首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Teratocarcinoma cells in culture offer an in vitro system for studying certain aspects of embryonic differentiation. To gain some insight into regulatory systems that might be operative during early development, we have characterized the alterations that occur in the hormonal responsiveness of the F9 embryonal carcinoma cell membrane adenylate cyclase with differentiation. Adenylate cyclase of F9 cells is stimulated in the presence of 10 μM GTP by calcitonin, prostaglandin E1, (?) isoproterenol, and epinephrine, while parathyroid hormone is only slightly effective. Of these active hormones, calcitonin is the most potent stimulator of cyclic AMP production. Exposure of F9 cells to retinoic acid induces differentiation to parietal endodermal cells. Basal, GTP-, and fluoride-stimulated adenylate cyclase activities show a progressive increase with the retinoic acid-induced change to the endodermal phenotype. Differentiation to the endodermal cell type markedly alters the adenylate cyclase response to calcitonin and parathyroid hormone; the cyclase of endodermal cells exhibits a low response to calcitonin while parathyroid hormone dramatically enhances cyclic AMP formation. Treatment of the retinoic acid-generated endodermal cells with dibutyryl cyclic AMP converts these cells to a type exhibiting neural-like morphology. The adenylate cyclase system of these cells is only stimulated by parathyroid hormone, prostaglandin E1, isoproterenol, and epinephrine. Calcitonin responsiveness has been lost in these cells. These variations in calcitonin and parathyroid hormone responsiveness suggest a possible regulatory role for these hormones during embryonic development. Further more, the results indicate that changes in adenylate cyclase hormonal responsiveness might serve as useful markers during early stages of differentiation.  相似文献   

2.
Teratocarcinoma cells in culture offer an in vitro system for studying certain aspects of embryonic differentiation. To gain some insight into regulatory systems that might be operative during early development, we have characterized the alterations that occur in the hormonal responsiveness of the membrane adenylate cyclase of different embryonal carcinoma cell lines with differentiation. Each undifferentiated embryonal carcinoma stem cell studied (F9, PCC4, PC13, P19) has an adenylate cyclase system predominantly activated by calcitonin. Of great interest is the fact that cAMP production is also enhanced specifically by calcitonin in an embryo-derived stem cell line. Differentiation of the embryonal carcinoma stem cell population toward parietal endoderm results in a decrease in calcitonin activation with a concomitant appearance of sensitivity to parathyroid hormone. Differentiation toward visceral endoderm is characterized by a lack of response of the adenylate cyclase system to both calcitonin and parathyroid hormone. These results indicate that the changes noted in adenylate cyclase hormonal responsiveness might serve as useful markers during early stages of differentiation.  相似文献   

3.
To determine possible ectopic production of, and altered responsiveness to, specific hormones and growth factors which may be involved in mediating embryonic differentiation and development embryonal carcinoma cells in culture have been employed to serve as an in vitro system of embryogenesis. Exposure of F9 embryonal carcinoma cells to all-trans-retinoic acid previously has been shown to induce differentiation of these undifferentiated stem cells to parietal endoderm and to markedly alter the ability of calcitonin and parathyroid hormone to stimulate adenylate cyclase activity. Evidence is presented that F9 cells secrete immunoreactive calcitonin into the culture medium (200 pg/12 hr/10(7) cells) while parietal yolk sac (PYS) cells secrete immunoreactive parathyroid hormone (800 pg/12 hr/10(7) cells). Retinoic-induced differentiation of F9 cells to endoderm results in a progressive reduction in immunoreactive calcitonin production, while there is an increase in the level of immunoreactive parathyroid hormone found in the conditioned medium. After exposure of F9 cells to retinoic acid for 5 days, little calcitonin is detectable in 12-hr conditioned medium. Changes in the intracellular levels of immunoreactive calcitonin and PTH follow a pattern similar to that noted for changes in the amount of secreted hormones. Thus, immunoreactive calcitonin is produced by undifferentiated F9 cells which possess a calcitonin responsive adenylate cyclase system, while parathyroid hormone is produced by parietal endoderm cells which respond to parathyroid hormone with increased cyclic AMP synthesis. Sephadex G50 gel filtration of F9-conditioned medium shows two peaks of immunoreactive calcitonin with Mr of 3500 and 20,000. Immunoprecipitation of calcitonin from 35S-labeled F9 cells reveals a specific band of 20,000 Mr. Likewise, two peaks of parathyroid hormone immunoreactive material of Mr 8000 and 39,000 are noted after gel filtration of PYS cell-conditioned medium, whereas parathyroid hormone immunoprecipitation from the same cells reveals a specific band of 39,000 Mr. These results raise the possibility that embryo production of these two hormones at specific stages in development may contribute to the regulation of subsequent steps of differentiation.  相似文献   

4.
5.
Calcitonin gene-related peptide (CGRP), expressed predominantly in F9 embryonal carcinoma cells, is both a potent chemotactic agent and an autocrine growth factor for these cells. We analyzed the effect of retinoic acid (RA)-induced differentiation of F9 cells into primitive parietal endoderm-like cells, on CGRP production and the CGRP responsiveness of these cells. Poly(A) RNA extracted from F9 cells and analysed by Northern blotting and hybridization with a CGRP probe showed a specific band of about 1200 bases corresponding to mature CGRP mRNA. This band was not detected in F9 cells treated for 6 days with RA (differentiated primitive parietal endoderm-like cells) or in PYS cells (established parietal endoderm-like cell line). During RA-induced differentiation of F9 cells, CGRP mRNA levels fell within 24 h after treatment and were almost undetectable after 2 days. RA treatment also reduced CGRP secretion by F9 cells; the effect was maximal at 3 days and remained stable thereafter. Similarly, RA rapidly reduced adenylate cyclase responsiveness to chicken CGRP (cCGRP) and human CGRP (hCGRP). An 80% fall in cAMP release into the culture medium in the presence of CGRP was observed after 24 h of RA treatment. These results demonstrate that RA rapidly abolishes the CGRP autocrine system involved in the proliferation of F9 cells, at the same time inducing their differentiation into primitive parietal endoderm. They point to the interaction between retinoic acid and growth factors in the regulation of cell proliferation and differentiation. J. Cell. Biochem. 64:447–457. © 1997 Wiley-Liss, Inc.  相似文献   

6.
7.
Calcium (Ca2+) ion concentrations that are achieved intracellularly upon membrane depolarization or activation of phospholipase C stimulate adenylate cyclase via calmodulin (CaM) in brain tissue. In the present study, this range of Ca2+ concentrations produced unanticipated inhibitory effects on the plasma membrane adenylate cyclase activity of GH3 cells. Ca2+ concentrations ranging from 0.1 to 0.8 microM exerted an increasing inhibition on enzyme activity, which reached a plateau (35-45% inhibition) at around 1 microM. This inhibitory effect was highly cooperative for Ca2+ ions, but was neither enhanced nor dependent upon the addition of CaM (1 microM) to EGTA-washed membranes. The inhibition was greatly enhanced upon stimulation of the enzyme by vasoactive intestinal peptide (VIP) and/or GTP. Prior exposure of cultured cells to pertussis toxin did not affect the inhibition of plasma membrane adenylate cyclase activity by Ca2+, although in these membranes, hormonal (somatostatin) inhibition was significantly attenuated. Maximally effective concentrations of Ca2+ and somatostatin produced additive inhibitory effects on adenylate cyclase. The addition of phosphodiesterase inhibitors demonstrated that inhibitory effects of Ca2+ were not mediated by Ca2(+)-dependent stimulation of a phosphodiesterase activity. These observations provide a mechanism for the feedback inhibition by elevated intracellular Ca2+ levels on cAMP-facilitated Ca2+ entry into GH3 cells, as well as inhibitory crosstalk between Ca2(+)-mobilizing signals and adenylate cyclase activity.  相似文献   

8.
A photoreactive analogue of vasopressin, [1-(3-mercapto)propionic acid, 8-(N6-4-azidophenylamidino)lysine]-vasopressin, was compared to salmon calcitonin and [8-arginine]-vasopressin with respect to stimulation of cAMP synthesis in the LLC-PK1 pig kidney epithelial cell line. Without photoactivation, the vasopressin analogue-elicited responses were identical to those induced by vasopressin, in that cAMP synthesis returned to the basal, unstimulated level about 4 h after hormonal treatment. In contrast, the levels of activation of cAMP-dependent protein kinase induced by salmon calcitonin returned to basal approx. 12 h after hormone addition. When activated by ultraviolet irradiation, the vasopressin analogue induced 'permanent' stimulation of adenylate cyclase, whereby cAMP production could be detected even 12.5 h after treatment. Both salmon calcitonin and the photoactivated vasopressin analogue inhibited growth of LLC-PK1 cells, in contrast to vasopressin or the nonactivated analogue. Growth inhibition appeared to be a consequence of the prolonged stimulation of adenylate cyclase. This conclusion was supported by the fact that a LLC-PK1 cell mutant in cAMP-dependent protein kinase was resistant to growth inhibition by salmon calcitonin and activated vasopressin analogue. The results imply that the cAMP-dependent protein kinase is the mediator of the hormone-stimulated growth inhibition.  相似文献   

9.
Normal rat kidney (NRK) cells growth arrested by picolinic acid and isoleucine deprivation exhibit an increased response to certain agents (i.e., prostaglandin E1, (?)-isoproterenol, and cholera toxin) which elevate intracellular cyclic AMP levels. The enhanced hormonal response is apparently due, at least in part, to increased adenylate cyclase activity. Adenylate cyclase activities measured in the presence of GTP, GTP plus prostaglandin E1, and GTP plus (?)-isoproterenol are increased two- to threefold in membranes prepared from treated cells. In contrast, basal activity is potentiated only 20 to 50% and activity determined in the presence of fluoride is only marginally altered. Also of interest is the increase in cholera toxin activation of cyclase activity in the treated cells. Lower concentrations of cholera toxin (5 ng/ml) are required to achieve maximal stimulation of cyclase activity from picolinic acid-treated and isoleucine-deprived cells; maximal stimulation of control cell adenylate cyclase is attained with 25 to 50 ng/ml cholera toxin. Picolinic acid treatment and isoleucine deficiency both have been shown to arrest NRK cell growth in the G1 phase of the cell cycle. However, results with cells arrested in G1 by serum starvation and by growth to high cell population density indicate that G1 specific growth arrest does not appear to account for the increase in hormonal responsiveness. Chelation of inhibitory metals and proteolytic activation also do not appear to be involved in the mechanism by which picolinic acid enhances cyclic AMP formation. Rather, the results suggest that the treated cells have an increased amount of an active GTP-dependent function required for hormone and cholera toxin stimulation of adenylate cyclase. Thus, picolinic acid treatment and isoleucine deprivation may provide a useful means of modulating the GTP-dependent step required to potentiate hormonal responsiveness.  相似文献   

10.
Calcitonin and calcitonin gene-related peptide stimulate adenylate cyclase activity and plasminogen activator production in cultured renal tubular LLC-PK1 cells. Salmon [125I]calcitonin and human [125I]calcitonin gene-related peptide bound specifically to the cells. Salmon [125I]calcitonin binding was reduced at lower concentrations of non-radioactive salmon calcitonin than of human calcitonin gene-related peptide. For the stimulation of adenylate cyclase activity and plasminogen activator production, the potency of salmon calcitonin was higher than that of human calcitonin and calcitonin gene-related peptide. In a subclone of LLC-PK cells lacking salmon calcitonin binding sites, no specific binding of [125I]CGRP occurred, and adenylate cyclase activity and plasminogen activator production was not increased by the peptides. Thus, in LLC-PK1 cells the stimulation of adenylate cyclase activity and plasminogen activator production by calcitonin gene-related peptide is probably mediated by the calcitonin receptor.  相似文献   

11.
Hormonal responsiveness of the adenylate cyclase system of cultured F9 teratocarcinoma cells was investigated. Of numerous hormones tested only calcitonin, (−)isoproterenol, and prostaglandin E1, stimulate F9 adenylate cyclase activity. Of the active hormones, calcitonin is the most potent stimulator of cAMP formation. Treatment of intact F9 cells with calcitonin results in a time- and hormone concentration-dependent increase in the intracellular concentration of cAMP. cAMP accumulation is enhanced within 5 min after addition of 60 nM synthetic salmon calcitonin to intact F9 cells. These results raise the possibility that calcitonin may play a regulatory role in early embryonic development.  相似文献   

12.
In intact reticulocytes, but not in fragmented membranes, the loss of adenylate cyclase activity during cell maturation followed a biphasic time course. A rapid phase (t1/2 approximately 2 h) during which the initial activity was reduced by 40-50% was followed by a slow phase with t1/2 close to 3 days. The fast decay seemed to occur on the adenylate cyclase level since (-)isoprenaline- or forskolin-stimulated activities behaved similarly and bacterial toxin-monitored Gs and Gi proteins remained stable. The mechanism of the initial decrease in hormonal responsiveness was further analysed in hybrid cells prepared by fusing reticulocytes with Friend erythroleukemia (MEL) cells. The hybrids contained reticulocyte-derived beta-adrenoceptors and MEL cell-derived adenylate cyclase and G proteins. Fusion of reticulocytes to native MEL cells caused adenylate cyclase activity to drop by 30% at 2 h and 45% at 18 h after fusion. By contrast, hybrids prepared after dimethylsulfoxide-induced differentiation of MEL cells showed stable or increasing rates of receptor-coupled cAMP formation between 2 and 18 h after fusion, concomitant with the enhanced activity of the Gs protein in these cells. A cyclase-stimulating factor present in the cytosol of MEL cells and of reticulocytes appeared not to be involved in short-term regulation of hormonal responsiveness. We conclude that the strength of beta-adrenergic responses in erythroid progenitor cells is primarily regulated by modulating G protein-mediated receptor cyclase coupling while reticulocytes, during early maturation, seem to rely on direct inactivation of adenylate cyclase, probably via a cytosolic proteolytic pathway.  相似文献   

13.
Interleukin 2 (IL-2) stimulated the differentiation of human peripheral blood leukocytes into lymphokine-activated killer cells, as well as DNA synthesis of human T lymphocytes. Both effects of IL-2 could be inhibited by prostaglandin E2, a potent stimulator of adenylate cyclase; however, the inhibitory effect of prostaglandin E2 could be overcome by increased concentrations of IL-2. The opposite effects of IL-2 and prostaglandin E2 were paralleled by their respective abilities to inhibit and stimulate cAMP production in intact cells. Other agents, which inhibit adenylate cyclase directly (somatostatin, beta-endorphin, UK 14.3041) or indirectly by activation of protein kinase C (phenylephrine), could stimulate both differentiation and proliferation. None of these agents alone or in combination were as effective as maximal concentrations of IL-2. However, all agents potentiated differentiation and proliferation induced by submaximal and maximal concentrations of IL-2. Additionally, combinations of agents which stimulated protein kinase C with those that inhibited adenylate cyclase were additive in the potentiation of IL-2-induced differentiation. Neither inhibition nor potentiation of IL-2-induced lymphokine-activated killer cell differentiation was accompanied by changes in Tac expression or gamma-interferon production. The data indicate that the stimulation of lymphokine-activated killer cell differentiation and lymphocyte proliferation in human cells share a common initial biochemical signal. Although the inhibition of adenylate cyclase is not sufficient to maximally stimulate either process and cannot bypass the requirement for IL-2, modulation of this enzyme complex, positively or negatively, can regulate the ultimate physiologic response to IL-2.  相似文献   

14.
NTERA-2 cl.D1 human embryonal carcinoma (EC) cells were induced to differentiate by either bromodeoxyuridine (BUdR) or hexamethylene bisacetamide (HMBA), and also by retinoic acid. Following exposure to each of these inducers, the globoseries glycolipid antigens stage-specific embryonic antigens -3 and -4 (SSEA-3 and -4) and the glycoprotein antigen TRA-1-60, all characteristic of the human EC cell surface, underwent a marked reduction in expression within about 7 days. At the same time, the lactoseries glycolipid antigen SSEA-1, and ganglioseries antigens A2B5 (GT3) and ME311 (9-0-acetyl GD3) were induced in BUdR- and retinoic acid-treated cells. However, these antigens did not appear during the first 7-14 days of HMBA-induced differentiation. The observations of cell surface antigen expression were paralleled by analysis of glycolipids isolated from the cells by thin-layer chromatography. This analysis, in which the new monoclonal antibodies VINIS-56 and VIN-2PB-22 were included, also revealed expression of gangliosides GD3 and GD2 in all differentiated cultures, albeit at much lower levels following HMBA exposure than following retinoic acid or BUdR-exposure. Further, disialylparagloboside was detected in retinoic acid and BUdR-induced, but not HMBA-induced, cultures. Taken with morphological observations, the results suggest that HMBA induces differentiation of NTERA-2 cl.D1 EC cells along a pathway distinct from the pathway(s) induced by retinoic acid and BUdR.  相似文献   

15.
Stimulation of basal adenylate cyclase activity in membranes of neuroblastoma x glioma hybrid cells by prostaglandin E1 (PGE1) is half-maximal and maximal (about 8-fold) at 0.1 and 10 microM respectively. This hormonal effect requires GTP, being maximally effective at 10 microM. However, at the same concentrations that stimulate adenylate cyclase in the presence of GTP, PGE1 inhibited basal adenylate cyclase activity when studied in the absence of GTP, by maximally 60%. A similar dual action of PGE1 was observed with the forskolin-stimulated adenylate cyclase, although the potency of PGE1 in both stimulating and inhibiting adenylate cyclase was increased and the extent of stimulation and inhibition of the enzyme by PGE1 was decreased by the presence of forskolin. The inhibition of forskolin-stimulated adenylate cyclase by PGE1 occurred without apparent lag phase and was reversed by GTP and its analogue guanosine 5'-[gamma-thio]triphosphate at low concentrations. Treatment of neuroblastoma x glioma hybrid cells or membranes with agents known to eliminate the function of the inhibitory GTP-binding protein were without effect on PGE1-induced inhibition of adenylate cyclase. The data suggest that stimulatory hormone agonist, apparently by activating one receptor type, can cause both stimulation and inhibition of adenylate cyclase, and that the final result depends only on the activity state of the stimulatory GTP-binding protein, Gs. Possible mechanisms responsible for the observed adenylate cyclase inhibition by the stimulatory hormone PGE1 are discussed.  相似文献   

16.
A photoreactive analogue of vasopressin, [1-(3-mercapto)propionic acid, 8-(N6-4-azidophenylamidino)lysine]-vasopressin, was compared to salmon calcitonin and [8-arginine]-vasopressin with respect to stimulation of cAMP synthesis in the LLC-PK1 pig kidney epithelial cell line. Without photoactivation, the vasopressin analogue-elicited responses were identical to those induced by vasopressin, in that cAMP synthesis returned to the basal, unstimulated level about 4 h after hormonal treatment. In contrast, the levels of activation of cAMP-dependent protein kinase induced by salmon calcitonin returned to basal approx. 12 h after hormone addition. When activated by ultraviolet irradiation, the vasopressin analogue induced ‘permanent’ stimulation of adenylate cyclase, whereby cAMP production could be detected even 12.5 h after treatment. Both salmon calcitonin and the photoactivated vasopressin analogue inhibited growth of LLC-PK1 cells, in contrast to vasopressin or the nonactivated analogue. Growth inhibition appeared to be a consequence of the prolonged stimulation of adenylate cyclase. This conclusion was supported by the fact that a LLC-PK1 cell mutant in cAMP-dependent protein kinase was resistant to growth inhibition by salmon calcitonin and activated vasopressin analogue. The results imply that the cAMP-dependent protein kinase is the mediator of the hormone-stimulated growth inhibition.  相似文献   

17.
Adenylate cyclase [ATP pyrophosphate lyase (cyclizing), EC 4.6.1.1] was shown to be present in cultured human articular chondrocytes. Optimal conditions of incubation time, protein and substrate concentrations and pH were determined in whole cell lysates. Maximal activity occurred at pH 8.5 with no decrease in activity up to pH 10.0. Adenylate cyclase activity of particulate membrane preparations was enhanced by the addition of crude cytosol preparations. The prostaglandins E1, E2, F1 alpha, F2 alpha, D2, B1, B2, A1 and A2, as well as adrenaline and isoprenaline, stimulated adenylate cyclase derived from either adult or foetal chondrocytes. No significant stimulation was observed in the presence of human calcitonin or glucagon. Bovine parathyroid hormone always significantly stimulated the adenylate cyclase derived from foetal chondrocytes, but not from adult chondrocytes. Preincubation of the chondrocytes in culture with indomethacin and with or without supernatant medium from cultured mononuclear cells increased the responsiveness of the adenylate cyclase to prostaglandin E1.  相似文献   

18.
We hypothesize that vasoactive intestinal peptide (VIP) promotes neural crest differentiation through VIP receptor type I (VPAC1). In order to test this hypothesis, SKNSH neuroblastoma cells were stably transfected with VPAC1 and receptor expression was verified by real-time RT-PCR. Overexpression of VPAC1 in SKNSH cells resulted in upregulation of endogenous retinoic acid receptor expression for both RARalpha and RXRalpha with no change in expression of RARbeta. Transfected cells demonstrated high affinity binding of VIP (K(D)=0.2 nM) and VIP-mediated stimulation of adenylate cyclase and a shift in cell cycle kinetics to a near triploid DNA index in G1. SKNSH/VPAC1 cells treated with VIP were observed to express a more differentiated phenotype compared to wild type cells as characterized by an increase in tissue transglutaminase II and a decrease in bcl-2 immunostaining. VIP-induced differentiation effects were potentiated by retinoic acid. This differentiation resulted in decreased proliferative potential in a xenograft model. Whereas, wild type SKNSH cells induced tumor growth in 100% of nude mice within 13 days post-injection, SKNSH transfected with VPAC1 demonstrated no tumor formation in xenografts followed for 6 months. Taken together, these data support the hypothesis that VIP modulation of neural crest differentiation is mediated via VPAC1 and that high expression of VPAC1 induces differentiation in and decreases tumorigenicity of neuroblastoma cells.  相似文献   

19.
Human embryonal carcinoma (EC) cells represent the stem cells of testicular germ cell tumours (TGCTs) and are morphologically, antigenically and functionally related to the stem cells of early mammalian embryos. Despite the large capacity for differentiation displayed by TGCT stem cells, little is known of the factors controlling their developmental potency. We have analyzed the differentiation elicited in NT2D1 human embryonal carcinoma (EC) cells by Bone Morphogenetic Proteins (BMPs) and compared it with that elicited by retinoic acid (RA). We have found that while RA induced expression of neuronal, endodermal and epithelial markers in NT2D1 human EC cells, treatment with BMPs resulted in a predominantly epithelial phenotype. We also provide evidence to suggest that at least some of the effects elicited by RA in human EC cells might be mediated through RA-induced expression of BMP-7. Thus BMPs may play an important role in specifying the type of differentiation arising from human multipotent stem cells. The manipulation of BMP signalling in human embryonic multipotent stem cells may therefore prove a useful approach in attempts to generate specific differentiated cell types in vitro, and loss of the malignant and/or transformed phenotype.  相似文献   

20.
The purpose of this work was to study vasoactive intestinal peptide (VIP) receptors and the adenylate cyclase response to VIP upon enterocytic differentiation of the human colon adenocarcinoma cell line Caco-2 in culture. The VIP-stimulated enzyme activity is very low, e.g. 20% above basal activity in undifferentiated cells (day 5) and is enhanced markedly at confluency reaching a maximum, e.g. 270%, above basal activity in fully differentiated cells (day 30). VIP potency is also slightly enhanced, the EC50 of VIP ranging from 0.31 nM at day 5 to 0.07 nM at day 30. Modifications of the adenylate cyclase system are not responsible for the development of VIP response. Indeed, forskolin-stimulated adenylate cyclase activity is unchanged during differentiation supporting no alteration of the enzyme catalytic subunit. The same holds true for NaF and guanosine 5'-(beta, gamma-imido)trisphosphate, indicating a constant activity of the guanine nucleotide regulatory unit which mediates hormonal stimulation of adenylate cyclase (Ns). This is further supported by the similar extent of cholera toxin-catalyzed [32P]ADP-ribosylation of the Ns protein that is observed during differentiation. In sharp contrast, a dramatic increase of VIP receptor concentration is observed ranging from 32 fmol/mg of protein at day 5 to 414 fmol/mg of protein at day 30. This is confirmed by affinity cross-linking experiments showing an increased specific incorporation of 125I-VIP in a major 66,000-dalton component during differentiation. A slight increase in receptor affinity is also observed during differentiation with Kd ranging from 0.39 nM at day 5 to 0.08 nM at day 30. These data indicate that one population of VIP receptors accumulates during Caco-2 cell differentiation, representing the crucial event in the development of adenylate cyclase response to the peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号