首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Several mammalian sialidases have been cloned so far and here we describe the identification and expression of a new member of the human sialidase gene family. The NEU4 gene, identified by searching sequence databases for entries showing homologies to the human cytosolic sialidase NEU2, maps in 2q37 and encodes a 484-residue protein. The polypeptide contains all the typical sialidase amino acid motifs and, apart from an amino acid stretch that appears unique among mammalian sialidases, shows a high degree of homology for NEU2 and the plasma membrane-associated (NEU3) sialidases. RNA dot-blot analysis showed a low but wide expression pattern, with the highest level in liver. Transient transfection in COS7 cells allowed the detection of a sialidase activity toward the artificial substrate 4MU-NeuAc in the acidic range of pH. Immunofluorescence staining and Western blot analysis demonstrated the association of NEU4 with the inner cell membranes.  相似文献   

3.
The microvascular endothelial surface expresses multiple molecules whose sialylation state regulates multiple aspects of endothelial function. To better regulate these sialoproteins, we asked whether endothelial cells (ECs) might express one or more catalytically active sialidases. Human lung microvascular EC lysates contained heat-labile sialidase activity for a fluorogenic substrate, 2'-(4-methylumbelliferyl)-α-D-N-acetylneuraminic acid (4-MU-NANA), that was dose-dependently inhibited by the competitive sialidase inhibitor, 2,3-dehydro-2-deoxy-N-acetylneuraminic acid but not its negative control. The EC lysates also contained sialidase activity for a ganglioside mixture. Using real time RT-PCR to detect mRNAs for the four known mammalian sialidases, NEU1, -2, -3, and -4, NEU1 mRNA was expressed at levels 2700-fold higher that those found for NEU2, -3, or -4. Western analyses indicated NEU1 and -3 protein expression. Using confocal microscopy and flow cytometry, NEU1 was immunolocalized to both the plasma membrane and the perinuclear region. NEU3 was detected both in the cytosol and nucleus. Prior siRNA-mediated knockdown of NEU1 and NEU3 each decreased EC sialidase activity for 4-MU-NANA by >65 and >17%, respectively, and for the ganglioside mixture by 0 and 40%, respectively. NEU1 overexpression in ECs reduced their migration into a wound by >40%, whereas NEU3 overexpression did not. Immunohistochemical studies of normal human tissues immunolocalized NEU1 and NEU3 proteins to both pulmonary and extrapulmonary vascular endothelia. These combined data indicate that human lung microvascular ECs as well as other endothelia express catalytically active NEU1 and NEU3. NEU1 restrains EC migration, whereas NEU3 does not.  相似文献   

4.
Human cytosolic sialidase (Neuraminidase 2, NEU2) catalyzes the removal of terminal sialic acid residues from glycoconjugates. The effect of siastatin B, known as a sialidase inhibitor, has not been evaluated toward human NEU2 yet. We studied the regulation of NEU2 activity by siastatin B in vitro and predicted the interaction in silico. Inhibitory and stabilizing effects of siastatin B were analyzed in comparison with DANA (2-deoxy-2,3-dehydro-N-acetylneuraminic acid) toward 4-umbelliferyl N-acetylneuraminic acid (4-MU-NANA)- and α2,3-sialyllactose-degrading activities of recombinant NEU2 produced by E. coli GST-fusion gene expression. Siastatin B exhibited to have higher competitive inhibitory activity toward NEU2 than DANA at pH 4.0. We also revealed the stabilizing effect of siastatin B toward NEU2 activity at acidic pH. Docking model was constructed on the basis of the crystal structure of NEU2/DANA complex (PDB code: 1VCU). Molecular docking predicted that electrostatic neutralization of E111 and E218 residues of the active pocket should not prevent siastatin B from binding at pH 4.0. The imino group (1NH) of siastatin B can also interact with D46, neutralized at pH 4.0. Siastatin B was suggested to have higher affinity to the active pocket of NEU2 than DANA, although it has no C7–9 fragment corresponding to that of DANA. We demonstrated here the pH-dependent affinity of siastatin B toward NEU2 to exhibit potent inhibitory and stabilizing activities. Molecular interaction between siastatin B and NEU2 will be utilized to develop specific inhibitors and stabilizers (chemical chaperones) not only for NEU2 but also the other human sialidases, including NEU1, NEU3 and NEU4, based on homology modeling.  相似文献   

5.
Sialidases are enzymes that influence cellular activity by removing terminal sialic acid from glycolipids and glycoproteins. Four genetically distinct sialidases have been identified in mammalian cells. In this study, we demonstrate that three of these sialidases, lysosomal Neu1 and Neu4 and plasma membrane-associated Neu3, are expressed in human monocytes. When measured using the artificial substrate 2'-(4-methylumbelliferyl)-alpha-d-N-acetylneuraminic acid (4-MU-NANA), sialidase activity of monocytes increased up to 14-fold per milligram of total protein after cells had differentiated into macrophages. In these same cells, the specific activity of other cellular proteins (e.g. beta-galactosidase, cathepsin A and alkaline phosphatase) increased only two- to fourfold during differentiation of monocytes. Sialidase activity measured with 4-MU-NANA resulted from increased expression of Neu1, as removal of Neu1 from the cell lysate by immunoprecipitation eliminated more than 99% of detectable sialidase activity. When exogenous mixed bovine gangliosides were used as substrates, there was a twofold increase in sialidase activity per milligram of total protein in monocyte-derived macrophages in comparison to monocytes. The increased activity measured with mixed gangliosides was not affected by removal of Neu1, suggesting that the expression of a sialidase other than Neu1 was present in macrophages. The amount of Neu1 and Neu3 RNAs detected by real time RT-PCR increased as monocytes differentiated into macrophages, whereas the amount of Neu4 RNA decreased. No RNA encoding the cytosolic sialidase (Neu2) was detected in monocytes or macrophages. Western blot analysis using specific antibodies showed that the amount of Neu1 and Neu3 proteins increased during monocyte differentiation. Thus, the differentiation of monocytes into macrophages is associated with regulation of the expression of at least three distinct cellular sialidases, with specific up-regulation of the enzyme activity of only Neu1.  相似文献   

6.
A 4.3 kb XbaI restriction fragment of DNA from Clostridium sordellii G12 hybridized with a synthetic oligonucleotide representing the N-terminus of the sialidase protein secreted by C. sordellii. This cloned fragment was shown to encode only part of the sialidase protein. The sialidase gene of C. sordellii was completed by a 0.7 kb RsaI restriction fragment overlapping one end of the XbaI fragment. After combining the two fragments and transformation of Escherichia coli, a clone that expressed sialidase was obtained. The nucleotide sequence of the sialidase gene of C. sordellii G12 was determined. The sequence of the 18 N-terminal amino acids of the purified extracellular enzyme perfectly matched the predicted amino acid sequence near the beginning of the structural gene. The amino acid sequence derived from the complete gene corresponds to a protein with a molecular mass of 44,735 Da. Upstream from the putative ATG initiation codon, ribosomal-binding site and promoter-like consensus sequences were found. The encoded protein has a leader sequence of 27 amino acids. The enzyme expressed in E. coli has similar properties to the enzyme isolated from C. sordellii, except for small differences in size and isoelectric point. Significant homology (70%) was found with a sialidase gene from C. perfringens.  相似文献   

7.
The paramyxovirus Newcastle Disease Virus (NDV) binds to sialic acid-containing glycoconjugates, sialoglycoproteins and sialoglycolipids (gangliosides) of host cell plasma membrane through its hemagglutinin-neuraminidase (sialidase) HN glycoprotein. We hypothesized that the modifications of the cell surface ganglioside pattern determined by over-expression of the mammalian plasma-membrane associated, ganglioside specific, sialidase NEU3 would affect the virus-host cell interactions. Using COS7 cells as a model system, we observed that over-expression of the murine MmNEU3 did not affect NDV binding but caused a marked reduction in NDV infection and virus propagation through cell-cell fusion. Moreover, since GD1a was greatly reduced in COS7 cells following NEU3-over-expression, we added [(3)H]-labelled GD1a to COS7 cells under conditions that block intralysosomal metabolic processing, and we observed a marked increase of GD1a cleavage to GM1 during NDV infection, indicating a direct involvement of the virus sialidase and host cell GD1a in NDV infectivity. Therefore, the decrease of GD1a in COS7 cell membrane upon MmNEU3 over-expression is likely to be instrumental to NDV reduced infection. Evidence was also provided for the preferential association of NDV-HN at 4 degrees C to detergent resistant microdomains (DRMs) of COS7 cells plasma membranes.  相似文献   

8.
NEU3 sialidase, a key enzyme in ganglioside metabolism, is activated under hypoxic conditions in cultured skeletal muscle cells (C2C12). NEU3 up-regulation stimulates the EGF receptor signaling pathway, which in turn activates the hypoxia-inducible factor (HIF-1α), resulting in a final increase of cell survival and proliferation. In the same cells, stable overexpression of sialidase NEU3 significantly enhances cell resistance to hypoxia, whereas stable silencing of the enzyme renders cells more susceptible to apoptosis. These data support the working hypothesis of a physiological role played by NEU3 sialidase in protecting cells from hypoxic stress and may suggest new directions in the development of therapeutic strategies against ischemic diseases, particularly of the cerebro-cardiovascular system.  相似文献   

9.
A gene, isp-B, encoding an intracellular serine protease from a newly isolated Bacillus sp. WRD-2 was cloned and characterized. Nucleotide sequence analysis showed an open reading frame of 960 bp encoding a polypeptide comprised of 319 amino acids. The primary structure of the enzyme predicted the structural features characteristic of other intracellular serine proteases, including active sites, Ser, His and Asp, as well as no signal sequence. The predicted amino acid sequence showed more than 60% homology with the intracellular serine proteases from Bacillus species. When expressed in E. coli, the recombinant enzyme (rISP-B) was overproduced in the cytoplasm as soluble and active form. The purified enzyme was completely inhibited by phenylmethylsulfonyl fluoride, EDTA and antipain. The enzyme showed maximum activity at pH 8.0 and 45 degrees C. It was stable atpH from 7.5 to 11.0 and below 50 degrees C.  相似文献   

10.
To investigate the mechanism of degradation of proteins localized in the nucleus, we constructed genes encoding modified Escherichia coli beta-galactosidases and expressed them in mammalian COS cells. When the beta-galactosidase with a nuclear localization signal from SV 40 T antigen was expressed in COS cells, the beta-galactosidase polypeptide was localized in the nuclei and was stable for at least 4 h. When 16 amino acid residues were deleted from the C-terminal end, the beta-galactosidase polypeptide was also observed in the nuclei but it was degraded rapidly, with a half-life of 1.6 h. When the nuclear localizing signal was replaced with a mutant sequence, which lacks nuclear targeting activity, the beta-galactosidase polypeptides were present throughout the cells rather than in the nuclei. The beta-galactosidase polypeptide with the complete C terminus was stable and the cytoplasmic truncated polypeptide was degraded at the same rate as the nuclear C terminus truncated polypeptide. The beta-galactosidase polypeptides with the complete C terminus were present as a tetramer as reported previously and had beta-galactosidase activity, but the C terminus truncated polypeptides were present as monomer and had no enzyme activity, indicating that C terminus truncated beta-galactosidase is malfolded. Together, the results suggest that a nuclear-localized malfolded protein is degraded as rapidly as a cytoplasmic malfolded protein.  相似文献   

11.
Epithelial cells (ECs) lining the airways provide a protective barrier between the external environment and the internal host milieu. These same airway epithelia express receptors that respond to danger signals and initiate repair programs. Because the sialylation state of a receptor can influence its function and is dictated in part by sialidase activity, we asked whether airway epithelia express catalytically active sialidase(s). Human primary small airway and A549 ECs expressed NEU1 sialidase at the mRNA and protein levels, and NEU1 accounted for >70% of EC sialidase activity. Blotting with Maackia amurensis and peanut agglutinin lectins established epidermal growth factor receptor (EGFR) and MUC1 as in vivo substrates for NEU1. NEU1 associated with EGFR and MUC1, and NEU1-EGFR association was regulated by EGF stimulation. NEU1 overexpression diminished EGF-stimulated EGFR Tyr-1068 autophosphorylation by up to 44% but enhanced MUC1-dependent Pseudomonas aeruginosa adhesion by 1.6-1.7-fold and flagellin-stimulated ERK1/2 activation by 1.7-1.9-fold. In contrast, NEU1 depletion increased EGFR activation (1.5-fold) and diminished MUC1-mediated bacterial adhesion (38-56%) and signaling (73%). These data indicate for the first time that human airway epithelia express catalytically active NEU1 sialidase that regulates EGFR- and MUC1-dependent signaling and bacterial adhesion. NEU1 catalytic activity may offer an additional level of regulation over the airway epithelial response to ligands, pathogens, and injurious stimuli.  相似文献   

12.
Sialidase NEU3 is also known as the plasma-membrane-associated form of mammalian sialidases, exhibiting a high substrate specificity towards gangliosides. In this respect, sialidase NEU3 modulates cell-surface biological events and plays a pivotal role in different cellular processes, including cell adhesion, recognition and differentiation. At the moment, no detailed studies concerning the subcellular localization of NEU3 are available, and the mechanism of its association with cellular membranes is still unknown. In the present study, we have demonstrated that sialidase NEU3, besides its localization at the plasma membrane, is present in intracellular structures at least partially represented by a subset of the endosomal compartment. Moreover, we have shown that NEU3 present at the plasma membrane is internalized and locates then to the recycling endosomal compartment. The enzyme is associated with the outer leaflet of the plasma membrane, as shown by selective cell-surface protein biotinylation. This evidence is in agreement with the ability of NEU3 to degrade gangliosides inserted into the plasma membrane of adjacent cells. Moreover, the mechanism of the protein association with the lipid bilayer was elucidated by carbonate extraction. Under these experimental conditions, we have succeeded in solubilizing NEU3, thus demonstrating that the enzyme is a peripheral membrane protein. In addition, Triton X-114 phase separation demonstrates further the hydrophilic nature of the protein. Overall, these results provide important information about the biology of NEU3, the most studied member of the mammalian sialidase family.  相似文献   

13.
Chromosomal DNA from Actinomyces viscosus was digested with restriction endonucleases and the fragments ligated with pUC-vectors were used to transform Escherichia coli cells. Clones bearing the required sialidase gene were detected by spraying the colonies with the fluorogenic sialidase substrate MU-Neu5Ac. The identity of the cloned sialidase was confirmed after the 5700-fold enrichment and comparison with the purified enzyme of A. viscosus. Both sialidases were identical with regard to molecular mass, substrate specificity tested with sialyllactoses, and the inhibition of their activity by heterologous antisialidase antibodies. The sequenced insert (EMBL accession number X62276) revealed a mol% G + C of 68.2, typical for A. viscosus. An open reading frame of 2739 bp follows a sequence with dyad symmetry and an AG-rich region, and codes for 913 amino acids representing a molecular mass of 113 kDa. The conserved amino acid sequence [Ser-X-Asp-X-Gly-X-Thr-Trp] typical for bacterial sialidases was found at five positions in the predicted amino acid sequence. The gene of this enzyme is expressed by E. coli, despite the low relatedness of both species.  相似文献   

14.
Rubella virus cDNA. Sequence and expression of E1 envelope protein   总被引:6,自引:0,他引:6  
A cDNA clone encoding the entire E1 envelope protein (410 amino acid residues) and a portion of the C-terminal end of the E2 envelope protein of the rubella virus has been isolated and characterized. DNA sequence analysis has revealed a region 20 nucleotides in length at the 3' end of the cloned cDNA which may be a replicase recognition site or a recognition site for encapsidation. The proteolytic cleavage site between the E1 and E2 proteins was localized based on the known amino-terminal sequence of the isolated E1 protein (Kalkkinen, N., Oker-Blom, C., and Pettersson, R. F. (1984) J. Gen. Virol. 65, 1549-1557) and the deduced amino acid sequence. The mature E1 protein is preceded by a set of 20 highly hydrophobic amino acid residues possessing characteristics of a signal peptide. This "signal peptide" is flanked on both sides by typical protease cleavage sites for trypsin-like enzyme and signal peptidase. The presence of a leader sequence in the E1 protein precursor may facilitate its translocation through the host cell membrane. The E1 protein of rubella virus shows no significant homology with alphavirus E1 envelope proteins. However, a stretch of 39 amino acids in the E1 protein of rubella virus (residues 262-300) was found to share a significant homology with the first 39 residues of bovine sperm histone. The position of 4 half-cystines and 8 arginines overlaps. The E1 protein of rubella virus has been successfully expressed in COS cells after transfecting them with rubella virus cDNA in simian virus 40-derived expression vector. This protein is antigenically similar to the one expressed by cells infected with rubella virus.  相似文献   

15.
The gene encoding alkaline phosphatase (AP) from the psychrophilic strain TAB5 was cloned, and its nucleotide sequence was determined. A single open reading frame consisting of 1125 base pairs which encodes a polypeptide consisting of signal peptide of 22 amino acids and a mature protein of 353 amino acids was identified. The deduced protein sequence of AP exhibits a 38% identity to the AP III and AP IV sequences of Bacillus subtilis and conserves the typical sequence motifs of the core structure and active sites of APs from various sources. Based on the crystal structure of the mutated Escerichia coli AP D153H, a homology-based 3D model of the TAB5 AP was constructed on the basis of which various features of the enzyme amino-acid sequence can be interpreted in terms of potential psychrophilic adaptations. The AP gene was expressed in E. coli BL21(DE3) cells, the recombinant protein was isolated to homogeneity from the membrane fraction of the cells and its properties were examined. The purified TAB5 AP shows typical features of a cold enzyme: high catalytic activity at low temperature and a remarkable thermosensitivity. The use of this heat-labile enzyme, for dephosphorylation of nucleic acids, simplifies dephosphorylation protocols.  相似文献   

16.
Li Y  Cao H  Yu H  Chen Y  Lau K  Qu J  Thon V  Sugiarto G  Chen X 《Molecular bioSystems》2011,7(4):1060-1072
Aberrant expression of human sialidases has been shown to associate with various pathological conditions. Despite the effort in the sialidase inhibitor design, less attention has been paid to designing specific inhibitors against human sialidases and characterizing the substrate specificity of different sialidases regarding diverse terminal sialic acid forms and sialyl linkages. This is mainly due to the lack of sialoside probes and efficient screening methods, as well as limited access to human sialidases. A low cellular expression level of the human sialidase NEU2 hampers its functional and inhibitory studies. Here we report the successful cloning and expression of the human sialidase NEU2 in E. coli. About 11 mg of soluble active NEU2 was routinely obtained from 1 L of E. coli cell culture. Substrate specificity studies of the recombinant human NEU2 using twenty p-nitrophenol (pNP)-tagged α2-3- or α2-6-linked sialyl galactosides containing different terminal sialic acid forms including common N-acetylneuraminic acid (Neu5Ac), non-human N-glycolylneuraminic acid (Neu5Gc), 2-keto-3-deoxy-D-glycero-D-galacto-nonulosonic acid (Kdn), or their C5-derivatives in a microtiter plate-based high-throughput colorimetric assay identified a unique structural feature specifically recognized by the human NEU2 but not two bacterial sialidases. The results obtained from substrate specificity studies were used to guide the design of a sialidase inhibitor that was selective against human NEU2. The selectivity of the inhibitor was revealed by the comparison of sialidase crystal structures and inhibitor docking studies.  相似文献   

17.
A cDNA for rat liver beta-glucuronidase was isolated, its sequence determined and its expression after transfection into COS cells studied. The deduced amino acid sequence of the rat liver clone showed 77% homology with that from the cDNA for human placental beta-glucuronidase and 47% homology with that deduced from the cDNA for Escherichia coli beta-glucuronidase. Several differences were found between the cDNA from rat liver and that previously reported from rat preputial gland. Only one change leads to an amino acid difference in the mature enzyme. A chimeric clone was constructed by using a fragment encoding the first 18 amino acid residues of the signal sequence from the human placental cDNA clone and a fragment from the rat clone encoding four amino acid residues of the signal sequence, all 626 amino acid residues of the mature rat enzyme, and all of the 3' untranslated region. After transfection into COS cells the chimeric clone expressed beta-glucuronidase activity that was specifically immunoprecipitated by antibody to rat beta-glucuronidase. The Mr value of 76,000 of the expressed gene product was characteristic of the glycosylated rat enzyme. It was proteolytically processed in COS cells to Mr 75,000 6 h after metabolic labelling. At least 50% of the expressed enzyme was secreted at 60 h post-transfection, but the secreted enzyme did not undergo proteolytic processing. These results provide evidence that the partial cDNA isolated from a rat liver library contains the complete coding sequence for the mature rat liver enzyme and that the chimeric signal sequence allows normal biosynthesis and processing of the transfected rat liver enzyme in COS cells.  相似文献   

18.
19.
Cloning and expression of a human ATP-citrate lyase cDNA.   总被引:1,自引:0,他引:1  
A full-length cDNA clone of 4.3 kb encoding the human ATP-citrate lyase enzyme has been isolated by screening a human cDNA library with the recently isolated rat ATP-citrate lyase cDNA clone [Elshourbagy et al. (1990) J. Biol. Chem. 265, 1430]. Nucleic-acid sequence data indicate that the cDNA contains the complete coding region for the enzyme, which is 1105 amino acids in length with a calculated molecular mass of 121,419 Da. Comparison of the human and rat ATP-citrate lyase cDNA sequences reveals 96.3% amino acid identity throughout the entire sequence. Further sequence analysis identified the His765 catalytic phosphorylation site, the ATP-binding site, as well as the CoA binding site. The human ATP-citrate lyase cDNA clone was subcloned into a mammalian expression vector for expression in African green monkey kidney cells (COS) and Chinese hamster ovary cells (CHO) cells. Transfected COS cells expressed detectable levels of an enzymatically active recombinant ATP-citrate lyase enzyme. Stable, amplified expression of ATP-citrate lyase in CHO cells as achieved by using coamplification with dihydrofolate reductase. Resistant cells expressed high levels of enzymatically active ATP-citrate lyase (3 pg/cell/d). Site-specific mutagenesis of His765----Ala diminishes the catalytic activity of the expressed ATP-citrate lyase protein. Since catalysis of ATP-citrate lyase is postulated to involve the formation of phosphohistidine, these results are consistent with the pattern of earlier observations of the significance of the histidine residue in catalysis of the human ATP-citrate lyase.  相似文献   

20.
Sialidases are glycohydrolytic enzymes present from virus to mammals that remove sialic acid from oligosaccharide chains. Four different sialidase forms are known in vertebrates: the lysosomal NEU1, the cytosolic NEU2 and the membrane-associated NEU3 and NEU4. These enzymes modulate the cell sialic acid content and are involved in several cellular processes and pathological conditions. Molecular defects in NEU1 are responsible for sialidosis, an inherited disease characterized by lysosomal storage disorder and neurodegeneration. The studies on the biology of sialic acids and sialyltransferases, the anabolic counterparts of sialidases, have revealed a complex picture with more than 50 sialic acid variants selectively present in the different branches of the tree of life. The gain/loss of specific sialoconjugates have been proposed as key events in the evolution of deuterostomes and Homo sapiens, as well as in the host-pathogen interactions. To date, less attention has been paid to the evolution of sialidases. Thus we have conducted a survey on the state of the sialidase family in metazoan. Using an in silico approach, we identified and characterized sialidase orthologs from 21 different organisms distributed among the evolutionary tree: Metazoa relative (Monosiga brevicollis), early Deuterostomia, precursor of Chordata and Vertebrata (teleost fishes, amphibians, reptiles, avians and early and recent mammals). We were able to reconstruct the evolution of the sialidase protein family from the ancestral sialidase NEU1 and identify a new form of the enzyme, NEU5, representing an intermediate step in the evolution leading to the modern NEU3, NEU4 and NEU2. Our study provides new insights on the mechanisms that shaped the substrate specificity and other peculiar properties of the modern mammalian sialidases. Moreover, we further confirm findings on the catalytic residues and identified enzyme loop portions that behave as rapidly diverging regions and may be involved in the evolution of specific properties of sialidases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号