首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The quenching efficiency of iodide as a penetrating fluorescence quencher for a membrane-associated fluorophore was utilized to measure the molecular packing of lipid bilayers. The KI quenching efficiency of tryptophan-fluorescence from melittin incorporated in DMPC bilayer vesicles peaks at the phase transition temperature (24 degrees C) of DMPC, whereas acrylamide quenching efficiency does not depend on temperature. The ability of iodide to penetrate the hydrocarbon region of the bilayer was examined by measuring the fluorescence quenching of the pyrene-phosphatidylcholine incorporated into DMPC vesicles (pyrene was attached to the 10th carbon of the sn-2 chain). The quenching efficiency of pyrene by iodide again shows a maximum at the lipid phase transition. We conclude that iodide penetrates the membrane hydrocarbon region at phase transition through an increased number of bilayer defects. The magnitude of change in quenching efficiency of iodide during lipid phase transition provides a sensitive technique to probe the lipid organization in membranes.  相似文献   

2.
Fluorescence-quenching-resolved spectra of melittin in lipid bilayers   总被引:1,自引:0,他引:1  
The interaction of bee venom melittin with dimyristoylphosphatidylcholine (DMPC) unilamellar vesicles has been studied by means of fluorescence quenching of the single tryptophan residue of the protein, at lipid-to-peptide ratio, Ri = 50 and at high ionic strength (2 M NaCl). The method of fluorescence-quenching-resolved spectra (FQRS), applied in this study with potassium iodide as a quencher, enabled us to decompose the tryptophan emission spectrum of liposome-bound melittin into components, at temperatures above as well as below the main phase transition temperature (Tt) of DMPC. One of the two resolved spectra exhibits maximum at 342 and 338 nm for experiments above and below Tt, respectively, and is similar to the maximum of tryptophan emission found for tetrameric melittin in solution (340 nm). This spectrum is characterized by the Stern-Volmer quenching constant, Ksv, of about 4 M-1 and it represents the fraction of melittin molecules whose tryptophan residues are exposed to the solvent to a degree comparable with tetrameric species in solution. The other spectrum component, corresponding to the quencher-inaccessible fraction of tryptophan molecules (Ksv = 0 M-1) has its maximum blue-shifted up to 15 nm, indicating a decrease in polarity of the environment. For experiments above Tt, the blue spectrum component revealed the excitation-wavelength dependence, originating probably from the relaxation processes between the excited tryptophan molecules and lipid polar head groups. We conclude that melittin bound to DMPC liposomes exists in two lipid-associated forms; one, with tryptophan residues exposed to the solvent and the other, penetrating the membrane interior, with tryptophan residues located in close proximity to the phospholipid polar head groups of the outer vesicle lipid layer. We also discuss our data with current models of melittin-bilayer interactions.  相似文献   

3.
High-sensitivity differential scanning calorimetry has been used to examine the interaction of bee venom melittin with dipalmitoylphosphatidylcholine fused unilamellar vesicles. Experiments were performed under conditions for which melittin in solution is either monomeric (in low salt) or tetrameric (in high salt). It was found that under both sets of conditions melittin abolishes the pretransition at a relatively high lipid-to-protein molar incubation ratio, Ri (about 200) and that at intermediate values of Ri it broadens the main transition profile and reduces the transition enthalpy. This provides evidence which suggests that melittin is at least partially inserted into the apolar region of the bilayer. Evident at low values of Ri are two peaks in the lipid thermal transition profiles, which may arise from a heterogeneous population of lipid vesicles formed through fusion induced by melittin, or by lipid phase separation. For those profiles which exhibited only one peak, transition enthalpies, normalized to those of the lipid in the absence of the protein, are plotted vs. the bound protein-to-lipid molar ratios for the experiments performed under the conditions which give monomeric and tetrameric melittin in solution. These plots yield straight lines, the slopes of which give the number of lipid molecules each protein molecule excludes from participating in the phase transition. These were found to be 9.9 +/- 0.7 and 4.1 +/- 0.5 for monomeric and tetrameric melittin, respectively. The results are discussed in terms of possible models for the binding of melittin to phospholipid vesicles. For simple hexagonal packing of lipid molecules, incorporation as an aggregate is favored when melittin is tetrameric in solution, whereas incorporation as a monomer is favored when melittin is monomeric in solution. For low-salt solutions, evidence is obtained for the contribution of free melittin to lipid fusion, perhaps by the formation of protein bridges between apposed vesicles.  相似文献   

4.
H Vogel 《Biochemistry》1987,26(14):4562-4572
The secondary structure of alamethicin in lipid membranes below and above the lipid phase transition temperature Tt is determined by Raman spectroscopy and circular dichroism (CD) measurements. In both cases structural data are obtained by fitting the experimental spectra by a superposition of the spectra of 15 reference proteins of known three-dimensional structure. According to the Raman experiments, in a lipid bilayer above Tt alamethicin is helical from residue 1 to 12, whereas below Tt the helix extends from residue 1 to 16. The remaining C-terminal part is nonhelical up to the end residue 20 both above and below Tt. A considerable lower helix content is derived from CD, namely, 38% and 46% above and below Tt, respectively, in agreement with several reported values for CD in the literature. It is shown that the commonly used set of CD spectra of water-soluble reference proteins is unsuitable to describe the CD spectra of alamethicin correctly. Therefore the secondary structure of alamethicin as derived from CD measurements is at the present state of analysis unreliable. In contrast to the case of alamethicin, the CD spectra of melittin in lipid membranes are correctly described by the reference protein spectra. The helix content of melittin is determined thereby to be 72% in lipid membranes above Tt and 75% below Tt. The data are in accord with a structure where the hydrophobic part of melittin adopts a bent helix as determined recently by Raman spectroscopy [Vogel, H., & J?hnig, F. (1986) Biophys. J. 50, 573]. The orientational order parameters of the helical parts of alamethicin and of melittin in a lipid membrane are deduced from the difference between a corresponding CD spectrum of a polypeptide in planar multibilayers and that in lipid vesicles. The presented method for determining helix order parameters is new and may be generally applicable to other membrane proteins. The orientation of the helical part of both polypeptides depends on the physical state of the lipid bilayer at maximal membrane hydration and in the ordered lipid state furthermore on the degree of membrane hydration. Under conditions where alamethicin and melittin are incorporated in an aggregated form in a fluid lipid membrane at maximal water content the helical segments are oriented preferentially parallel to the membrane normal. Cooling such lipid membranes to a temperature below Tt changes the orientation of the helical part of alamethicin as well as melittin toward the membrane plane.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Depth of bilayer penetration and effects on lipid mobility conferred by the membrane-active peptides magainin, melittin, and a hydrophobic helical sequence KKA(LA)7KK (denoted KAL), were investigated by colorimetric and time-resolved fluorescence techniques in biomimetic phospholipid/poly(diacetylene) vesicles. The experiments demonstrated that the extent of bilayer permeation and peptide localization within the membrane was dependent upon the bilayer composition, and that distinct dynamic modifications were induced by each peptide within the head-group environment of the phospholipids. Solvent relaxation, fluorescence correlation spectroscopy and fluorescence quenching analyses, employing probes at different locations within the bilayer, showed that magainin and melittin inserted close to the glycerol residues in bilayers incorporating negatively charged phospholipids, but predominant association at the lipid-water interface occurred in bilayers containing zwitterionic phospholipids. The fluorescence and colorimetric analyses also exposed the different permeation properties and distinct dynamic influence of the peptides: magainin exhibited the most pronounced interfacial attachment onto the vesicles, melittin penetrated more into the bilayers, while the KAL peptide inserted deepest into the hydrophobic core of the lipid assemblies. The solvent relaxation results suggest that decreasing the lipid fluidity might be an important initial factor contributing to the membrane activity of antimicrobial peptides.  相似文献   

6.
J R Wiener  R Pal  Y Barenholz  R R Wagner 《Biochemistry》1985,24(26):7651-7658
In order to investigate the mode of interaction of peripheral membrane proteins with the lipid bilayer, the basic (pI approximately 9.1) matrix (M) protein of vesicular stomatitis virus was reconstituted with small unilamellar vesicles (SUV) containing phospholipids with acidic head groups. The lateral organization of lipids in such reconstituted membranes was probed by fluorescent phospholipid analogues labeled with pyrene fatty acids. The excimer/monomer (E/M) fluorescence intensity ratios of the intrinsic pyrene phospholipid probes were measured at various temperatures in M protein reconstituted SUV composed of 50 mol % each of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG). The M protein showed relatively small effects on the E/M ratio either in the gel or in the liquid-crystalline phase. However, during the gel to liquid-crystalline phase transition, the M protein induced a large increase in the E/M ratio due to phase separation of lipids into a neutral DPPC-rich phase and DPPG domains presumably bound to M protein. Similar phase separation of bilayer lipids was also observed in the M protein reconstituted with mixed lipid vesicles containing one low-melting lipid component (1-palmitoyl-2-oleoylphosphatidylcholine or 1-palmitoyl-2-oleoylphosphatidylglycerol) or a low mole percent of cholesterol. The self-quenching of 4-nitro-2,1,3-benzoxadiazole (NBD) fluorescence, as a measure of lipid clustering in the bilayer, was also studied in M protein reconstituted DPPC-DPPG vesicles containing 5 mol % NBD-phosphatidylethanolamine (NBD-PE). The quenching of NBD-PE was enhanced at least 2-fold in M protein reconstituted vesicles at temperatures within or below the phase transition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Template-assembled proteins (TASPs) comprising 4 peptide blocks, each of either the natural melittin sequence (melittin-TASP) or of a truncated melittin sequence (amino acids 6-26, melittin6-26-TASP), C-terminally linked to a (linear or cyclic) 10-amino acid template were synthesized and characterized, structurally by CD, by fluorescence spectroscopy, and by monolayer experiments, and functionally, by electrical conductance measurements on planar bilayers and release experiments on dye-loaded vesicles. Melittin-TASP and the truncated analogue preferentially adopt alpha-helical structures in methanol (56% and 52%, respectively) as in lipid membranes. Unlike in methanol, the melittin-TASP self-aggregates in water. On an air-water interface, the differently sized molecules can be self-assembled and compressed to a compact structure with a molecular area of around 600 A2, compatible with a 4-helix bundle preferentially oriented perpendicular to the interface. The proteins reveal a strong affinity for lipid membranes. A partition coefficient of 1.5 x 10(9) M-1 was evaluated from changes of the Trp fluorescence spectra of the TASP in water and in the lipid bilayer. In planar lipid bilayers, TASP molecules are able to form defined ion channels, exhibiting a small single-channel conductance of 7 pS (in 1 M NaCl). With increasing protein concentration in the lipid bilayer, additional, larger conductance states of up to 1 nS were observed. These states are likely to be formed by aggregated TASP structures as inferred from a strongly voltage-dependent channel activity on membranes of large area. In this respect, melittin-TASP reveals channel features of the native peptide, but with a considerably lower variation in the size of the channel states. Compared to the free peptide, template-assembled melittin has a much higher membrane activity: it is about 100 times more effective in channel formation and 20 times more effective in releasing dye molecules from lipid vesicles. This demonstrates that the lytic properties are not solely related to channel formation.  相似文献   

8.
The conformation and dynamics of melittin bound to the dimyristoylphosphatidylcholine (DMPC) bilayer and the magnetic orientation in the lipid bilayer systems were investigated by solid-state (31)P and (13)C NMR spectroscopy. Using (31)P NMR, it was found that melittin-lipid bilayers form magnetically oriented elongated vesicles with the long axis parallel to the magnetic field above the liquid crystalline-gel phase transition temperature (T(m) = 24 degrees C). The conformation, orientation, and dynamics of melittin bound to the membrane were further determined by using this magnetically oriented lipid bilayer system. For this purpose, the (13)C NMR spectra of site-specifically (13)C-labeled melittin bound to the membrane in the static, fast magic angle spinning (MAS) and slow MAS conditions were measured. Subsequently, we analyzed the (13)C chemical shift tensors of carbonyl carbons in the peptide backbone under the conditions where they form an alpha-helix and reorient rapidly about the average helical axis. Finally, it was found that melittin adopts a transmembrane alpha-helix whose average axis is parallel to the bilayer normal. The kink angle between the N- and C-terminal helical rods of melittin in the lipid bilayer is approximately 140 degrees or approximately 160 degrees, which is larger than the value of 120 degrees determined by x-ray diffraction studies. Pore formation was clearly observed below the T(m) in the initial stage of lysis by microscope. This is considered to be caused by the association of melittin molecules in the lipid bilayer.  相似文献   

9.
B Babbitt  L Huang  E Freire 《Biochemistry》1984,23(17):3920-3926
The interactions of palmitoyl-alpha-bungarotoxin (PBGT) with dipalmitoylphosphatidylcholine (DPPC) bilayers have been studied by using high-sensitivity differential scanning calorimetry together with steady-state and time-resolved phosphorescence and fluorescence spectroscopy. The incorporation of PBGT into large single lamellar vesicles causes a decrease in the phospholipid phase transition temperature (Tm), a broadening of the heat capacity function, and a decrease in the enthalpy change associated with the phospholipid gel to liquid-crystalline transition. Analysis of the dependence of this decreased enthalpy change on the protein/lipid molar ratio indicates that each PBGT molecule exhibits a localized effect upon the bilayer, preventing approximately six lipid molecules from participating in the lipid phase transition. Additional calorimetric experiments indicate that binding to acetylcholine receptor enriched membranes causes a small increase in the Tm of the PBGT/DPPC vesicles. Steady-state fluorescence depolarization measurements employing 1,6-diphenyl-1,3,5-hexatriene (DPH) indicate that the association of PBGT with the phospholipid bilayer decreases the apparent order of the bulk lipid below Tm while increasing the order above Tm. These results have been further supported by rotational mobility measurements of erythrosin-labeled PBGT associated with giant (about 2-micron) unilamellar vesicles composed of dielaidoylphosphatidylcholine or dioleoylphosphatidylcholine using the time-dependent decay of delayed fluorescence/phosphorescence emission anisotropy. Rotational correlation times in the submillisecond time scale (about 30 microseconds) indicate that the protein is highly mobile in the fluid phase and that below Tm the rotational mobility is only slightly restricted.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
L Voglino  S A Simon  T J McIntosh 《Biochemistry》1999,38(23):7509-7516
The orientation in lipid bilayers of the signal sequence of the bacterial protein LamB was studied using binding, circular dichroism, and fluorescence quenching experiments. Measurements were made of binding modifications caused by the incorporation of lipid probes (brominated or nitroxide-labeled phospholipids) used in the parallax fluorescence quenching method of determining peptide penetration depth [Abrams, F. S., and London, E. (1992) Biochemistry 31, 5312-5322]. The signal peptide bound to a similar extent to neutral bilayers composed of either egg phosphatidylcholine (EPC) or phosphatidylcholines brominated at various positions on their acyl chains. The fluorescence of a tryptophan in either the 18 or 24 position of the peptide was quenched more by bromines in the 6 and 7 than in the 9 and 10 positions on the lipid hydrocarbon chain. Parallax calculations showed that tryptophan-18 was located only 4 A from the hydrocarbon-water interface, consistent with the peptide adopting a "hammock" configuration in the bilayer, with both termini exposed to the aqueous phase and the central alpha-helix located near the hydrocarbon-water interface. In contrast, the incorporation of 10% nitroxide-labeled lipids into EPC bilayers modified peptide binding in a manner dependent on the position of the nitroxide on the hydrocarbon chain; 7-Doxyl PC reduced the percent peptide bound by about one-half, whereas 12-Doxyl PC had little effect on binding. These binding differences modified tryptophan quenching by these probes, making parallax analysis problematical. In the presence of the positively charged LamB peptide, the incorporation of negatively charged phospholipids into EPC bilayers increased the level of peptide binding and modified tryptophan quenching by nitroxide probes. These results suggest that the nitroxide probe could be partially excluded from negatively charged lipid domains where the peptide preferentially bound. Quite different binding and quenching results were obtained with a negatively charged peptide analogue, showing that the charge on both the peptide and bilayer affects peptide-nitroxide probe interactions.  相似文献   

11.
The interaction of bee venom melittin with erythrocyte membrane ghosts has been investigated by means of fluorescence quenching of membrane tryptophan residues, fluorescence polarization and ESR spectroscopy. It has been revealed that melittin induces the disorders in lipid-protein matrix both in the hydrophobic core of bilayer and at the polar/non-polar interface of melittin complexed with erythrocyte membranes. The peptide has been found to act most efficiently at the concentration of the order of 10(-10) mol/mg membrane protein. The apparent distance separating the membrane tryptophan and bound 1-anilino-8-naphthalenesulphonate (ANS) molecules is decreased upon melittin binding, which results in a significant increase of the maximum energy transfer efficiency. Significant changes in the fluorescence anisotropy of both 1,6-diphenyl-1,3,5-hexatriene and 1-anilino-8-naphthalenesulphonate bound to erythrocyte ghosts, which have been observed in the presence of melittin and crude venom, indicate membrane lipid bilayer rigidization. The effect of crude honey bee venom has been found to be of similar magnitude as the effect of pure melittin at the concentration of 10(-10) mol/mg membrane protein. Using two lipophilic spin labels, methyl 5-doxylpalmitate and 16-doxylstearic acid, we found that melittin at its increasing concentrations induces a well marked rigidization in the deeper regions of lipid bilayer, whereas the effect of rigidization near the membrane surface maximizes at the melittin concentration of 10(-10) mol/mg (10(-4) mol melittin per mole of membrane phospholipid). The decrease in the ratio hw/hs of maleimide and the rise in relative rotational correlation time (tau c) of iodacetamid spin label, indicate that melittin effectively immobilizes membrane proteins in the plane of the lipid bilayer. We conclude that melittin-induced rigidization of the lipid bilayer may induce a reorganization of lipid assemblies as well as the rearrangements in membrane protein pattern and consequently the alterations in lipid-protein interactions. Thus, the interaction of melittin with erythrocyte membranes is supposed to produce local conformational changes in membranes, which are discussed in the connection with their significance during the synergistic action of melittin and phospholipase of bee venom on red blood cells.  相似文献   

12.
The interaction between seminalplasmin, an antimicrobial protein from bull semen, and lipid bilayers has been investigated. The fluorescence of the single tryptophan residue of the protein was measured. In the presence of phosphatidylcholine or phosphatidic acid bilayer vesicles the fluoresence maximum was shifted to shorter wavelengths, indicating transfer of the tryptophan to a more apolar environment. Circular dichroism spectra show an increased -helical content for the protein in the presence of lipid. Quenching experiments clearly show the incorporation of the protein with the tryptophan localized near the bilayer surface. The shift of the tryptophan fluorescence emission was used to monitor the lipid phase transition in phosphatidylcholine membranes.Abbreviations TEMPOL 2,2,6,6-Tetramethyl-4-hydroxy-piperidine-1-oxyl - DMPC 1,2-Dimyristoylphosphatidylcholine - DMPA 1,2-Dimyristoylphosphatidic acid - SL 5 2-(3-Carboxypropyl)-4,4-dimethyl-2-tridecyl-3-oxazolidinoxyl - SL 12 2-(10-Carboxydecyl)-4,4-dimethyl-2-hexyl-3-oxazolinoxyl  相似文献   

13.
Interactions between melittin and a variety of negatively-charged lipid bilayers have been investigated by intrinsic fluorescence, fluorescence polarization of 1,6-diphenylhexatriene and differential scanning calorimetry. (1) Intrinsic fluorescence of the single tryptophan residue of melittin shows that binding of this peptide to negatively-charged phospholipids is directly related to the surface charge density, but is unaffected by the physical state of lipids, fluid or gel, single-shell vesicles or unsonicated dispersions. (2) Changes in the thermotropic properties of negatively-charged lipids upon melittin binding allow to differentiate two groups of lipids: (i) A progressive disappearance of the transition, without any shift in temperature, is observed with monoacid C14 lipids such as dimyristoylphosphatidylglycerol and -serine (group 1). (ii) With a second group of lipids (group 2), a transition occurs even at melittin saturation, and two transitions are detected at intermediate melittin content, one corresponding to remaining unperturbed lipids, the other shifted downward by 10–20°C. This second group of lipids is constituted by monoacid C16 lipids, dipalmitoylphosphatidylglycerol and -serine. Phosphatidic acids also enter this classification, but it is the net charge of the phosphate group which allows to discriminate: singly charged phosphatidic acids belong to group 2, whereas totally ionized ones behave like group 1 lipids, whatever the chain length. (3) It is concluded that melittin induces phase separations between unperturbed lipid regions which give a transition at the same temperature as pure lipid, and peptide rich domains in which the stoichiometry is 1 toxin per 8 phospholipids. The properties of such domains depend on the bilayer stability: in the case of C16 aliphatic chains and singly charged polar heads, the lipid-peptide domains have a transition at a lower temperature than the pure lipid. With shorter C14 chains or with two net charges by polar group, the bilayer structure is probably totally disrupted, and the new resulting phase can no longer lead to a cooperative transition.  相似文献   

14.
The interaction of the signal peptide of the Escherichia coli outer membrane protein PhoE with different phospholipid vesicles was investigated by fluorescence techniques, using a synthetic mutant signal peptide in which valine at position -8 in the hydrophobic sequence was replaced by tryptophan. First it was established that this mutation in the signal sequence of prePhoE does not affect in vivo and in vitro translocation efficiency and that the biophysical properties of the synthetic mutant signal peptide are similar to those of the wild-type signal peptide. Next, fluorescence experiments were performed which showed an increase in quantum yield and a blue shift of the emission wavelength maximum upon interaction of the signal peptide with lipid vesicles, indicating that the tryptophan moiety enters a more hydrophobic environment. These changes in intrinsic fluorescence were found to be more pronounced in the presence of phosphatidylglycerol (PG) or cardiolipin (CL) than with phosphatidylcholine (PC). In addition, quenching experiments demonstrated a shielding of the tryptophan fluorescence from quenching by the aqueous quenchers iodide and acrylamide upon interaction of the signal peptide with lipid vesicles, a shielding in the case of acrylamide that was more pronounced in the presence of negatively charged lipids. Finally it was found that acyl chain brominated lipids incorporated into phospholipid bilayers were able to quench the tryptophan fluorescence of the signal peptide, with the quenching efficiency in CL vesicles being much higher than in PC vesicles. The results clearly demonstrate that the PhoE signal peptide interacts strongly with different lipid vesicles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The thermotropic behavior of the mitochondrial enzyme cytochrome c oxidase (EC 1.9.3.1) reconstituted in dimyristoylphosphatidylcholine (DMPC) vesicles has been studied by using high-sensitivity differential scanning calorimetry and fluorescence spectroscopy. The incorporation of cytochrome c oxidase into the phospholipid bilayer perturbs the thermodynamic parameters associated with the lipid phase transition in a manner analogous to other integral membrane proteins: it reduces the enthalpy change, lowers the transition temperature, and reduces the cooperative behavior of the phospholipid molecules. Analysis of the dependence of the enthalpy change on the protein:lipid molar ratio indicates that cytochrome c oxidase prevents 99 +/- 5 lipid molecules from participating in the main gel-liquid-crystalline transition. These phospholipid molecules presumably remain in the same physical state below and above the transition temperature of the bulk lipid, thus providing a more or less constant microenvironment to the protein molecule. The effect of the phospholipid bilayer matrix on the thermodynamic stability of the cytochrome c oxidase complex was examined by high-sensitivity differential scanning calorimetry. Detergent (Tween 80)-solubilized cytochrome c oxidase undergoes a complex, irreversible thermal denaturation process centered at 56 degrees C and characterized by an enthalpy change of 550 +/- 50 kcal/mol of enzyme complex. Reconstitution of the cytochrome c oxidase complex into DMPC vesicles shifts the transition temperature upward to 63 degrees C, indicating that the phospholipid bilayer moiety stabilizes the native conformation of the enzyme. The lipid bilayer environment contributes approximately 10 kcal/mol to the free energy of stabilization of the enzyme complex. The thermal unfolding of cytochrome c oxidase is not a two-state process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
A study has been conducted of the interaction of the lytic toxin delta-haemolysin with vesicles of phospholipid, using electron microscopy, fluorescence depolarisation and excimer fluorescence. The peptide is shown to be a fusogen towards phosphatidylcholine vesicles in fluid phases. In the presence of gel phase lipid, fusion between fluid and gel phases is not seen. Fluid phase lipid vesicles are fused together to form large multilamellar structures, and initial vesicle size does not appear to be important since small unilamellar vesicles and large unilamellar vesicles are similarly affected. Fusogenic activity of delta-haemolysin is compared to that of melittin. The former is a progressive fusogen for fluid phase lipid, while the latter causes vesicle fusion in a manner related to occurrence of a lipid phase transition.  相似文献   

17.
A study has been conducted of the interaction of the lytic toxin δ-haemolysin with vesicles of phospholipid, using electron microscopy, fluorescence depolarisation and excimer fluorescence. The peptide is shown to be a fusogen towards phosphatidylcholine vesicles in fluid phases. In the presence of gel phase lipid, fusion between fluid and gel phases is not seen. Fluid phase lipid vesicles are fused together to form large multilamellar structures, and initial vesicle size does not appear to be important since small unilamellar vesicles and large unilamellar vesicles are similarly affected. Fusogenic activity of δ-haemolysin is compared to that of melittin. The former is a progressive fusogen for fluid phase lipid, while the latter causes vesicle fusion in a manner related to occurrence of a lipid phase transition.  相似文献   

18.
Transmembrane osmotic gradients applied on large unilamellar 1-palmitoyl-2-oleoyl-phosphatidylcholine vesicles were used to modulate the potency of melittin to induce leakage. Melittin, an amphipathic peptide, changes the permeability of vesicles, as studied using the release of entrapped calcein, a fluorescent marker. A promotion of the ability of melittin to induce leakage was observed when a hyposomotic gradient (i.e., internal salt concentration higher than the external one) was imposed on the vesicles. It is proposed that structural perturbations caused by the osmotic pressure loosen the compactness of the outer leaflet, which facilitates the melittin-induced change in membrane permeability. Additionally, we have shown that this phenomenon is not due to enhanced binding of melittin to the vesicles using intrinsic fluorescence of the melittin tryptophan. Furthermore, we investigated the possibility of using a transmembrane pH gradient to control the lytic activity of melittin. The potency of melittin in inducing release is known to be inhibited by increased negative surface charge density. A transmembrane pH gradient causing an asymmetric distribution of unprotonated palmitic acid in the bilayer is shown to be an efficient way to modulate the lytic activity of melittin, without changing the overall lipid composition of the membrane. We demonstrate that the protective effect of negatively charged lipids is preserved for asymmetric membranes.  相似文献   

19.
Herein, we developed an approach for monitoring membrane binding and insertion of peptides using a fluorescent environment-sensitive label of the 3-hydroxyflavone family. For this purpose, we labeled the N-terminus of three synthetic peptides, melittin, magainin 2 and poly-l-lysine capable to interact with lipid membranes. Binding of these peptides to lipid vesicles induced a strong fluorescence increase, which enabled to quantify the peptide-membrane interaction. Moreover, the dual emission of the label in these peptides correlated well with the depth of its insertion measured by the parallax quenching method. Thus, in melittin and magainin 2, which show deep insertion of their N-terminus, the label presented a dual emission corresponding to a low polar environment, while the environment of the poly-l-lysine N-terminus was rather polar, consistent with its location close to the bilayer surface. Using spectral deconvolution to distinguish the non-hydrated label species from the hydrated ones and two photon fluorescence microscopy to determine the probe orientation in giant vesicles, we found that the non-hydrated species were vertically oriented in the bilayer and constituted the best indicators for evaluating the depth of the peptide N-terminus in membranes. Thus, this label constitutes an interesting new tool for monitoring membrane binding and insertion of peptides.  相似文献   

20.
L A Chung  J D Lear  W F DeGrado 《Biochemistry》1992,31(28):6608-6616
A 21-residue peptide of the sequence (LSSLLSL)3 forms ion channels when incorporated into planar lipid bilayer membranes of diphytanoylphosphatidylcholine (diPhy-PC). The frequency of channel openings increases with the applied voltage gradient. We investigated the molecular and structural mechanisms underlying this voltage dependence. A series of seven peptides, each containing a tryptophan substituted for a single residue in the middle heptad, was synthesized, purified, and incorporated into small, unilamellar, diPhy-PC vesicles. We measured circular dichroism, maximum fluorescence emission wave-lengths, and fluorescence quenching by both aqueous and lipid hydrocarbon-associated quenchers. Circular dichroism spectra and the observed sequence periodicity of all fluorescence and fluorescence quenching data are consistent with an alpha-helical peptide secondary structure. Energy transfer quenching measurements using N-terminally labeled (LSSLLSL)3 co-incorporated at lipid/peptide ratios greater than 100 into vesicles with one of the Trp-substituted peptides showed that the vesicle-associated peptide, in the absence of a voltage gradient across the bilayer, exists as an equilibrium mixture of monomers and dimers. Static fluorescence quenching measurements using different lipid-bound quenchers indicate that the helical axis of a representative lipid-associated peptide is, on average, oriented parallel to the surface of the membrane and located a few angstroms below the polar head group/hydrocarbon boundary. This surface orientation for the peptide is confirmed by the complementary sequence periodicity observed for Trp fluorescence emission wavelength shifts and collisional quenching by aqueous CsCl.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号