首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The glycoconjugates of the human fundic mucosa were characterized at the ultrastructural level by means of direct (Helix pomatia agglutinin-gold complex) and indirect lectin techniques (Concanavalin A and horseradish peroxidase-gold complex; wheat germ agglutinin and ovomucoid-gold complex). Surface mucous cells and mucous neck cells secreted O-glycoproteins with N-acetylgalactosamine and N-acetylglucosamine residues at the non reducing terminus of the saccharidic chain. The secretory granules of the mucous neck cells showed condensed areas slightly reactive to ConA. The results obtained in the chief cells suggest that these cells secrete N-glycoproteins rich in mannose and/or glucose residues. Transitional cells, presenting both morphological characteristics and lectin binding pattern intermediate to the mucous neck and chief cells have been observed. The surface of the intracellular canaliculi of the parietal cell was labelled by HPA, WGA and ConA. In the neck region of the gastric glands, immature parietal cells containing abundant mucous granules reactive to HPA, WGA and ConA were observed. The present results further corroborate the existence of a common cell precursor for surface mucous, mucous neck and parietal cells. In a further step, mucous neck cells gradually differentiate into chief cells the transitional cells being an intermediate stage.  相似文献   

2.
The fundic gland of the rat stomach was studied using the low-temperature embedding resin Lowicryl K4M and postembedding staining with lectin/colloidal-gold (CG) conjugates. Intense labeling with Ricinus communis agglutinin I was observed not only in mucous-producing cells but also in parietal cells. In contrast, Helix pomatia agglutinin (HPA) only labeled mucous neck cells and intermediate cells between mucous neck cells and chief cells. The other epithelial cells present in the rat fundic gland showed virtually no reaction with this lectin. Our results indicate that HPA might be a marker lectin of mucous neck cells and their derivatives. The combination of embedding in the hydrophilic resin Lowicryl K4M and postembedding staining with lectin-CG conjugates provided satisfactory staining results, and made it possible to visualize the precise distribution of terminal glycoconjugates in intracellular components as well as on the plasma membrane.  相似文献   

3.
Summary The fundic gland of the rat stomach was studied using the low-temperature embedding resin Lowicryl K4M and postembedding staining with lectin/colloidal-gold (CG) conjugates. Intense labeling with Ricinus communis agglutinin I was observed not only in mucous-producing cells but also in parietal cells. In contrast, Helix pomatia agglutinin (HPA) only labeled mucous neck cells and intermediate cells between mucous neck cells and chief cells. The other epithelial cells present in the rat fundic gland showed virtually no reaction with this lectin. Our results indicate that HPA might be a marker lectin of mucous neck cells and their derivatives. The combination of embedding in the hydrophilic resin Lowicryl K4M and postembedding staining with lectin-CG conjugates provided satisfactory staining results, and made it possible to visualize the precise distribution of terminal glycoconjugates in intracellular components as well as on the plasma membrane.  相似文献   

4.
Helicobacter pylori attaches via lectins, carbohydrate binding proteins, to the carbohydrate residues of gastric mucins. Guinea-pigs are a suitable model for a H. pylori infection and thus the carbohydrate composition of normal and H. pylori infected gastric mucosa was investigated by lectin histochemistry. The stomach of all infected animals showed signs of an active chronic gastritis in their mucosa, whereas no inflammation was present in the control animals. The corpus–fundus regions of the controls showed heterogeneous WGA, SNA-I, UEA-I and HPA binding in almost all parts of the gastric glands. While these lectins labelled the superficial mucous cells and chief cells heterogeneously, the staining of the parietal cells was limited to WGA and PHA-L. Mucous neck cells reacted heterogeneously with UEA-I, HPA, WGA and PHA-L. In the antrum, the superficial mucous cells and glands were stained by WGA, UEA-I, HPA, SNA-I or PHA-L. WGA, UEA-I, SNA-I and HPA labelled the surface lining cells strongly. The mucoid glands reacted heterogeneously with WGA, UEA-I, HPA, SNA-I and PHA-L. In both regions, the H. pylori infected animals showed similar lectin binding pattern as the controls. No significant differences in the lectin binding pattern and thus in the carbohydrate composition between normal and H. pylori infected mucosa could be detected, hence H. pylori does not induce any changes in the glycosylation of the mucosa of the guinea-pig. This unaltered glycosylation is of particular relevance for the sialic acid binding lectin SNA-I as H. pylori uses sialic acid binding adhesin for its attachment to the mucosa. As sialic acid binding sites are already expressed in the normal mucosa H. pylori can immediately attach via its sialic acid binding adhesin to the mucosa making the guinea-pig particularly useful as a model organism.This work is dedicated to Professor B. Tillmann on the occasion of his 65th birthday  相似文献   

5.
The localization of pepsinogens (PG A and PG C) was studied intracellularly in human gastric biopsies embedded in Lowicryl K4M, using affinity-purified antibodies and protein A-gold. The homogeneous secretory granules of the chief cells contained both PG A and PG C, as was proved by serial sections. Identical reaction was also seen in the core of the biphasic mucous neck cell granules, whereas the mantle did not label. The rough endoplasmic reticulum (RER) and Golgi complex of the chief cells and mucous neck cells contained ample label. Transitional cells identified by the presence of granules of both chief cells and mucous neck cells were recognized. This type of mucous neck cell is thought to transform into a chief cell. However, an increase of RER that could explain an increase of the pepsinogen production was not observed. A mixture of these granules was also found in cells morphologically characterized as young parietal cells, suggesting a common precursor for these three cell types. These observations make the transformation from mucous neck to chief cells questionable. Antral gland cells contained only PG C, as was shown in serial section, too.  相似文献   

6.
We investigated the glycoconjugates of the human bronchial glands at light and electron microscopic level by means of lectin histochemistry in combination with neuraminidase digestion and beta-elimination reaction. Both direct and indirect techniques using lectin-peroxidase, lectin-gold, and glycoprotein-gold complexes were applied. The binding pattern of the six lectins (ConA, HPA, DSA, WGA, LEA, and PNA) used in the present study suggests that mucous and serous cells of human bronchial glands contain both N- and O-glycosylated proteins in the secretory granules. Asparagine-linked oligosaccharides containing Gal(beta-1,4) GlcNAc and Man residues were abundant in serous cells. The demonstration of both the terminal Neu 5Ac (alpha-2,3, or 6) Gal (beta-1,4) GlcNAc sequence in the N-linked oligosaccharides of mucous cells and the terminal disaccharide Gal (beta-1,4) GlcNAc in the N-linked oligosaccharide chains of serous cells suggests the existence of complex type sugar chains N-glycosidically linked to the peptide region of the glycoproteins. The binding pattern of the DSA and the neuraminidase-DSA sequence provides evidence for the existence of sialyltransferase activity in the forming mucous granules of mucous bronchial cells.  相似文献   

7.
The localization of pepsinogens (PG A and PG C) was studied intracellularly in human gastric biopsies embedded in Lowicryl K4M, using affinity purified antibodies and protein A-gold. The homogeneous secretory granules of the chief cells contained both PG A and PG C, as was proved in serial sections. Identical reaction was seen in the core of the biphasic mocous neck cell granules, whereas the mantle did not label. Even the rough endoplasmic reticulum (RER) and Golgi complex of the chief- and mucous neck cells contained label. Transitional cells identified by the presence of granules of both chief- and mucous neck cells were seen. This type of mucous neck cell is thought to transform into a chief cell. However an increase of RER that could explain an increase of the pepsinogen production was not observed. A mixture of these granules were also found in morphologically characterized young parietal cells, suggesting a common precursor for these three cell-types. These observations makes the transformation from mucous neck- into chief cells questionable. In conclusion Lowicryl K4M appeared to be a significant improvement compared to the Epon 812. Its shows a better preservation of both cytoplasmic antigens and cellular fine structure. This improvement adds information on the transformation hypothesis. Lowicryl K4M enables us, firstly to distinguish PG A and C synthesizing RER in different types of cell and secondly to recognize immature cells with the characteristics of chief-, mucous neck-, and parietal cells in the fundic gland. Very likely these three cell-types all arise from a common precursor. It is questionable that in normal human gastric mucosa the mucous neck cells transform into chief cells.  相似文献   

8.
Carbohydrate residues were localized in the glandular cells of the epidermis of Lumbricus terrestris by lectin histochemistry. The following biotinylated lectins were used: ConA, PNA, WGA, UEA-I. Each lectin has a specific binding pattern in the epidermal glandular cells. The ConA binding is evident in the orthochromatic mucous cells; PNA in the metachromatic mucous cells; WGA in the neuroendocrine-like cells; UEA-I in the cuticle. The epidermal glandular cells possess specific sites for the different lectins in relation to their functional characteristics. Therefore, these sugar residues indicate different behaviours of the cells in epidermal functions related to ion transport, receptor-secretory processes and defence.  相似文献   

9.
New techniques are proposed for differentiating each type of gastric epithelial cell in the same tissue section. The techniques combine the following stains: paradoxical concanavalin A staining (PCS) to identify mucous neck cells, periodic acid Schiff-concanavalin A staining to distinguish mucous neck cells from surface mucous cells, and a modified Bowie's stain to demonstrate zymogen granules of chief cells. Feulgen hydrolysis preceding the Bowie stain was found to remove most of the nonspecific coloration encountered with the original Bowie method. The results obtained by the new sequences were as follows: Feulgen hydrolysis-PCS-Bowie staining: mucous neck cells stained brown and chief cell zymogen granules deep blue. The other mucin-secreting cells remained unstained; Feulgen hydrolysis-PAS-concanavalin A-Bowie staining: mucous neck cells stained brown, zymogen granules stained deep blue to purplish blue and surface mucous cells stained purplish red.  相似文献   

10.
New techniques are proposed for differentiating each type of gastric epithelial cell in the same tissue section. The techniques combine the following stains: A) paradoxical concanavalin A staining (PCS) to identify mucous neck cells, B) periodic acid Schiff-concana-valin A staining to distinguish mucous neck cells from surface mucous cells, and C) a modified Bowie's stain to demonstrate zymogen granules of chief cells. Feulgen hydrolysis preceding the Bowie stain was found to remove most of the nonspecific coloration encountered with the original Bowie method. The results obtained by the new sequences were as follows: 1) Feulgen hydroIysis-PCS-Bowie staining: mucous neck cells stained brown and chief cell zymogen granules deep blue. The other mucin-secreting cells remained unstained; 2) Feulgen hydrolysis-PAS-concanavalin A-Bowic staining: mucous neck cells stained brown, zymogen granules stained deep blue to purplish blue and surface mucous cells stained purplish red.  相似文献   

11.
Summary The structure of the frog gastric and esophageal mucosa was studied in the course of a complete hibernation period and compared with that in summer frogs (see preceding article).It appeared that especially chief cells and parietal cells are liable to cytoplasmic remodelling. Thus, in chief cells the rough endoplasmic reticulum (RER) undergoes disorganization, the number of free ribosomes increases and the Golgi system becomes transformed into a compact vesicular structure. The number of pepsinogen granules in chief cells of late winter frogs is only 20% of that in frogs studied at the onset of hibernation. The loss of pepsinogen granules is at least partly due to autophagy. In addition, lysosomes are involved in focal degradation of the cytoplasm, which may ultimately result in complete degeneration of some chief cells. The presence of zymogen granules containing fibrocyte-like cells in the tunica propria proved heterophagocytosis by these cells.In parietal cells, the area occupied by smooth endoplasmic reticulum becomes reduced. The basal cytoplasm of both chief cells and parietal cells contains numerous lipid droplets, which, in contrast to those in summer frogs, are continuous with RER cisternae. The juxtaposition of lipid droplets and mitochondria seen in summer frogs is eventually lost in hibernating animals.Apart from the appearance of supra-nuclear lipid droplets, the mucous cells of the surface epithelium show no striking alterations. However, in the glandular pits both surface mucous cells and mucous neck cells contain less mucous granules than in summer frogs.The results are discussed in connection with parallel biochemical work and available literature, and in the light of our previous studies on the exocrine pancreas in hibernating frogs.  相似文献   

12.
The presence of gastricsin in bovine abomasal juice has been reported previously, but its exact site of origin has not yet been established. Specific polyclonal antibodies were used in the peroxidase-antiperoxidase method or the protein A/gold technique to label cells producing progastricsin. This immunocytolocalization was correlated with that of pepsinogen and prochymosin using specific polyclonal antibodies against those zymogens. The present study clearly established that progastricsin was located exclusively in chief, mucous neck, transitional mucous neck/chief, foveolar epithelial and surface epithelial cells of the calf fundic mucosa. Furthermore, progastricsin was found to be colocalized with pepsinogen and prochymosin in the same secretory granules of these cells. Progastricsin was not observed in parietal, gastric endocrine and undifferentiated neck cells.  相似文献   

13.
Summary Development and maturation of pepsinogen 1-producing cells were studied in the gastric fundic mucosa of the mouse by means of light- and electron-microscopic immunocytochemistry using rabbit anti-rat pepsinogen 1-serum. In the adult mouse, secretory granules in mucous neck cells, transitional mucous neck/chief cells and chief cells are immunolabeled. The numerical density of gold particles on zymogen granules is not significantly altered among different stages of maturation of chief cells. In addition, rough endoplasmic reticulum and Golgi complex of these cell types show a weak labeling. In mice from day 16 of gestation to postnatal day 14 mucous neck cells and chief cells cannot be distinguished, but only one type of pepsinogen 1-producing cell, called primitive chief cell, is identified in the fundic gland. The intensity of immunoreactivity of secretory granules in primitive chief cells is uniform within an individual cell but varies greatly among different cells. The majority of primitive chief cells contains weakly labeled granules regardless of the maturation stage of cells or of animals. On postnatal day 21, mucous neck, transitional and chief cells are distinguishable, and secretory granules in these cells are intensely immunolabeled as in the adult. These results suggest that pepsinogen 1-production rapidly increases with differentiation of mucouse neck and chief cells.  相似文献   

14.
The development and maturation of fundic glands of Wistar rats were studied using Griffonia simplicifolia agglutinin-II (GSA-II) histochemistry at the light microscopic and electron microscopic levels. In adult rats, mucous neck cells and cells intermediate between mucous neck cells and chief cells were specifically labeled with GSA-II, whereas other fundic gland cells were virtually negative. Ontogenetic studies revealed that GSA-II positive cells appeared at the bottom of the gland by 21 days of gestation. With differentiation and aging, the elongation of the fundic gland continued, and the labeling intensity of the mucous neck cells increased by 3 weeks after birth. Cells intermediate between mucous neck cells and chief cells were discernible from 3 days after birth. Typical mucous neck cells appeared at 3 weeks after birth, when their labeling intensity with colloidal gold (CG) particles approximated that of adults. On the other hand, the reactive cell population gradually moved from the bottom toward the middle portion of the gland. Finally, the reactive cells were localized at the neck portion of the fundic gland. These results suggest that GSA-II is a valuable marker for studying mucous neck cells and both their precursor cells and their derivatives.  相似文献   

15.
The effects of enzymic treatment on the interactions between Zajdela's tumor cells and various lectins. Concanavalin A (ConA); Wheat Germ Agglutinin (WGA); Robinia lectin; have been studied. (1) The number of lectin-binding sites and the affinity constants were investigated. (2) The effects of the lectins on cell growth and [3H]thymidine incorporation were studied on untreated and enzyme-treated cells. It was observed that treatment of tumor cells with neuraminidase resulted in a change in the binding characteristics of each lectin. However, additional treatment of the cells with galactose oxidase had no further effect on lectin binding. ConA and Robinia lectin induced a decrease of the untreated tumor cell growth and a stimulation of the [3H]thymidine incorporation. This paradoxal result may be explained as a consequence of the stimulation of the [3H]thymidine uptake observed in the presence of lectins. The enzymatic treatments themselves did not change the cell growth although they did induce a change in the effect of ConA and Robinia lectin on cell growth and [3H]thymidine incorporation. As a result of neuraminidase treatment, the effects of ConA were totally suppressed but those of Robinia lectin only partially. Although WGA interacted with untreated and enzyme-treated cell surfaces, it had no effect on tumor cell growth nor [3H]thymidine incorporation. The results are discussed in terms of lectin transport.  相似文献   

16.
Immunocytochemical localization of pepsinogen in rat stomach   总被引:2,自引:0,他引:2  
The localization of pepsinogen in rat stomachs was investigated by a postembedding immunoferritin method. When the preparations embedded in Epon were used, the secretory granules of chief cells were stained heavily and the granules of mucous neck cells were stained moderately. The secretory granules of cells intermediate between mucous neck cells and chief cells showed a bizonal staining; the electron dense parts were stained heavily and the electron lucent parts were stained moderately. The secretory granules of pyloric gland cells, on the other hand, were labeled faintly. However, the secretory granules of surface mucous cells, foveolar mucous cells, endocrine cells, cardiac mucous cells and cardiac serous cells were not stained by the method. The protein A-gold method showed a similar staining pattern of pepsinogen to that of the immunoferritin method. When the samples embedded in Lowicryl K4M were used to enhance the stainability of pepsinogen, essentially the same staining pattern as that of the samples embedded in Epon was obtained. In addition, the Golgi apparatus and the rough surfaced endoplasmic reticulum were more easily stained.  相似文献   

17.
Summary Peanut lectin reactivity was examined in normal fundic glands from human gastric samples, both at light- and electron-microscopic levels, using a peroxidase conjugate. Positive reaction was observed in the glycocalyx of parietal cell secretory canaliculi as well as in the mucous globules of mucous cells and in the luminal cell coat of chief cells. The presence of terminal galactose in the canalicular glycocalyx may be connected with the peculiar function of hydrochloric acid secretion. Peroxidase-labelled peanut lectin is proposed as a marker for visualizing the secretory canaliculus of parietal cells.  相似文献   

18.
Labeled lectins with binding specificity to the hexose components of mucus glycoproteins (HPA, RCA I, PNA, Con A, WGA, and UEA I) were used to demonstrate structural differences in the glycoprotein composition of various cell types of the normal, benign and malignant gastrointestinal mucosa. While in the RCA I, UEA I, and WGA binding of normal mucus secreting cell types only quantitative differences were observed, the mucus in the surface epithelial cells of gastric mucosa and in the colonic goblet cells was characterized by the absence of PNA, Con A, and PNA, HPA binding sites, respectively. These lectins, however, showed a strong binding to the supranuclear, Golgi-region in the undifferentiated or activated forms of these cells. Even the staining intensity of the luminal membrane surfaces of the non mucinous parietal and chief cells was often stronger by PNA, HPA, and RCA I lectins than that of the mucus secretions in the highly differentiated mucus cells. These results indicate the existence of either heterogeneous glycoprotein components or mucus molecules with variations in the degree of glycosylation of their oligosaccharide chains in the different cells. The latter seems more likely since in benign and malignant alterations lectin binding sites appear in great density, which were found to be characteristic of the undifferentiated mucus cells or for the non mucinous cells of the normal gastric mucosa. Similarly in some gastric cancers which do not stain with the periodic acid-Schiff reaction at all, large amount of free or neuraminic acid substituted PNA binding sites can be detected.  相似文献   

19.
The digestive-enzyme secreting, gastric epithelial chief (zymogenic) cell is remarkable and underappreciated. Here, we discuss how all available evidence suggests that mature chief cells in the adult, mammalian stomach are postmitotic, slowly turning over cells that arise via a relatively long-lived progenitor, the mucous neck cell, The differentiation of chief cells from neck cells does not involve cell division, and the neck cell has its own distinct pattern of gene expression and putative physiological function. Thus, the ontogeny of the normal chief cell lineage exemplifies transdifferentiation. Furthermore, under pathophysiogical loss of acid-secreting parietal cell, the chief cell lineage can itself trasndifferentiate into a mucous cell metaplasia designated Spasmolytic Polypeptide Expressing Metaplasia (SPEM). Especially in the presence of inflammation, this metaplastic lineage can regain proliferative capacity and, in humans may also further differentiate into intestinal metaplasia. The results indicate that gastric fundic lineages display remarkable plasticity in both physiological ontogeny and pathophysiological pre-neoplastic metaplasia.  相似文献   

20.
Summary The glycoconjugates of the extrapulmonary airways of 11 tetrapode vertebrates have been characterized by means of both conventional and lectin histochemistry. Abundant sialosulphomucins were detected in the secretory cells and periciliary layer of turtles, snakes, birds and mammals while only sialomucins were observed in amphibians. Neutral and traces of acidic mucins were detected in the secretory cells of lizards. The secretory cells of the amphibian airways were reactive to Con-A, DBA and WGA. No -l-fucose residues reactive with UEA-I or LTA were detected in amphibians. The goblet cells of the turtles were stained by DBA, SBA and WGA. Secretory cells of snakes and lizards reacted with Con-A and WGA. The mucous goblet cells of the birds were reactive to Con-A, LTA and WGA. In the chicken, they also showed affinity for PNA and SBA. The ciliated cells ofthe avian species studied were stained by Con-A and WGA. Mammalian goblet cells were reactive to Con-A, UEA-I and WGA. In the rat, affinity for DBA and SBA was also observed. The present results reveal the existence of marked differences in the sugar residues of the glycoconjugates of the extrapulmonary airways of tetrapode vertebrates. Only sialic acid residues appear to be constant constituents of the glycoconjugates of the airways of all species studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号