首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mercury compounds exert toxic effects via interaction with many vital enzymes involved in antioxidant regulation, such as selenoenzymes thioredoxin reductase (TrxR) and glutathione peroxidase (GPx). Selenium supplementation can reactivate the mercury-inhibited TrxR and recover the cell viability in vitro. To gain an insight on how selenium supplementation affects mercury toxicity in vertebrates, we investigated the effects of selenium on the mercury accumulation and TrxR and GPx activities in a fish model. Juvenile zebra-seabreams were exposed either to methylmercury (MeHg) or inorganic mercury (Hg(2+)) in the presence or absence of sodium selenite (Se) for 28 days followed by 14 days of depuration. Mercury accumulation was found to be 10-fold higher under MeHg exposure than under Hg(2+) exposure. Selenium supplementation caused a half decrease of the accumulation of MeHg but did not influence Hg(2+) accumulation. Exposure to both mercurials led to a decrease of the activity of TrxR (<50% of control) in all organs. Se supplementation coincident with Hg(2+) exposure protected the thioredoxin system in fish liver. However, supplementation of Se during the depuration phase had no effects. The activity of GPx was only affected in the brain of fishes upon the exposure to MeHg and coexposure to MeHg and Se. Selenium supplementation has a limited capacity to prevent mercury effects in brain and kidney. These results demonstrate that Se supplementation plays a protective role in a tissue-specific manner and also highlight the importance of TrxR as a main target for mercurials in vivo.  相似文献   

2.
ObjectiveTo examine the exposure-response relationship between mercury exposure and diabetes in adults, and to explore the possible effect modifications by selenium and omega-3 fatty acids.MethodsBiomarker data (total blood mercury and blood methylmercury) from individuals ≥20 years of age were obtained from the 2005–2018 NHANES. Diabetes was defined through questionnaires, fasting plasma glucose, 2 -h plasma glucose and hemoglobin A1c levels. The exposure-response relationship between mercury exposure and diabetes was assessed with logistic regression and restricted cubic splines.ResultsComparing the highest to lowest quartile of exposure, the multivariable-adjusted odds ratio (95 % CI) of diabetes was 0.76 (0.63−0.92) with total blood mercury and 0.82 (0.66−1.00) with blood methylmercury. The inverse associations between total blood mercury [0.55 (0.40−0.77)] and blood methylmercury [0.61 (0.38−0.97)] and diabetes were observed among individuals having higher intakes of selenium (Pfor interaction<0.05). Trends toward lower odds of diabetes with mercury exposure were mainly confined to individuals having higher intakes of omega-3 fatty acid, but the interactions were not significant. The inverse associations between total blood mercury and blood methylmercury and diabetes remained in sensitivity analyses after excluding patients with hypertension that may change their dietary intake of fish. Exposure-response analyses showed an initial decrease in odds of diabetes followed by a platform or a weaker decrease beyond 3 μg/L of total blood mercury and methylmercury concentrations, respectively.ConclusionsTotal blood mercury and blood methylmercury concentrations were inversely associated with diabetes in adults, and the associations were modified by selenium.  相似文献   

3.
Human exposure to potentially neurotoxic methylmercury species is a public-health concern for many populations worldwide. Both fish and whale are known to contain varying amounts of methylmercury species. However studies of populations that consume large quantities of fish or whale have provided no clear consensus as to the extent of the risk. The toxicological profile of an element depends strongly on its chemical form. We have used X-ray absorption spectroscopy to investigate the comparative chemical forms of mercury and selenium in fish and whale skeletal muscle. The predominant chemical form of mercury in whale is found to closely resemble that found in fish. In the samples of skeletal muscle studied, no involvement of selenium in coordination of mercury is indicated in either whale or fish, with no significant inorganic HgSe or HgS type phases being detected. The selenium speciation in fish and whale shows that similar chemical types are present in each, but in significantly different proportions. Our results suggest that for equal amounts of Hg in skeletal muscle, the direct detrimental effects arising from the mercury content from consuming skeletal muscle from whale and fish should be similar if the effects of interactions with other components in the meat are not considered.  相似文献   

4.
Mercury is a heavy metal that exists naturally in the environment. Major sources include the burning of fossil fuels (especially coal) and municipal waste incineration. Mercury can exist in several forms, with the most hazardous being organic methylmercury. In waterways (lakes, rivers, reservoirs, etc.), mercury is converted to methylmercury, which then accumulates in fish, especially in large predatory fish. Fish and fish products are the major--if not the only--source of methylmercury in humans. Mercury has long been recognized as a neurotoxin for humans, but in the last 10 years, its potentially harmful effects on cardiovascular diseases (CVD) have raised a cause for concern, mostly due to the proposed role of mercury in oxidative stress propagation. Some epidemiological studies have indeed found an association between increased levels of mercury in the body and risk of CVD. There are several plausible mechanisms to explain the association; these are discussed in this review. We also review the epidemiological studies that have investigated the association between mercury and CVD.  相似文献   

5.
Blood and epidermal biopsies from free-ranging Tursiops truncatus captured and released during either summer or winter health assessments in Sarasota Bay, FL, were evaluated for concentrations of mercury, selenium, stable isotopes (δ13C and δ15N), and blood glutathione peroxidase activity in conjunction with routine hematology and serum chemistry panels. Major objectives were to: 1) quantify and describe relationships among mercury, selenium, glutathione peroxidase, and stable isotopes of C and N in blood and epidermis; 2) elucidate major parameters that influence blood mercury and glutathione peroxidase activity; 3) relate measures of tissue mercury, selenium, and glutathione peroxidase to specific ecological, hematological, morphological, or life history parameters, including season, sex, age, and trophic level. Mercury in both tissues examined is almost exclusively methylmercury. Epidermal concentrations of mercury and selenium reflect their respective amounts in blood, albeit at several times blood concentrations of mercury. The strong association between blood mercury and serum selenium, in conjunction with a lack of significant correlation between blood mercury and glutathione peroxidase, implies that a substantial proportion of blood mercury is affiliated with another selenium-containing moiety or is related to recent dietary intakes (e.g., trophic level, intensive fish consumption). Circulating blood mercury may be described in terms of serum selenium concentration, along with interaction terms among serum selenium, blood δ15N, and age. Current selenium concentrations in Sarasota Bay dolphins appear adequate for maintenance of blood glutathione peroxidase activity. However, dolphins evidently are subject to seasonal exacerbation of oxidative stress, which might render them more vulnerable to toxic effects of mercury. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
BACKGROUND: The period of neurogenesis represents a window of susceptibility for in utero methylmercury (MeHg) exposure. This study examined the toxicokinetics of potentially neurotoxic doses of MeHg during neurogenesis in the developing rat to provide additional information in the areas of mercury speciation and inter-study variability. METHODS: Pregnant Sprague-Dawley rats were dosed s.c. with 5-22 mg/kg MeHg on Day 11 of gestation to target rapidly dividing cells of the developing midbrain. Maternal liver, kidney, skin, blood, placenta, and the embryonic body and brain were evaluated for total and inorganic mercury content at 24, 48, and 72 hr after dosing. Tissue Hg partitioning ratios derived from our data were then compared to those derived from previous studies. RESULTS: Mercury was present in all tissues examined by 24 hr after dosing, and levels remained relatively stable over the subsequent 2 days in most tissues. The exceptions were the maternal blood and kidney, in which total mercury decreased significantly over the three days after dosing. Inorganic mercury concentrations were similarly stable over time. At maternal MeHg doses above 12 mg/kg, non-linearities were observed in mercury accumulation in the embryo, placenta and maternal liver. The mercury tissue partitioning coefficients ranged from 0.09 for maternal blood:embryo to 1.97 for maternal blood:kidney. CONCLUSIONS: Our observations at the 5 mg/kg dose were consistent with those of previous studies that involved evaluations at slightly later gestational times. The estimates of tissue partitioning coefficients we derived using multiple studies provide valuable insight into the effects of inter-study variability.  相似文献   

7.
In order to explore the observed association among mercury, atherosclerosis, and coronary heart disease, the effects of mercury, copper, and iron on the peroxidation of low-density lipoprotein (LDL) and on the enzymatic activities of glutathione peroxidase and myeloperoxidase were investigated in vitro. On the basis of our nuclear magnetic resonance (NMR) experiments, we conclude that mercury does not promote the direct nonenzymatic peroxidation of LDL, like copper and iron. In our enzyme measurements, mercury inhibited slightly myeloperoxidase, although not significantly in presence of LDL. Instead, inorganic mercury, but not methylmercury chloride, inhibited glutathione peroxidase effectively and copper event at 10 μmol/L, below physiological concentrations, doubled the inhibition rate. Copper and iron had no direct effect on glutathione peroxidase, but they both seem to activate production of HOCl by myeloperoxidase. We conclude here that, first, mercury and methylmercury do not promote direct lipid peroxidation, but that, second, a simultaneous exposure to high inorganic mercury, copper, and iron and low selenium concentrations can lead to a condition in which mercury promotes lipid peroxidations. This mechanism provides a plausible molecular-level explanation for the observed association between high body mercury content and atherosclerosis.  相似文献   

8.
Differences in metabolism between different mercury species are well recognized. Conclusions that only a minor demethylation of methylmercury takes place in the brain are based primarily on results from short term studies. Results from a number of studies on humans exposed for many years to methylmercury have shown high concentrations of inorganic mercury in the brain in relation to total mercury. Similar evidence is available from studies on monkeys exposed for several years to methylmercury. The results indicate that a significant accumulation of inorganic mercury takes place with time despite the fact that the demethylation rate is slow. Differences in biological halftimes between different mercury species will explain the results. Some data do still need confirmation using different analytical methods. There is reason to believe that the one-compartment model for methyl mercury cannot be used without reservations. Inorganic mercury has a complicated metabolism. After exposure to metallic mercury vapor, inorganic mercury, probably bound to selenium, accumulates in the brain. A fraction of the mercury is excreted, with a long biological halftime. Studies on rats and monkeys indicate that inorganic mercury penetrates the blood-brain barrier only to a very limited-extent.  相似文献   

9.
Until the Clean Air Mercury Rule was signed in March 2005, coal-fired electric utilities were the only remaining, unregulated major source of industrial mercury emissions in the United States. Proponents of coal-burning power plants assert that methylmercury is not a hazard at the current environmental levels, that current technologies for limiting emissions are unreliable, and that reducing mercury emissions from power plants in the United States will have little impact on environmental levels. Opponents of coal-burning plants assert that current methylmercury exposures from fish are damaging to the developing nervous system of infants, children, and the fetus; that current technology can significantly limit emissions; and that reducing emissions will reduce exposure and risk. One concern is that local mercury emissions from power plants may contribute to higher local exposure levels, or "hot spots." The impact of the Mercury Rule on potential hot spots is uncertain due to the highly site-specific nature of the relationship between plant emissions and local fish methylmercury levels. The impact on the primary source of exposure in the United States, ocean fish, is likely to be negligible due to the contribution of natural sources and industrial sources outside the United States. Another debate centers on the toxic potency of methylmercury, with the scientific basis of the US Environmental Protection Agency's (EPA's) recommended exposure limit questioned by some and defended by others. It is likely that the EPA's exposure limit may be appropriate for combined exposure to methylmercury and polychlorinated biphenyls (PCBs), but may be lower than the available data suggest is necessary to protect children from methylmercury alone. Mercury emissions from power plants are a global problem. Without a global approach to developing and implementing clean coal technologies, limiting US power plant emissions alone will have little impact.  相似文献   

10.
Mercury and selenium concentrations were determined in scalp hair samples collected postpartum from 82 term pregnancy mothers and their neonates. Maternal mercury and selenium had median concentrations of 0.39 μg/g (range 0.1–2.13 μg/g) and 0.75 μg/g (range 0.1–3.95 μg/g), respectively, and corresponding median neonatal values were 0.24 μg/g (range 0.1–1.93 μg) and 0.52 μg/g (range (0.1–3.0 μg/g). Amalgam-based restorative dental treatment received during pregnancy by 27 mothers (Group I) was associated with significantly higher mercury concentrations in their neonates (p<0.0001) compared to those born to 55 mothers (Group II) whose most recent history of such dental treatment was dated to periods ranging between 1 and 12 yr prior to pregnancy. In the Group I mother/neonate pairs, amalgam removal and replacement in 10 cases was associated with significantly higher mercury concentrations compared to 17 cases of new amalgam emplacement. Selenium concentrations showed no significant integroup differences. However, the selenium/mercury molar ratio values were lowest in the Group I neonates, compared to their mothers and to the Group II mother/neonate pairs. This ratio decreased as mercury concentration increased, and this interrelation was statistically significant in both groups of mother/neonate pairs. The data from this preliminary study suggest that amalgam-based dental treatment during pregnancy is associated with higher prenatal exposure to mercury, particularly in cases of amalgam removal and replacement. The ability of a peripheral biological tissue, such as hair, to elicit such marked differences in neonatal mercury concentrations provides supporting evidence of high fetal susceptibility to this form of mercury exposure. The data are discussed in relation to the differences between maternal and fetal mercury metabolisms and to mercury—selenium metabolic intereactions in response to mercury exposure.  相似文献   

11.
Mercury and selenium have adverse effects on health, and in the past their individual levels in tissues have been used as biomarkers of environmental contamination. These selenium:mercury molar ratios has been proposed as an alternative way to anticipate possible health risks to organisms. We examine selenium and mercury levels, their molar ratios, and variability in the ratios in the brain, liver, muscle, and feathers of a common waterbird, the eared grebe (Podiceps nigricollis), at several locations and phases of their annual cycle. We found: (1) Mean total mercury, for any site or tissue, ranged from 0.15 ppm in the brain to 29.2 ppm in breast feathers; (2) In any tissue, mean mercury levels varied by as much as 10-fold while selenium varied by 3-fold; (3) Mercury and selenium levels were correlated only in liver; (4) Selenium:mercury molar ratios varied significantly in regular patterns among tissues (less than 1 in feathers, up to 23 in brain), sites, and stages of annual cycle; (5) Molar ratios were affected by body weight (but not age), and the heaviest birds had the lowest ratios; and (6) Molar ratios varied more for brain than in other tissues. Low molar ratios are generally considered harmful, although no threshold ratio has been identified. Despite wide variation of molar ratios, field studies of eared grebes have not detected overt adverse effects. Before being adopted as a biomarkers, we suggest that selenium:mercury molar ratios be used in conjunction with studies of individual metal levels, and in accordance with detailed studies of selected species, to provide a baseline of variation in different organisms and tissues.  相似文献   

12.
Seafood is an important source of nutrients for fetal neurodevelopment. Most individuals are exposed to the toxic element mercury through seafood. Due to the neurotoxic effects of mercury, United States government agencies recommend no more than 340 g (12 oz) per week of seafood consumption during pregnancy. However, recent studies have shown that selenium, also abundant in seafood, can have protective effects against mercury toxicity. In this study, we analyzed mercury and selenium levels and selenoprotein mRNA, protein, and activity in placenta of a cohort of women in Hawaii in relation to maternal seafood consumption assessed with dietary surveys. Fish consumption resulted in differences in mercury levels in placenta and cord blood. When taken as a group, those who consumed no fish exhibited the lowest mercury levels in placenta and cord blood. However, there were numerous individuals who either had higher mercury with no fish consumption or lower mercury with high fish consumption, indicating a lack of correlation. Placental expression of selenoprotein mRNAs, proteins and enzyme activity was not statistically different in any region among the different dietary groups. While the absence of seafood consumption correlates with lower average placental and cord blood mercury levels, no strong correlations were seen between seafood consumption or its absence and the levels of either selenoproteins or selenoenzyme activity.  相似文献   

13.
Mercury, in both its elemental and bonded states, is noted for its negative effects on biological organisms. Recent anthropogenic and environmental disasters have spurred numerous comparative studies. These studies attempted to detail the biochemical implications of mercury ingestion, in low, persistent concentrations as well as elevated acute dosages. The studies propose models for mercuric action on healthy cells; which is centered on the element’s disruption of key enzymatic processes at deposition sites. Mercury’s high affinity for the sulfhydryl moieties of enzyme catalytic sites is a common motif for enzyme inactivation. These permanent covalent modifications inactivate the enzyme, thereby inducing devastating effects on an organism’s metabolic functions. Mercury has been shown to be highly nonspecific in its binding to sulfhydryl moieties, and highly varied in terms of how it is encountered by living organisms. This review focuses on mercury’s effects on a wide swath of enzymes, with emphasis on how these alterations deleteriously affect several metabolic pathways.  相似文献   

14.
Effects of methylmercury on the morphogenesis of the rat cerebellum   总被引:1,自引:0,他引:1  
Developing rat cerebellums were examined following continuous methylmercury exposure via maternal drinking water at 12.5 ppm during gestation and the suckling period. The continuous exposure resulted in reductions of the total cerebellar cell population and higher mercury tissue burdens than previous acute-dose studies. Cell necrosis was not evident, but rather alterations in the pattern of mitotic figures were observed. A decreased number of cells in the methylmercury exposed cerebellums was associated with an increased number of mitotic figures in the early stages of mitosis and a decrease in the number in the middle and late stages. These in vivo exposure observations are consistent with in vitro cell cycle studies in which the cells were found to have accumulated in G2 and early M phases. Impaired cell proliferation is suggested to be a major mechanism of developmental neurotoxicity following continuous low-dose exposure to methylmercury.  相似文献   

15.
Neurotoxic methylmercury compounds are widespread in the environment and human exposure worries many communities worldwide. Despite numerous studies addressing methylmercury toxicity, the detailed mechanisms underlying its transport and accumulation, especially during early developmental stages, remain unclear. Zebrafish larvae are increasingly used as a model system for studies of vertebrate development and toxicology. Previously, we have identified the lens epithelium as the primary site for cellular mercury accumulation in developing zebrafish larvae (Korbas et al. in Proc Natl Acad Sci USA 105:12108–12112, 2008). Here we present a study on the dynamics of methylmercury accumulation and redistribution in the lens following embryonic and larval exposure to methylmercury l-cysteineate using synchrotron X-ray fluorescence imaging. We observed highly specific accumulation of mercury in the lens that continues well after removal of fish from treatment solutions, thus significantly increasing the post-exposure loading of mercury in the lens. The results indicate that mercury is redistributed from the original target tissue to the eye lens, identifying the developing lens as a major sink for methylmercury in early embryonic and larval stages.  相似文献   

16.
Selenium–Mercury Interactions in Man and Animals   总被引:4,自引:0,他引:4  
Selenium–mercury interactions were most extensively studied in relation to alleviation of Hg toxicity by added selenium. This presentation considers the influence of mercury on endogenous selenium, on its tissue and cellular “status” after lifelong or acute exposure to mercury vapor (Hgo). Discussed are data obtained from (1) humans living near or working in a mercury mine, and (2) rats experimentally exposed in the mine. Mercury vapor is unique—or similar to methylmercury—because of its ability to penetrate cell membranes and so invade all cells, where it is oxidized in the biologically active form (Hg++) by catalase. Such in situ-generated ions can react with endogenously generated highly reactive Se metabolites, like HSe−, and render a part of the selenium unavailable for selenoprotein synthesis. Data on human populations indicate that in moderate Hg exposure combined with an adequate selenium supply through diet, Se bioavailability can be preserved. On the other hand, the results of an acute exposure study emphasize the dual role of selenium in mercury detoxification. Besides the well-known Se coaccumulation through formation of nontoxic Hg–Se complexes, we observed noticeable Se (co)excretion, at least at the beginning of exposure. The higher Hg accumulation rate in the group of animals with lower basal selenium levels can also point to selenium involvement in mercury excretion. In such conditions there is a higher probability for decreased selenoprotein levels (synthesis) in some tissues or organs, depending on the synthesis hierarchy.  相似文献   

17.

Abstract  

Human hair is frequently used as a bioindicator of mercury exposure. We have used X-ray absorption spectroscopy to examine the chemical forms of mercury in human hair samples taken from individuals with high fish consumption and concomitant exposure to methylmercury. The mercury is found to be predominantly methylmercury–cysteine or closely related species, comprising approximately 80% of the total mercury, with the remainder an inorganic thiolate-coordinated mercuric species. No appreciable role was found for selenium in coordinating mercury in hair.  相似文献   

18.
At the levels used in the experiments, mercury and silver significantly depressed the activity of glutathione peroxidase (assayed with either H2O2 or cumene-OOH) in rat tissues, whereas cadmium or lead had no effect on this activity. The most pronounced effects of mercury and silver on glutathione peroxidase were found in the liver and kidneys, with much less effect in the testes and erythrocytes. Similar trends for the effects of these metals were noted for tissue selenium levels. Silver and mercury significantly depressed the selenium concentrations, but cadmium and lead had no effect upon the selenium levels. Mercury and silver had no effect upon the activity of glutathione transferase in liver and testes, but mercury caused a significant initial increase of its activity in the kidneys. At no time did silver have any significant effect on its activity in this organ.  相似文献   

19.
李嗣新  胡菊香  池仕运  胡俊 《生态学报》2016,36(5):1233-1243
汞是唯一参与全球循环的液态重金属。1974年,自美国学者Smith首次报道水库中鱼类总汞含量高于邻近自然湖泊以来,水库中鱼类汞升高的风险成为新建水库环境影响评价中的重要内容之一。汞在水库生态系统生物组分和非生物组分中含量升高的现象先后在世界各国报道,包括加拿大、美国、芬兰、泰国和巴西等。通过对系列的野外研究进行回顾,表明了水库形成后生态系统中汞的甲基化过程发生了变化。水库形成对汞在食物网中的鱼类、底栖生物、浮游生物的累积产生影响。水库中汞的生物累积、迁移转化主要与被淹没土壤和植物腐解过程有着直接或间接的关系。水库形成后,总汞、甲基汞和甲基汞比例在生态系统食物网各组分中的变化并不一致。蓄水后,水体中总汞变化较小,甲基汞和甲基汞比例上升明显;浮游生物尤其是浮游动物中总汞升高,但甲基汞和甲基汞比例升高更为明显;与浮游动物类似,底栖水生昆虫中总汞升高,甲基汞和甲基汞比例升高也更为明显;鱼类作为食物网顶级消费者,甲基汞比例一般在80%以上,在水库形成后鱼类总汞和甲基汞均明显升高,但甲基汞比例变化已经不大。这些变化揭示了水库形成后甲基汞在食物网传递的两个主要可能途径,一是微型生物食物网。通过悬浮颗粒物、浮游植物、浮游动物这一环节,甲基汞和甲基汞比例有明显的增加。第二个途径是底层生物食物网。通过悬浮颗粒物、细菌、碎屑食性底栖水生昆虫、肉食型底栖水生昆虫环节,甲基汞和甲基汞比例明显增加。这两种途径均能导致以水生昆虫、小鱼、甲壳类等为食的肉食性鱼类汞含量增加。水库形成后,生态系统中汞的甲基化发生了明显的"加速"过程。这种"加速"过程最直接的因素是成库后大量土壤淹没使得汞的甲基化平衡被打破。这个过程主要有两方面的影响。一方面是直接影响,被淹没土壤和植被在腐解过程中主动或被动地将甲基汞释放到水库生态系统中;另一方面是间接影响,被淹没土壤和植被的腐解使水库底部形成厌氧环境,有利于无机汞从被淹没土壤和植被中溶出,为甲基化反应提供充裕的、可供甲基化的无机汞,同时腐解产生的大量营养物质为微生物提供丰富食物来源,使硫酸盐还原菌大量繁殖,促进无机汞的甲基化。在我国,有关汞在新建水库食物网中生物累积和风险评价的研究有待进一步加强。  相似文献   

20.
BackgroundMercury, in particular its most toxic form methylmercury, poses a risk to public health. Dietary methylmercury exposure is mainly by fish, and it can vary with fish contamination and by dietary habits of the population. This study aimed to quantify total mercury levels in different fish from Brazil and to estimate Brazilian exposure to methylmercury by fish consumption.MethodsTotal mercury occurrence was investigated in 18 different fish species by atomic absorption spectrometry with thermal decomposition and gold amalgamation. Dietary exposure to methylmercury was estimated by a deterministic method for different groups considering consumption by sex, different Brazilian geographical regions and habitat (rural or urban).ResultsCarnivorous fish showed higher levels of mercury (0.01 to 0.93 mg/kg) compared to non-strictly carnivorous fish (<0.01 to 0.30 mg/kg). Farmed fishes showed significantly lower levels compared to wild fish. Mean Brazilian fish consumption achieves FAO/WHO health recommendation of about two portions of fish per week. However, there is a large difference between fish consumption at urban and rural homes and among Brazilian geographic regions. These differences in consumption impacted estimated methylmercury intake that was higher in the Northern (1.85 μg/kg bw week) and in the Northeastern (0.72 μg/kg bw week) regions and also by rural population (1.08 μg/kg bw week). These values were compared with the toxicological reference dose for neurotoxicity of 1.6 μg/kg bw week.ConclusionEven though total levels of mercury in fish were lower than Brazilian and international legislations, in the Northern Brazilian region methylmercury intake overpassed the toxicological reference dose for neurotoxicity and in rural areas it achieved 68% of this reference dose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号