates form the foundation for enhancing rice blast resistance. In this study, the blast resistance gene Pish was observed to be differentially distributed in the genomes of rice sub-species. Specifically, Pish was present in 80.5% of Geng varieties, but in only 2.3% of Xian varieties. Moreover, Pish conferred resistance against only 23.5% of the M. oryzae isolates from the Geng-planting regions, but against up to 63.2% of the isolates from the Xian-planting regions. Thus, Pish may be an elite resistance gene for improving rice blast resistance in Xian varieties. Therefore, near-isogenic lines (NILs) with Pish and the polygene pyramid lines (PPLs) PPLPish/Pi1, PPLPish/Pi54, and PPLPish/Pi33 in the Xian background Yangdao 6 were generated using a molecular marker-assisted selection method. The results suggested that (1) Pish significantly improved rice blast resistance in Xian varieties, which exhibited considerably improved seedling and panicle blast resistance after Pish was introduced; (2) PPLs with Pish were more effective than the NILs with Pish regarding seedling and panicle blast resistance; (3) the PPL seedling and panicle blast resistance was improved by the complementary and overlapping effects of different resistance genes; and (4) the stability of NIL and PPL resistance varied under different environmental conditions, with only PPLPish/Pi54 exhibiting highly stable resistance in three natural disease nurseries (Jianyang, Jinggangshan, and Huangshan). This study provides new blast resistance germplasm resources and describes a novel molecular strategy for enhancing rice blast resistance.  相似文献   

17.

Background

Identification of genes underlying production traits is a key aim of the mink research community. Recent availability of genomic tools have opened the possibility for faster genetic progress in mink breeding. Availability of mink genome assembly allows genome-wide association studies in mink.

Results

In this study, we used genotyping-by-sequencing to obtain single nucleotide polymorphism (SNP) genotypes of 2496 mink. After multiple rounds of filtering, we retained 28,336 high quality SNPs and 2352 individuals for a genome-wide association study (GWAS). We performed the first GWAS for body weight, behavior, along with 10 traits related to fur quality in mink.

Conclusions

Combining association results with existing functional information of genes and mammalian phenotype databases, we proposed WWC3, MAP2K4, SLC7A1 and USP22 as candidate genes for body weight and pelt length in mink.
  相似文献   

18.
The 32-bp deletion (CCR5del32 mutation) in the CCR5 (chemokine (C-C motif) receptor 5) gene, encoding CCR5 chemokine receptor, is one of the factors determining natural resistance to human immunodeficiency virus (HIV-1) infection. In the present study, the samples of Russians (n = 102), Tuvinians (n = 50), and HIV-infected individuals (n = 107) were examined for the presence of CCR5del32 mutation in the CCR5 gene. The CCR5del32 allele frequency in Russians and Tuvinians constituted 7.84 and 2%, respectively. Among HIV-1 infected individuals, two groups, of macrophage-tropic HIV-1 strain- and T-cell-tropic HIV-1 strain-infected were distinguished. The CCR5del32 allele frequency in the first group (6.45%) was lower than in the second one (8.73%). Statistical treatment of the HIV-1 infected individuals typing data showed that the difference in the CCR5del32 allele frequencies between the groups of sexually (macrophage-tropic) and parenterally (T-cell-tropic) infected individuals observed was within the limit of random deviation.  相似文献   

19.
20.
Stem rust of wheat, caused by Puccinia graminis f. sp. tritici (Pgt), is a threat to global food security due to its ability to cause total crop failures. The Pgt race TTKSK (Ug99) and its derivatives detected in East Africa carry virulence for many resistance genes present in modern cultivars. However, stem rust resistance gene Sr26 remains effective to all races of Pgt worldwide. Sr26 is carried on the Agropyron elongatum (syn. Thinopyrum ponticum) segment 6Ae#1L translocated to chromosome 6AL of wheat. In this study, a recombinant inbred line (RIL) population derived from a cross between the landrace Aus27969 and Avocet S, which carries Sr26, was used to develop co-dominant kompetitive allele-specific polymerase chain reaction (KASP) markers that co-segregate with Sr26. Four KASP markers (sunKASP_216, sunKASP_218, sunKASP_224 and sunKASP_225) were also shown to co-segregate with Sr26 in four additional RIL populations. When tested on Australian cultivars and breeding lines, these markers amplified alleles alternate to that linked with Sr26 in all cultivars known to lack this gene and Sr26-linked alleles in cultivars and genotypes known to carry Sr26. Genotypes WA-1 and WA-1/3*Yitpi carrying the shortest Sr26 translocation segment were positive only for markers sunKASP_224 and sunKASP_225. Our results suggest the four KASP markers are located on the original translocation and sunKASP_224 and sunKASP_225 are located on the shortened version. Therefore, sunKASP_224 and sunKASP_225 can be used for marker-assisted pyramiding of Sr26 with other stem rust resistance genes to achieve durable resistance in wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号