首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chuawong P  Hendrickson TL 《Biochemistry》2006,45(26):8079-8087
Divergent tRNA substrate recognition patterns distinguish the two distinct forms of aspartyl-tRNA synthetase (AspRS) that exist in different bacteria. In some cases, a canonical, discriminating AspRS (D-AspRS) specifically generates Asp-tRNA(Asp) and usually coexists with asparaginyl-tRNA synthetase (AsnRS). In other bacteria, particularly those that lack AsnRS, AspRS is nondiscriminating (ND-AspRS) and generates both Asp-tRNA(Asp) and the noncanonical, misacylated Asp-tRNA(Asn); this misacylated tRNA is subsequently repaired by the glutamine-dependent Asp-tRNA(Asn)/Glu-tRNA(Gln) amidotransferase (Asp/Glu-Adt). The molecular features that distinguish the closely related bacterial D-AspRS and ND-AspRS are not well-understood. Here, we report the first characterization of the ND-AspRS from the human pathogen Helicobacter pylori (H. pylori or Hp). This enzyme is toxic when heterologously overexpressed in Escherichia coli. This toxicity is rescued upon coexpression of the Hp Asp/Glu-Adt, indicating that Hp Asp/Glu-Adt can utilize E. coli Asp-tRNA(Asn) as a substrate. Finally, mutations in the anticodon-binding domain of Hp ND-AspRS reduce this enzyme's ability to misacylate tRNA(Asn), in a manner that correlates with the toxicity of the enzyme in E. coli.  相似文献   

2.
3.
Charron C  Roy H  Blaise M  Giegé R  Kern D 《The EMBO journal》2003,22(7):1632-1643
In most organisms, tRNA aminoacylation is ensured by 20 aminoacyl-tRNA synthetases (aaRSs). In eubacteria, however, synthetases can be duplicated as in Thermus thermophilus, which contains two distinct AspRSs. While AspRS-1 is specific, AspRS-2 is non-discriminating and aspartylates tRNA(Asp) and tRNA(Asn). The structure at 2.3 A resolution of AspRS-2, the first of a non-discriminating synthetase, was solved. It differs from that of AspRS-1 but has resemblance to that of discriminating and archaeal AspRS from Pyrococcus kodakaraensis. The protein presents non-conventional features in its OB-fold anticodon-binding domain, namely the absence of a helix inserted between two beta-strands of this fold and a peculiar L1 loop differing from the large loops known to interact with tRNA(Asp) identity determinant C36 in conventional AspRSs. In AspRS-2, this loop is small and structurally homologous to that in AsnRSs, including conservation of a proline. In discriminating Pyrococcus AspRS, the L1 loop, although small, lacks this proline and is not superimposable with that of AspRS-2 or AsnRS. Its particular status is demonstrated by a loop-exchange experiment that renders the Pyrococcus AspRS non-discriminating.  相似文献   

4.
Helicobacter pylori catalyzes Asn-tRNA(Asn) formation by use of the indirect pathway that involves charging of Asp onto tRNA(Asn) by a non-discriminating aspartyl-tRNA synthetase (ND-AspRS), followed by conversion of the mischarged Asp into Asn by the GatCAB amidotransferase. We show that the partners of asparaginylation assemble into a dynamic Asn-transamidosome, which uses a different strategy than the Gln-transamidosome to prevent the release of the mischarged aminoacyl-tRNA intermediate. The complex is described by gel-filtration, dynamic light scattering and kinetic measurements. Two strategies for asparaginylation are shown: (i) tRNA(Asn) binds GatCAB first, allowing aminoacylation and immediate transamidation once ND-AspRS joins the complex; (ii) tRNA(Asn) is bound by ND-AspRS which releases the Asp-tRNA(Asn) product much slower than the cognate Asp-tRNA(Asp); this kinetic peculiarity allows GatCAB to bind and transamidate Asp-tRNA(Asn) before its release by the ND-AspRS. These results are discussed in the context of the interrelation between the Asn and Gln-transamidosomes which use the same GatCAB in H. pylori, and shed light on a kinetic mechanism that ensures faithful codon reassignment for Asn.  相似文献   

5.
Thermus thermophilus possesses two aspartyl-tRNA synthetases (AspRSs), AspRS1 and AspRS2, encoded by distinct genes. Alignment of the protein sequences with AspRSs of other origins reveals that AspRS1 possesses the structural features of eubacterial AspRSs, whereas AspRS2 is structurally related to the archaebacterial AspRSs. The structural dissimilarity between the two thermophilic AspRSs is correlated with functional divergences. AspRS1 aspartylates tRNA(Asp) whereas AspRS2 aspartylates tRNA(Asp), and tRNA(Asn) with similar efficiencies. Since Asp bound on tRNA(Asn) is converted into Asn by a tRNA-dependent aspartate amidotransferase, AspRS2 is involved in Asn-tRNA(Asn) formation. These properties relate functionally AspRS2 to archaebacterial AspRSs. The structural basis of the dual specificity of T. thermophilus tRNA(Asn) was investigated by comparing its sequence with those of tRNA(Asp) and tRNA(Asn) of strict specificity. It is shown that the thermophilic tRNA(Asn) contains the elements defining asparagine identity in Escherichia coli, part of which being also the major elements of aspartate identity, whereas minor elements of this identity are missing. The structural context that permits expression of aspartate and asparagine identities by tRNA(Asn) and how AspRS2 accommodates tRNA(Asp) and tRNA(Asn) will be discussed. This work establishes a distinct structure-function relationship of eubacterial and archaebacterial AspRSs. The structural and functional properties of the two thermophilic AspRSs will be discussed in the context of the modern and primitive pathways of tRNA aspartylation and asparaginylation and related to the phylogenetic connexion of T. thermophilus to eubacteria and archaebacteria.  相似文献   

6.
Two types of aspartyl-tRNA synthetase exist: the discriminating enzyme (D-AspRS) forms only Asp-tRNA(Asp), while the nondiscriminating one (ND-AspRS) also synthesizes Asp-tRNA(Asn), a required intermediate in protein synthesis in many organisms (but not in Escherichia coli). On the basis of the E. coli trpA34 missense mutant transformed with heterologous ND-aspS genes, we developed a system with which to measure the in vivo formation of Asp-tRNA(Asn) and its acceptance by elongation factor EF-Tu. While large amounts of Asp-tRNA(Asn) are detrimental to E. coli, smaller amounts support protein synthesis and allow the formation of up to 38% of the wild-type level of missense-suppressed tryptophan synthetase.  相似文献   

7.
In many organisms, the formation of asparaginyl-tRNA is not done by direct aminoacylation of tRNA(Asn) but by specific tRNA-dependent transamidation of aspartyl-tRNA(Asn). This transamidation pathway involves a nondiscriminating aspartyl-tRNA synthetase (AspRS) that charges both tRNA(Asp) and tRNA(Asn) with aspartic acid. Recently, it has been shown for the first time in an organism (Pseudomonas aeruginosa PAO1) that the transamidation pathway is the only route of synthesis of Asn-tRNA(Asn) but does not participate in Gln-tRNA(Gln) formation. P. aeruginosa PAO1 has a nondiscriminating AspRS. We report here the identification of two residues in the anticodon recognition domain (H31 and G83) which are implicated in the recognition of tRNA(Asn). Sequence comparisons of putative discriminating and nondiscriminating AspRSs (based on the presence or absence of the AdT operon and of AsnRS) revealed that bacterial nondiscriminating AspRSs possess a histidine at position 31 and usually a glycine at position 83, whereas discriminating AspRSs possess a leucine at position 31 and a residue other than a glycine at position 83. Mutagenesis of these residues of P. aeruginosa AspRS from histidine to leucine and from glycine to lysine increased the specificity of tRNA(Asp) charging over that of tRNA(Asn) by 3.5-fold and 4.2-fold, respectively. Thus, we show these residues to be determinants of the relaxed specificity of this nondiscriminating AspRS. Using available crystallographic data, we found that the H31 residue could interact with the central bases of the anticodons of the tRNA(Asp) and tRNA(Asn). Therefore, these two determinants of specificity of P. aeruginosa AspRS could be important for all bacterial AspRSs.  相似文献   

8.
The Escherichia coli tls-1 strain carrying a mutated aspS gene (coding for aspartyl-tRNA synthetase), which causes a temperature-sensitive growth phenotype, was cloned by PCR, sequenced, and shown to contain a single mutation resulting in substitution by serine of the highly conserved proline 555, which is located in motif 3. When an aspS fragment spanning the codon for proline 555 was transformed into the tls-1 strain, it was shown to restore the wild-type phenotype via homologous recombination with the chromosomal tls-1 allele. The mutated AspRS purified from an overproducing strain displayed marked temperature sensitivity, with half-life values of 22 and 68 min (at 42 degrees C), respectively, for tRNA aminoacylation and ATP/PPi exchange activities. Km values for aspartic acid, ATP, and tRNA(Asp) did not significantly differ from those of the native enzyme; thus, mutation Pro555Ser lowers the stability of the functional configuration of both the acylation and the amino acid activation sites but has no significant effect on substrate binding. This decrease in stability appears to be related to a conformational change, as shown by gel filtration analysis. Structural data strongly suggest that the Pro555Ser mutation lowers the stability of the Lys556 and Thr557 positions, since these two residues, as shown by the crystallographic structure of the enzyme, are involved in the active site and in contacts with the tRNA acceptor arm, respectively.  相似文献   

9.
The important identity elements in tRNA(Gln) and tRNA(Asn) for bacterial GatCAB and in tRNA(Gln) for archaeal GatDE are the D-loop and the first base pair of the acceptor stem. Here we show that Methanothermobacter thermautotrophicus GatCAB, the archaeal enzyme, is different as it discriminates Asp-tRNA(Asp) and Asp-tRNA(Asn) by use of U49, the D-loop and to a lesser extent the variable loop. Since archaea possess the tRNA(Gln)-specific amidotransferase GatDE, the archaeal GatCAB enzyme evolved to recognize different elements in tRNA(Asn) than those recognized by GatDE or by the bacterial GatCAB enzyme in their tRNA substrates.  相似文献   

10.
11.
Elongation factor Tu (EF-Tu) binds and loads elongating aminoacyl-tRNAs (aa-tRNAs) onto the ribosome for protein biosynthesis. Many bacteria biosynthesize Gln-tRNA (Gln) and Asn-tRNA (Asn) by an indirect, two-step pathway that relies on the misacylated tRNAs Glu-tRNA (Gln) and Asp-tRNA (Asn) as intermediates. Previous thermodynamic and experimental analyses have demonstrated that Thermus thermophilus EF-Tu does not bind Asp-tRNA (Asn) and predicted a similar discriminatory response against Glu-tRNA (Gln) [Asahara, H., and Uhlenbeck, O. (2005) Biochemistry 46, 6194-6200; Roy, H., et al. (2007) Nucleic Acids Res. 35, 3420-3430]. By discriminating against these misacylated tRNAS, EF-Tu plays a direct role in preventing misincorporation of aspartate and glutamate into proteins at asparagine and glutamine codons. Here we report the characterization of two different mesophilic EF-Tu orthologs, one from Escherichia coli, a bacterium that does not utilize either Glu-tRNA (Gln) or Asp-tRNA (Asn), and the second from Helicobacter pylori, an organism in which both misacylated tRNAs are essential. Both EF-Tu orthologs discriminate against these misacylated tRNAs, confirming the prediction that Glu-tRNA (Gln), like Asp-tRNA (Asn), will not form a complex with EF-Tu. These results also demonstrate that the capacity of EF-Tu to discriminate against both of these aminoacyl-tRNAs is conserved even in bacteria like E. coli that do not generate either misacylated tRNA.  相似文献   

12.
Aminoacyl-tRNA is generally formed by aminoacyl-tRNA synthetases, a family of 20 enzymes essential for accurate protein synthesis. However, most bacteria generate one of the two amide aminoacyl-tRNAs, Asn-tRNA or Gln-tRNA, by transamidation of mischarged Asp-tRNA(Asn) or Glu-tRNA(Gln) catalyzed by a heterotrimeric amidotransferase (encoded by the gatA, gatB, and gatC genes). The Chlamydia trachomatis genome sequence reveals genes for 18 synthetases, whereas those for asparaginyl-tRNA synthetase and glutaminyl-tRNA synthetase are absent. Yet the genome harbors three gat genes in an operon-like arrangement (gatCAB). We reasoned that Chlamydia uses the gatCAB-encoded amidotransferase to generate both Asn-tRNA and Gln-tRNA. C. trachomatis aspartyl-tRNA synthetase and glutamyl-tRNA synthetase were shown to be non-discriminating synthetases that form the misacylated tRNA(Asn) and tRNA(Gln) species. A preparation of pure heterotrimeric recombinant C. trachomatis amidotransferase converted Asp-tRNA(Asn) and Glu-tRNA(Gln) into Asn-tRNA and Gln-tRNA, respectively. The enzyme used glutamine, asparagine, or ammonia as amide donors in the presence of either ATP or GTP. These results suggest that C. trachomatis employs the dual specificity gatCAB-encoded amidotransferase and 18 aminoacyl-tRNA synthetases to create the complete set of 20 aminoacyl-tRNAs.  相似文献   

13.
14.
Aminoacyl-tRNA synthetases (aaRSs) are enzymes that are highly specific for their tRNA substrates. Here, we describe the expansion of a class IIb aaRS-tRNA specificity by a genetic selection that involves the use of a modified tRNA displaying an amber anticodon and the argE(amber) and lacZ(amber) reporters. The study was performed on Escherichia coli aspartyl-tRNA synthetase (AspRS) and amber tRNA(Asp). Nine AspRS mutants able to charge the amber tRNA(Asp) and to suppress the reporter genes were selected from a randomly mutated library. All the mutants exhibited a new amber tRNA(Asp) specificity in addition to the initial native tRNA(Asp). Six mutations were found in the anticodon-binding site located in the N-terminal OB-fold. The strongest suppressor was a mutation of residue Glu-93 that contacts specifically the anticodon nucleotide 34 in the crystal structure. The other mutations in the OB-fold were found at close distance from the anticodon in the so-called loop L45 and strand S1. They concern residues that do not contact tRNA(Asp) in the native complex. In addition, this study shows that suppressors can carry mutations located far from the anticodon-binding site. One such mutation was found in the synthetase hinge-module where it increases the tRNA(Asp)-charging rate, and two other mutations were found in the prokaryotic-specific insertion domain and the catalytic core. These mutants seem to act by indirect effects on the tRNA acceptor stem binding and on the conformation of the active site of the enzyme. Altogether, these data suggest the existence of various ways for modifying the mechanism of tRNA discrimination.  相似文献   

15.
Aminoacylation of transfer RNAs is a key step during translation. It is catalysed by the aminoacyl-tRNA synthetases (aaRSs) and requires the specific recognition of their cognate substrates, one or several tRNAs, ATP and the amino acid. Whereas the control of certain aaRS genes is well known in prokaryotes, little is known about the regulation of eukaryotic aaRS genes. Here, it is shown that expression of AspRS is regulated in yeast by a feedback mechanism that necessitates the binding of AspRS to its messenger RNA. This regulation leads to a synchronized expression of AspRS and tRNA(Asp). The correlation between AspRS expression and mRNA(AspRS) and tRNA(Asp) concentrations, as well as the presence of AspRS in the nucleus, suggests an original regulation mechanism. It is proposed that the surplus of AspRS, not sequestered by tRNA(Asp), is imported into the nucleus where it binds to mRNA(AspRS) and thus inhibits its accumulation.  相似文献   

16.
Faithful genetic code translation requires that each aminoacyl-tRNA synthetase recognise its cognate amino acid ligand specifically. Aspartyl-tRNA synthetase (AspRS) distinguishes between its negatively-charged Asp substrate and two competitors, neutral Asn and di-negative succinate, using a complex network of electrostatic interactions. Here, we used molecular dynamics simulations and site-directed mutagenesis experiments to probe these interactions further. We attempt to decrease the Asp/Asn binding free energy difference via single, double and triple mutations that reduce the net positive charge in the active site of Escherichia coli AspRS. Earlier, Glutamine 199 was changed to a negatively-charged glutamate, giving a computed reduction in Asp affinity in good agreement with experiment. Here, Lysine 198 was changed to a neutral leucine; then, Lys198 and Gln199 were mutated simultaneously. Both mutants are predicted to have reduced Asp binding and improved Asn binding, but the changes are insufficient to overcome the initial, high specificity of the native enzyme, which retains a preference for Asp. Probing the aminoacyl-adenylation reaction through pyrophosphate exchange experiments, we found no detectable activity for the mutant enzymes, indicating weaker Asp binding and/or poorer transition state stabilization. The simulations show that the mutations' effect is partly offset by proton uptake by a nearby histidine. Therefore, we performed additional simulations where the nearby Histidines 448 and 449 were mutated to neutral or negative residues: (Lys198Leu, His448Gln, His449Gln), and (Lys198Leu, His448Glu, His449Gln). This led to unexpected conformational changes and loss of active site preorganization, suggesting that the AspRS active site has a limited structural tolerance for electrostatic modifications. The data give insights into the complex electrostatic network in the AspRS active site and illustrate the difficulty in engineering charged-to-neutral changes of the preferred ligand.  相似文献   

17.
Aspartyl-tRNA synthetase is a class II tRNA synthetase and occurs in a multisynthetase complex in mammalian cells. Human Asp-tRNA synthetase contains a short 32-residue amino-terminal extension that can control the release of charged tRNA and its direct transfer to elongation factor 1 alpha; however, whether the extension binds to tRNA directly or interacts with the synthetase active site is not known. Full-length human AspRS, but not amino-terminal 32 residue-deleted, fully active AspRS, was found to bind to noncognate tRNA(fMet) in the presence of Mg(2+). Synthetic amino-terminal peptides bound similarly to tRNA(fMet), whereas little or no binding of polynucleotides, poly(dA-dT), or polyphosphate to the peptides was found. The apparent binding constants to tRNA by the peptide increased with increasing concentrations of Mg(2+), suggesting Mg(2+) mediates the binding as a new mode of RNA.peptide interactions. The binding of tRNA(fMet) to amino-terminal peptides was also observed using fluorescence-labeled tRNAs and circular dichroism. These results suggest that a small peptide can bind to tRNA selectively and that evolution of class II tRNA synthetases may involve structural changes of amino-terminal extensions for enhanced selective binding of tRNA.  相似文献   

18.
Specific amino acid binding by aminoacyl-tRNA synthetases (aaRS) is necessary for correct translation of the genetic code. Engineering a modified specificity into aminoacyl-tRNA synthetases has been proposed as a means to incorporate artificial amino acid residues into proteins in vivo. In a previous paper, the binding to aspartyl-tRNA synthetase of the substrate Asp and the analogue Asn were compared by molecular dynamics free energy simulations. Molecular dynamics combined with Poisson-Boltzmann free energy calculations represent a less expensive approach, suitable for examining multiple active site mutations in an engineering effort. Here, Poisson-Boltzmann free energy calculations for aspartyl-tRNA synthetase are first validated by their ability to reproduce selected molecular dynamics binding free energy differences, then used to examine the possibility of Asn binding to native and mutant aspartyl-tRNA synthetase. A component analysis of the Poisson-Boltzmann free energies is employed to identify specific interactions that determine the binding affinities. The combined use of molecular dynamics free energy simulations to study one binding process thoroughly, followed by molecular dynamics and Poisson-Boltzmann free energy calculations to study a series of related ligands or mutations is proposed as a paradigm for protein or ligand design.The binding of Asn in an alternate, "head-to-tail" orientation observed in the homologous asparagine synthetase is analyzed, and found to be more stable than the "Asp-like" orientation studied earlier. The new orientation is probably unsuitable for catalysis. A conserved active site lysine (Lys198 in Escherichia coli) that recognizes the Asp side-chain is changed to a leucine residue, found at the corresponding position in asparaginyl-tRNA synthetase. It is interesting that the binding of Asp is calculated to increase slightly (rather than to decrease), while that of Asn is calculated, as expected, to increase strongly, to the same level as Asp binding. Insight into the origin of these changes is provided by the component analyses. The double mutation (K198L,D233E) has a similar effect, while the triple mutation (K198L,Q199E,D233E) reduces Asp binding strongly. No binding measurements are available, but the three mutants are known to have no ability to adenylate Asn, despite the "Asp-like" binding affinities calculated here. In molecular dynamics simulations of all three mutants, the Asn ligand backbone shifts by 1-2 A compared to the experimental Asp:AspRS complex, and significant side-chain rearrangements occur around the pocket. These could reduce the ATP binding constant and/or the adenylation reaction rate, explaining the lack of catalytic activity in these complexes. Finally, Asn binding to AspRS with neutral K198 or charged H449 is considered, and shown to be less favorable than with the charged K198 and neutral H449 used in the analysis.  相似文献   

19.
Accurate translation of genetic information necessitates the tuned expression of a large group of genes. Amongst them, controlled expression of the enzymes catalyzing the aminoacylation of tRNAs, the aminoacyl-tRNA synthetases, is essential to insure translational fidelity. In the yeast Saccharomyces cerevisiae, expression of aspartyl-tRNA synthetase (AspRS) is regulated in a process necessitating recognition of the 5' extremity of AspRS messenger RNA (mRNA(AspRS)) by its translation product and adaptation to the cellular tRNA(Asp) concentration. Here, we have established the folding of the approximately 300 nucleotides long 5' end of mRNA(AspRS) and identified the structural signals involved in the regulation process. We show that the regulatory region in mRNA(AspRS) folds in two independent and symmetrically structured domains spaced by two single-stranded connectors. Domain I displays a tRNA(Asp) anticodon-like stem-loop structure with mimics of the aspartate identity determinants, that is restricted in domain II to a short double-stranded helix. The overall mRNA structure, based on enzymatic and chemical probing, supports a three-dimensional model where each monomer of yeast AspRS binds one individual domain and recognizes the mRNA structure as it recognizes its cognate tRNA(Asp). Sequence comparison of yeast genomes shows that the features within the mRNA recognized by AspRS are conserved in different Saccharomyces species. In the recognition process, the N-terminal extension of each AspRS subunit plays a crucial role in anchoring the tRNA-like motifs of the mRNA on the synthetase.  相似文献   

20.
In Salmonella enterica serovar Typhimurium five of the eight family codon boxes are decoded by a tRNA having the modified nucleoside uridine-5-oxyacetic acid (cmo5U) as a wobble nucleoside present in position 34 of the tRNA. In the proline family codon box, one (tRNAProcmo5UGG) of the three tRNAs that reads the four proline codons has cmo5U34. According to theoretical predictions and several results obtained in vitro, cmo5U34 should base pair with A, G, and U in the third position of the codon but not with C. To analyze the function of cmo5U34 in tRNAProcmo5UGG in vivo, we first identified two genes (cmoA and cmoB) involved in the synthesis of cmo5U34. The null mutation cmoB2 results in tRNA having 5-hydroxyuridine (ho5U34) instead of cmo5U34, whereas the null mutation cmoA1 results in the accumulation of 5-methoxyuridine (mo5U34) and ho5U34 in tRNA. The results suggest that the synthesis of cmo5U34 occurs as follows: U34 -->(?) ho5U -->(CmoB) mo5U -->(CmoA?) cmo5U. We introduced the cmoA1 or the cmoB2 null mutations into a strain that only had tRNAProcmo5UGG and thus lacked the other two proline-specific tRNAs normally present in the cell. From analysis of growth rates of various strains and of the frequency of +1 frameshifting at a CCC-U site we conclude: (1) unexpectedly, tRNAProcmo5UGG is able to read all four proline codons; (2) the presence of ho5U34 instead of cmo5U34 in this tRNA reduces the efficiency with which it reads all four codons; and (3) the fully modified nucleoside is especially important for reading proline codons ending with U or C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号