首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have examined Na(+),K(+)-ATPase molecular activity and membrane fatty acid composition in the heart of six mammalian and eight avian species ranging in size from 30 g in mice to 280 kg in cattle and 13 g in zebra finches to 35 kg in emus, respectively. Na(+),K(+)-ATPase activity scaled negatively with body mass in both mammals and birds. In small mammals, the elevated enzyme activity was related to allometric changes in both the concentration and molecular activity (turnover rate) of Na(+),K(+)-ATPase enzymes, while in small birds, higher Na(+),K(+)-ATPase activity appeared to result primarily from an increased molecular activity of individual enzymes. The unsaturation index of cardiac phospholipids scaled negatively with body mass in both groups, while a significant allometric increase in monounsaturate content was observed in the larger mammals and birds. In particular, the relative content of the highly polyunsaturated docosahexaenoic acid (22:6n-3) displayed the greatest variation, scaling negatively with body mass and varying greater than 40-fold in both mammals and birds. Membrane fatty acid profile was correlated with Na(+),K(+)-ATPase molecular activity in both mammals and birds, suggesting a potential association between membrane lipid composition and the activity of membrane-bound enzymes in the hearts of endotherms.  相似文献   

2.
As the K(+) recycling pathway for renal Na(+) reabsorption, renal tubular K(+) channels participate in the fluid and electrolyte homeostasis. Previously, we showed that the Kir5.1/Kir4.1 heteromer, which is a heteromeric assembly of two inwardly rectifying K(+) channels, composes the principal basolateral K(+) channels in distal renal tubules and that two motifs in the carboxyl-terminal portion of the Kir4.1 subunit regulate its functional expression. In this study, by using yeast two-hybrid screening, we identified a new isoform of membrane-associated guanylate kinase with inverted domain structure 1 (MAGI-1a-long) as a scaffolding protein for the basolateral K(+) channels. MAGI-1a-long interacted with the PSD-95/Dlg/ZO-1 (PDZ)-binding motif of Kir4.1 by its fifth PDZ domain, and a high salt diet, which could suppress mineralocorticoid secretion, facilitated the interaction. The phosphorylation of serine 377 in the PDZ-binding motif disrupted the interaction, and the disruption of the interaction altered the intracellular localization of the channels from the basolateral side to perinuclear components. These results demonstrate that the phosphorylation-dependent scaffolding of the basolateral K(+) channels by MAGI-1a-long participates in the renal regulation of the fluid and electrolyte homeostasis.  相似文献   

3.
One unique physiological characteristic of frogs is that their main route for intake of water is across the skin. In these animals, the skin acts in concert with the kidney and urinary bladder to maintain electrolyte homeostasis. Water absorption across the skin is driven by the osmotic gradient that develops as a consequence of solute transport. Our recent study demonstrated that chytridiomycosis, an infection of amphibian skin by the fungal pathogen, Batrachochytrium dendrobatidis, inhibits epithelial Na(+) channels, attenuating Na(+) absorption through the skin. In frogs that become severely affected by this fungus, systemic depletion of Na(+), K(+) and Cl(-) is thought to cause deterioration of cardiac electrical function, leading to cardiac arrest. Here we review the ion transport mechanisms of frog skin, and discuss the effect of chytridiomycosis on these mechanisms.  相似文献   

4.
Renal sodium homeostasis is a major determinant of blood pressure and is regulated by several natriuretic and antinatriuretic hormones. These hormones, acting through intracellular second messengers, either activate or inhibit proximal tubule Na(+),K(+)-ATPase. We have shown previously that phorbol ester (PMA) stimulation of endogenous PKC leads to activation of Na(+),K(+)-ATPase in cultured proximal tubule cells (OK cells) expressing the rodent Na(+), K(+)-ATPase alpha-subunit. We have now demonstrated that the treatment with PMA leads to an increased amount of Na(+),K(+)-ATPase molecules in the plasmalemma, which is proportional to the increased enzyme activity. Colchicine, dinitrophenol, and potassium cyanide prevented the PMA-dependent stimulation of activity without affecting the increased level of phosphorylation of the Na(+), K(+)-ATPase alpha-subunit. This suggests that phosphorylation does not directly stimulate Na(+),K(+)-ATPase activity; instead, phosphorylation may be the triggering mechanism for recruitment of Na(+),K(+)-ATPase molecules to the plasma membrane. Transfected cells expressing either an S11A or S18A mutant had the same basal Na(+),K(+)-ATPase activity as cells expressing the wild-type rodent alpha-subunit, but PMA stimulation of Na(+),K(+)-ATPase activity was completely abolished in either mutant. PMA treatment led to phosphorylation of the alpha-subunit by stimulation of PKC-beta, and the extent of this phosphorylation was greatly reduced in the S11A and S18A mutants. These results indicate that both Ser11 and Ser18 of the alpha-subunit are essential for PMA stimulation of Na(+), K(+)-ATPase activity, and that these amino acids are phosphorylated during this process. The results presented here support the hypothesis that PMA regulation of Na(+),K(+)-ATPase is the result of an increased number of Na(+),K(+)-ATPase molecules in the plasma membrane.  相似文献   

5.
The N-terminus of the Na(+),K(+)-ATPase alpha-subunit shows some homology to that of Shaker-B K(+) channels; the latter has been shown to mediate the N-type channel inactivation in a ball-and-chain mechanism. When the Torpedo Na(+),K(+)-ATPase is expressed in Xenopus oocytes and the pump is transformed into an ion channel with palytoxin (PTX), the channel exhibits a time-dependent inactivation gating at positive potentials. The inactivation gating is eliminated when the N-terminus is truncated by deleting the first 35 amino acids after the initial methionine. The inactivation gating is restored when a synthetic N-terminal peptide is applied to the truncated pumps at the intracellular surface. Truncated pumps generate no electrogenic current and exhibit an altered stoichiometry for active transport. Thus, the N-terminus of the alpha-subunit appears to act like an inactivation gate and performs a critical step in the Na(+),K(+)-ATPase pumping function.  相似文献   

6.
Isolated salivary glands of Periplaneta americana were used to measure secretion rates and, by quantitative capillary electrophoresis, Na(+), K(+), and Cl(-) concentrations in saliva collected during dopamine (1 micro M) and serotonin (1 micro M) stimulation in the absence and presence of ouabain (100 micro M) or bumetanide (10 micro M). Dopamine stimulated secretion of a NaCl-rich hyposmotic saliva containing (mM): Na(+) 95 +/- 2; K(+) 38 +/- 1; Cl(-) 145 +/- 3. Saliva collected during serotonin stimulation had a similar composition. Bumetanide decreased secretion rates induced by dopamine and serotonin; secreted saliva had lower Na(+), K(+) and Cl(-) concentrations and osmolarity. Ouabain caused increased secretion rates on a serotonin background. Saliva secreted during dopamine but not serotonin stimulation in the presence of ouabain had lower K(+) and higher Na(+) and Cl(-) concentrations, and was isosmotic. We concluded: The Na(+)-K(+)-2Cl(-) cotransporter is of cardinal importance for electrolyte and fluid secretion. The Na(+)/K(+)-ATPase contributes to apical Na(+) outward transport and Na(+) and K(+) cycling across the basolateral membrane in acinar P-cells. The salivary ducts modify the primary saliva by Na(+) reabsorption and K(+) secretion, whereby Na(+) reabsorption is energized by the basolateral Na(+)/K(+)-ATPase which imports also some of the K(+) needed for apical K(+) extrusion.  相似文献   

7.
Li J  Bao S  Zhang Y  Ma X  Mishra-Knyrim M  Sun J  Sa G  Shen X  Polle A  Chen S 《Plant physiology》2012,159(4):1771-1786
Salt-induced fluxes of H(+), Na(+), K(+), and Ca(2+) were investigated in ectomycorrhizal (EM) associations formed by Paxillus involutus (strains MAJ and NAU) with the salt-sensitive poplar hybrid Populus × canescens. A scanning ion-selective electrode technique was used to measure flux profiles in non-EM roots and axenically grown EM cultures of the two P. involutus isolates to identify whether the major alterations detected in EM roots were promoted by the fungal partner. EM plants exhibited a more pronounced ability to maintain K(+)/Na(+) homeostasis under salt stress. The influx of Na(+) was reduced after short-term (50 mm NaCl, 24 h) and long-term (50 mm NaCl, 7 d) exposure to salt stress in mycorrhizal roots, especially in NAU associations. Flux data for P. involutus and susceptibility to Na(+)-transport inhibitors indicated that fungal colonization contributed to active Na(+) extrusion and H(+) uptake in the salinized roots of P. × canescens. Moreover, EM plants retained the ability to reduce the salt-induced K(+) efflux, especially under long-term salinity. Our study suggests that P. involutus assists in maintaining K(+) homeostasis by delivering this nutrient to host plants and slowing the loss of K(+) under salt stress. EM P. × canescens plants exhibited an enhanced Ca(2+) uptake ability, whereas short-term and long-term treatments caused a marked Ca(2+) efflux from mycorrhizal roots, especially from NAU-colonized roots. We suggest that the release of additional Ca(2+) mediated K(+)/Na(+) homeostasis in EM plants under salt stress.  相似文献   

8.
Plants have multiple potassium (K(+)) uptake and efflux mechanisms that are expressed throughout plant tissues to fulfill different physiological functions. Several different classes of K(+) channels and carriers have been identified at the molecular level in plants. K(+) transporters of the HKT1 superfamily have been cloned from wheat (Triticum aestivum), Arabidopsis, and Eucalyptus camaldulensis. The functional characteristics as well as the primary structure of these transporters are diverse with orthologues found in bacterial and fungal genomes. In this report, we provide a detailed characterization of the functional characteristics, as expressed in Xenopus laevis oocytes, of two cDNAs isolated from E. camaldulensis that encode proteins belonging to the HKT1 superfamily of K(+)/Na(+) transporters. The transport of K(+) in EcHKT-expressing oocytes is enhanced by Na(+), but K(+) was also transported in the absence of Na(+). Na(+) is transported in the absence of K(+) as has been demonstrated for HKT1 and AtHKT1. Overall, the E. camaldulensis transporters show some similarities and differences in ionic selectivity to HKT1 and AtHKT1. One striking difference between HKT1 and EcHKT is the sensitivity to changes in the external osmolarity of the solution. Hypotonic solutions increased EcHKT induced currents in oocytes by 100% as compared with no increased current in HKT1 expressing or uninjected oocytes. These osmotically sensitive currents were not enhanced by voltage and may mediate water flux. The physiological function of these osmotically induced increases in currents may be related to the ecological niches that E. camaldulensis inhabits, which are periodically flooded. Therefore, the osmosensing function of EcHKT may provide this species with a competitive advantage in maintaining K(+) homeostasis under certain conditions.  相似文献   

9.
In the present study we examined the effect of dietary supplementation with the pyridoindole antioxidant stobadine on functional properties of the cardiac Na(+),K(+)-ATPase in diabetic rats. Diabetes lasting sixteen weeks which was induced by a single i.v. dose of streptozotocin (55 mg x kg(-1)) was followed by decrease in the enzyme activity. Evaluation of kinetic parameters revealed a statistically significant decrease in the maximum velocity (Vmax) (32% for ATP-activation, 33% for Na(+)-activation), indicating a diabetes-induced diminution of the number of active enzyme molecules in cardiac sarcolemma. The ATP-binding properties of the enzyme were not affected by diabetes as suggested by statistically insignificant changes in the value of Michaelis-Menten constant, K(M (ATP)). On the other hand, the affinity to sodium decreased as suggested by 54% increase in the K(M (Na+)) value. This impairment in the affinity of the Na(+)-binding site together with decreased number of active Na(+),K(+)-ATPase molecules are probably responsible for the deteriorated enzyme function in hearts of diabetic animals. Administration of stobadine to diabetic rats dramatically improved the function of cardiac Na(+),K(+)-ATPase with regard to Na(+)-handling, as documented by statistically significant elevation of Vmax by 66 and 47% decrease in K(M (Na+)). Our data suggest that stobadine may prevent the diabetes-induced deterioration of cardiac Na(+),K(+)-ATPase, thus enabling to preserve its normal function in regulation of intracellular homeostasis of Na(+) and K(+) ions.  相似文献   

10.
Ravens U  Wettwer E  Hála O 《Cell calcium》2004,35(6):575-582
Ion channels and transporter proteins are prerequisites for formation and conduction of cardiac electrical impulses. Acting in concert, these proteins maintain cellular Na(+) and Ca(2+) homeostasis. Since intracellular Ca(2+) concentration determines contractile activation, we expect the majority of agents that modulate activity of ion channels and transporters not only to influence cellular action potentials but also contractile force. Drugs which block ion channels usually possess antiarrhythmic properties, those inhibiting the Na(+) pump have predominantly inotropic effects and those affecting Na(+),Ca(2+)- or Na(+),H(+)-exchanger protect against ischaemic cell damage. However, irrespective of their primary indication, all compounds targeted against ion channels and transporter proteins possess potential proarrhythmic activity.  相似文献   

11.
Intracellular Na(+)/H(+) (NHX) antiporters have important roles in cellular pH and Na(+), K(+) homeostasis. The six Arabidopsis thaliana intracellular NHX members are divided into two groups, endosomal (NHX5 and NHX6) and vacuolar (NHX1 to NHX4). Of the vacuolar members, NHX1 has been characterized functionally, but the remaining members have largely unknown roles. Using reverse genetics, we show that, unlike the single knockouts nhx1 or nhx2, the double knockout nhx1 nhx2 had significantly reduced growth, smaller cells, shorter hypocotyls in etiolated seedlings and abnormal stamens in mature flowers. Filaments of nhx1 nhx2 did not elongate and lacked the ability to dehisce and release pollen, resulting in a near lack of silique formation. Pollen viability and germination was not affected. Quantification of vacuolar pH and intravacuolar K(+) concentrations indicated that nhx1 nhx2 vacuoles were more acidic and accumulated only 30% of the wild-type K(+) concentration, highlighting the roles of NHX1 and NHX2 in mediating vacuolar K(+)/H(+) exchange. Growth under added Na(+), but not K(+), partly rescued the flower and growth phenotypes. Our results demonstrate the roles of NHX1 and NHX2 in regulating intravacuolar K(+) and pH, which are essential to cell expansion and flower development.  相似文献   

12.
L-Glutamine transport into porcine jejunal enterocyte brush border membrane vesicles was studied. Uptake was mediated by a Na(+)-dependent and a Na(+)-independent pathway as well as by diffusion. The initial rates of glutamine uptake over a range of concentrations is both Na(+)-gradient and Na(+)-free conditions were analyzed and kinetic parameters were obtained. Na(+)-dependent glutamine transport had a K(m) of 0.77 +/- 0.16 mM and a Jmax of 70.7 +/- 5.8 pmol mg protein-1 s-1; Na(+)-independent glutamine transport had a K(m) of 3.55 +/- 0.78 mM and a Jmax of 55.1 +/- 6.6 pmol mg protein-1 s-1. The non-saturable component measured with HgCl2-poisoned brush border membrane vesicles in the Na(+)-free condition contained passive diffusion and non-specific membrane binding and was defined to be apparent glutamine diffusion and the glutamine permeability coefficient (Kdiff) was estimated to be Kdiff = 3.78 +/- 0.06 pmol 1 mg protein-1 mmol-1 s-1. Results of inhibition experiments showed that Na(+)-dependent glutamine uptake occurred primarily through the brush border system-B degree transporters, whereas Na(+)-independent glutamine uptake occurred via the system-L transporters. Furthermore, the kinetics of L-leucine and L-cysteine inhibition of L-glutamine uptake demonstrated that neutral amino acids sharing the same brush border transporters can effectively inhibit each other in their transport.  相似文献   

13.
Sodium is an obligate growth requirement for most currently recognized predominant species of rumen bacteria. The isoosmotic deletion of Na(+) from a nutritionally adequate defined medium completely eliminated growth of most species. Growth yields and rates were both a function of Na(+) concentration for Na(+)-requiring species, and Na(+) could not be replaced by Rb(+), Li(+), or Cs(+) when these ions were substituted for Na(+) at a concentration equivalent to an Na(+) concentration that supported abundant growth. Li(+), Cs(+), or Rb(+) was toxic at an Na(+)-replacing concentration (15 mM) but not at a K(+)-replacing concentration (0.65 mM). K(+) was also an obligate growth requirement for rumen bacteria in media containing Na(+) and K(+) as major monovalent cations, but K(+) could be replaced, for most species, by Rb(+). The quantities of Na(+) that support rapid and abundant growth of Na(+)-requiring rumen bacteria show that these organisms are slight halophiles. A growth requirement for Na(+) appears more frequent among nonmarine bacteria than has been previously believed.  相似文献   

14.
The Na(+),K(+)-ATPase plays key roles in brain function. Recently, missense mutations in the Na(+),K(+)-ATPase were found associated with familial rapid-onset dystonia parkinsonism (FRDP). Here, we have characterized the functional consequences of FRDP mutations Phe785Leu and Thr618Met. Both mutations lead to functionally altered, but active, Na(+),K(+)-pumps, that display reduced apparent affinity for cytoplasmic Na(+), but the underlying mechanism differs between the mutants. In Phe785Leu, the interaction of the E(1) form with Na(+) is defective, and the E(1)-E(2) equilibrium is not displaced. In Thr618Met, the Na(+) affinity is reduced because of displacement of the conformational equilibrium in favor of the K(+)-occluded E(2)(K(2)) form. In both mutants, K(+) interaction at the external activating sites of the E(2)P phosphoenzyme is normal. The change of cellular Na(+) homeostasis is likely a major factor contributing to the development of FRDP in patients carrying the Phe785Leu or Thr618Met mutation. Phe785Leu moreover interferes with Na(+) interaction on the extracellular side and reduces the affinity for ouabain significantly. Analysis of two additional Phe(785) mutants, Phe785Leu/Leu786Phe and Phe785Tyr, demonstrated that the aromatic function of the side chain, as well as its exact position, is critical for Na(+) and ouabain binding. The effects of substituting Phe(785) could be explained by structural modeling, demonstrating that Phe(785) participates in a hydrophobic network between three transmembrane segments. Thr(618) is located in the cytoplasmic part of the molecule near the catalytic site, and the structural modeling indicates that the Thr618Met mutation interferes with the bonding pattern in the catalytic site in the E(1) form, thereby destabilizing E(1) relative to E(2)(K(2)).  相似文献   

15.
Emerging roles of alkali cation/proton exchangers in organellar homeostasis   总被引:4,自引:1,他引:3  
The regulated movement of monovalent cations such as H(+), Li(+), Na(+) and K(+) across biological membranes influences a myriad of cellular processes and is fundamental to all living organisms. This is accomplished by a multiplicity of ion channels, pumps and transporters. Our insight into their molecular, cellular and physiological diversity has increased greatly in the past few years with the advent of genome sequencing, genetic manipulation and sophisticated imaging techniques. One of the revelations from these studies is the emergence of novel alkali cation/protons exchangers that are present in endomembranes, where they function to regulate not only intraorganellar pH but also vesicular biogenesis, trafficking and other aspects of cellular homeostasis.  相似文献   

16.
Both Cs(+) and NH(4)(+) alter neuronal Cl(-) homeostasis, yet the mechanisms have not been clearly elucidated. We hypothesized that these two cations altered the operation of the neuronal K(+)-Cl(-) cotransporter (KCC2). Using exogenously expressed KCC2 protein, we first examined the interaction of cations at the transport site of KCC2 by monitoring furosemide-sensitive (86)Rb(+) influx as a function of external Rb(+) concentration at different fixed external cation concentrations (Na(+), Li(+), K(+), Cs(+), and NH(4)(+)). Neither Na(+) nor Li(+) affected furosemide-sensitive (86)Rb(+) influx, indicating their inability to interact at the cation translocation site of KCC2. As expected for an enzyme that accepts Rb(+) and K(+) as alternate substrates, K(+) was a competitive inhibitor of Rb(+) transport by KCC2. Like K(+), both Cs(+) and NH(4)(+) behaved as competitive inhibitors of Rb(+) transport by KCC2, indicating their potential as transport substrates. Using ion chromatography to measure unidirectional Rb(+) and Cs(+) influxes, we determined that although KCC2 was capable of transporting Cs(+), it did so with a lower apparent affinity and maximal velocity compared with Rb(+). To assess NH(4)(+) transport by KCC2, we monitored intracellular pH (pH(i)) with a pH-sensitive fluorescent dye after an NH(4)(+)-induced alkaline load. Cells expressing KCC2 protein recovered pH(i) much more rapidly than untransfected cells, indicating that KCC2 can mediate net NH(4)(+) uptake. Consistent with KCC2-mediated NH(4)(+) transport, pH(i) recovery in KCC2-expressing cells could be inhibited by furosemide (200 microM) or removal of external [Cl(-)]. Thermodynamic and kinetic considerations of KCC2 operating in alternate transport modes can explain altered neuronal Cl(-) homeostasis in the presence of Cs(+) and NH(4)(+).  相似文献   

17.
Bacteroides amylophilus has growth requirements for Na(+), PO(4) (3-), K(+), and small quantities of Mg(2+). No requirement could be shown for Ca(2+) in media previously found growth-yield-limiting for Bacteroides succinogenes. Deletion of Co(2+), Mn(2+), Cl(-), or SO(4) (2-) did not affect growth. Quantitative studies indicate that Na(+), K(+), and PO(4) (3-) have differing effects on the growth of B. amylophilus. A concentration of sodium and potassium ions affects both growth rate and growth yield, whereas a phosphate concentration markedly affects growth yield, but affects growth rate only slightly, if at all. The sodium requirement of B. amylophilus is absolute. It cannot be replaced by K(+), Li(+), Rb(+), or Cs(+). The latter three monovalent cations are toxic to B. amylophilus if supplied to the organism at Na(+)-replacing concentrations. K(+) is inactive at similar concentrations. The K(+) requirement of B. amylophilus may be satisfied by Rb(+). The concentration of Na(+) required by B. amylophilus for abundant growth suggests that B. amylophilus should be considered a slightly halophilic organism. The results suggest that Na(+) may be a more frequent requirement among terrestial bacteria obtained from relatively low-salt environments than has been previously believed.  相似文献   

18.
Na(+)-activated potassium channels (K(Na)) have been identified in cardiomyocytes and neurons where they may provide protection against ischemia. We now report that K(Na) is encoded by the rSlo2 gene (also called Slack), the mammalian ortholog of slo-2 in C. elegans. rSlo2, heterologously expressed, shares many properties of native K(Na) including activation by intracellular Na(+), high conductance, and prominent subconductance states. In addition to activation by Na(+), we report that rSLO-2 channels are cooperatively activated by intracellular Cl(-), similar to C. elegans SLO-2 channels. Since intracellular Na(+) and Cl(-) both rise in oxygen-deprived cells, coactivation may more effectively trigger the activity of rSLO-2 channels in ischemia. In C. elegans, mutational and physiological analysis revealed that the SLO-2 current is a major component of the delayed rectifier. We demonstrate in C. elegans that slo-2 mutants are hypersensitive to hypoxia, suggesting a conserved role for the slo-2 gene subfamily.  相似文献   

19.
In this study we reveal regions of Na(+),K(+)-ATPase and H(+),K(+)-ATPase that are involved in cation selectivity. A chimeric enzyme in which transmembrane hairpin M5-M6 of H(+),K(+)-ATPase was replaced by that of Na(+),K(+)-ATPase was phosphorylated in the absence of Na(+) and showed no K(+)-dependent reactions. Next, the part originating from Na(+),K(+)-ATPase was gradually increased in the N-terminal direction. We demonstrate that chimera HN16, containing the transmembrane segments one to six and intermediate loops of Na(+),K(+)-ATPase, harbors the amino acids responsible for Na(+) specificity. Compared with Na(+),K(+)-ATPase, this chimera displayed a similar apparent Na(+) affinity, a lower apparent K(+) affinity, a higher apparent ATP affinity, and a lower apparent vanadate affinity in the ATPase reaction. This indicates that the E(2)K form of this chimera is less stable than that of Na(+),K(+)-ATPase, suggesting that it, like H(+),K(+)-ATPase, de-occludes K(+) ions very rapidly. Comparison of the structures of these chimeras with those of the parent enzymes suggests that the C-terminal 187 amino acids and the beta-subunit are involved in K(+) occlusion. Accordingly, chimera HN16 is not only a chimeric enzyme in structure, but also in function. On one hand it possesses the Na(+)-stimulated ATPase reaction of Na(+),K(+)-ATPase, while on the other hand it has the K(+) occlusion properties of H(+),K(+)-ATPase.  相似文献   

20.
KcsA: it's a potassium channel   总被引:6,自引:0,他引:6       下载免费PDF全文
Ion conduction and selectivity properties of KcsA, a bacterial ion channel of known structure, were studied in a planar lipid bilayer system at the single-channel level. Selectivity sequences for permeant ions were determined by symmetrical solution conductance (K(+) > Rb(+), NH(4)(+), Tl(+) > Cs(+), Na(+), Li(+)) and by reversal potentials under bi-ionic or mixed-ion conditions (Tl(+) > K(+) > Rb(+) > NH(4)(+) > Na(+), Li(+)). Determination of reversal potentials with submillivolt accuracy shows that K(+) is over 150-fold more permeant than Na(+). Variation of conductance with concentration under symmetrical salt conditions is complex, with at least two ion-binding processes revealing themselves: a high affinity process below 20 mM and a low affinity process over the range 100-1,000 mM. These properties are analogous to those seen in many eukaryotic K(+) channels, and they establish KcsA as a faithful structural model for ion permeation in eukaryotic K(+) channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号