首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 536 毫秒
1.
Heterotrimeric GTP-binding proteins (G proteins) play an important role in phototransduction. The presence of G-protein subclasses has been reported in photoreceptive membranes, e.g., the Gi subgroup (transducin) in vertebrate rods, and the Gq subgroup in the eyes of the Arthropoda and the Mollusca. We examined the immunoreactivity and distribution of a Gq homologue in the cerebral ocelli of Perinereis brevicirris (Polychaeta, Annelida) using an anti-GqC antibody raised against a conserved sequence at the C-terminal of the alpha-subunit of Gq (Gq-alpha). The anti-GqC antibody labeled a 48-kDa band on the Western blot of proteins from the Perinereis ocelli. The anti-GtC antibody, which is raised against the C-terminal sequence of bovine transducin alpha-subunit (Gt-alpha), did not cross-react to the ocellar proteins of Perinereis. The rhabdomeric layers of the anterior and posterior ocelli were strongly labeled by anti-GqC on light-microscopic immunohistology. Immunoelectron microscopy showed that the Gq molecules were specifically localized in the photoreceptive membrane of the rhabdomeric microvilli. These results suggest that the Gq protein plays a role in the phototransduction of the Perinereis ocelli.  相似文献   

2.
The ultrastructure of the dorsal ocelli of two arctiid moths (Arctia caja (A. caja) and Creatonotos transiens (C. transiens) was investigated. The two ocelli are positioned laterally on the vertex of the head posterior to the antennae, close to the dorsal margin of the compound eyes. The biconvex corneal lens is located at the apex of a cone-shaped cuticular elevation, which encapsulates the retina. The corneagenous cell layer and the cup-like retina with about 100-130 receptor cells in A. caja (70-90 receptor cells in C. transiens) are adjoined proximally. The retina is completely enclosed by the perineurium and thus separated from the corneagenous cells and the surrounding hemolymph. Irregularly shaped rhabdomeres, consisting of densely packed microvilli, are present in the distal region of the receptor cells. Up to three cells may form a rhabdom. Thus a loose network of photoreceptive structures over the whole retina results. A unique feature of these arctiid ocelli are photoreceptor vacuoles containing microvilli. The function of these organelles is unknown. The rhabdomeric arrangement within the light and dark adapted retina differs considerably. The ultrastructure of the rhabdomeres indicates an intense membrane turnover. However, changes in adaptation state are not accompanied by dramatic changes in the photoreceptive area of an ocellus.  相似文献   

3.
 The inverse cerebral ocelli of the pelagosphera larva of Golfingia misakiana and of another unidentified larva are composed of two or three sensory cells and one supportive pigmented cell. The sensory cells bear an array of microvilli as well as a single cilium with poor undulation of its membrane; the photoreceptive organelles are regarded as the rhabdomeric type. A striking feature of these cells is the cores, which extend within the microvilli from the tip into the midregion of the cell. It is suggested that these structures are identical with the submicrovillar cisternae found in the cerebral inverse eyes of larvae of Polychaeta. The findings allow the conclusion that in the pelagosphera of the Sipuncula, contrary to the teleplanic veliger larvae of Gastropoda, a lengthy pelagic cycle is not correlated with the development of a ciliary photoreceptor. Additionally, it is assumed that the pigment cup ocelli in larvae of Sipuncula are homologous with the cerebral inverted pigment cup ocelli of larvae of Polychaeta. Accepted: 19 March 1997  相似文献   

4.
Abstract. No morphological clues on the amphipod head indicate the existence of ocelli. However, as in several isopod species studied so far, two rudimentary photoreceptors are integrated into the medio-dorsal part of the brain. This electron microscopical study of the photoreceptors is the first report on the presence of ocelli in amphipods. Each ocellus is made up of 3 receptor cells which contribute to the formation of a photoreceptive surface (the rhabdom) formed by tightly packed microvilli. The rhabdoms are twisted and irregular in outline. Membrane turnover is suggested by the presence of different kinds of lysosomes. Lacking dioptric lenses, these photoreceptors are not likely to be involved in image formation but may function as appraisers of ambient light intensity. Physiological and behavioral studies will, henceforth, have to take into account these unexpected ocelli, which may represent remnants of the naupliar eye.  相似文献   

5.
Summary The amount and distribution of the lysosomal enzyme acid phosphatase in light- and dark-adapted eyes of the brackish-water annelid Nereis limnicola were studied by standard cytochemical techniques. Precipitate from the acid phosphatase reaction was observed in Golgi-endoplasmic reticulum-lysosomal complexes, primary lysosomes, and secondary lysosomes, formed by fusion of primary lysosomes with phagocytic and pinocytic vesicles containing products of presumed rhabdomeric degradation. The acid phosphatase reaction occurred in these organelles in both sensory and supportive cells of both light- and darkadapted ocelli. Secondary lysosomes were more abundant in sensory cells of illuminated ocelli than in those maintained in the dark. Sparse reaction product was found in Golgi cisternae, none in rough endoplasmic reticulum. We suggest that the increase of lysosomal activity in light-adapted eyes is correlated with the breakdown of photosensory microvilli upon exposure to light. A diagram of our interpretation of recycling of photoreceptoral membrane in N. limnicola is presented.  相似文献   

6.
Summary Dark- and light-adapted ocelli of three seastars (Patina miniata, Leptasterias pusilla, Henricia leviuscula) were studied by transmission and scanning electron microscopy. In the dark-adapted state the process of each receptor cell is relatively devoid of clear vesicles. Numerous long microvilli arise from the tips and sides of the processes. Cilia from the sensory processes project into the lumen of an ocellus; they are unconnected to the microvilli. In light-adapted ocelli each process is filled with clear pinocytotic vesicles of varying size. The microvilli are now irregular. Many lie free in the lumen of an ocellus or within phagocytic vacuoles in the supportive and corneal cells. These findings are evidence of a microvillar (rhabdomeric) type of photoreceptor in seastars and of cyclic turnover of receptoral membrane.The authors are grateful to the U.S. Public Health Service for a grant-in-aid of research (EY02229), to the Electron Microscope Laboratory on the Berkeley campus for use of facilities, and to Carol T. Reed for assistance on preliminary studies  相似文献   

7.
Summary A Drosophila visual mutant rdgA has photoreceptive cells which degenerate gradually after eclosion. Fine structure of the retinular cells of rdgA KS60 and rdgA K014 was studied during early stages of degeneration to determine the initial morphological defects. The retinular cells of these two alleles showed the following structural abnormality within 1 day after eclosion: (1) rhabdomeres were small and irregular in shape; (2) cisternae of the rough endoplasmic reticulum were more numerous than those in normal retinular cells; (3) submicrovillar cisternae were absent; and (4) lysosomes were fewer than normal. Three-dimensional reconstruction of serial sections of the ommatidia showed that the degeneration of mutant rhabdomeres proceeds more rapidly in regions remote from the nuclei. These results suggest that the process of turnover of rhabdomeric microvilli is abnormal in rdgA. We also confirmed an increase of lysosomes and destruction of cellular organelles, as reported by previous investigators at more advanced stages of degeneration.  相似文献   

8.
Summary The brain ofPhascolosoma agassizii, a sipunculid worm, contains a pair of ocelli. Each ocellus lies at the inner end of the ocular tube, an invagination that connects the concavity of the ocellus with the anterior surface of the head. The cuticle which covers the epidermis of the worm extends into and lines the ocular tube. The cells of the neck of the tube are columnar and contain longitudinally oriented tonofilaments extending into microvilli that project into the cuticle in the tube. Cilia also project from the apices of these cells. Toward the base of the ocular tube are two kinds of columnar cells: supportive and photoreceptive. The supportive cells contain varying concentrations of melanin-like granules forming the pigmented component of the ocellus. Numerous longitudinally oriented tonofilaments in these cells extend into microvilli projecting into the cuticular layer. The photoreceptor cells, containing many microtubules, lie between the supportive cells and spread out at their tips giving off an irregular array of miorovilli, the presumed photoreceptors, and cilia. These photoreceptors are regarded as belonging to the rhabdomeric type, albeit cilia are present.This investigation was financed by grant number GM 10292 from the National Institute of General Medical Science.  相似文献   

9.
Summary The ocelli or eyes of the marine polyclad turbellarian Notoplana acticola are clustered on the paired dorsal nuchal tentacles and in two longitudinal bands lateral to the cerebral ganglion. The ocelli, studied by electron microscopy, were characterized as rhabdomeric and non-ciliary in origin. There are 60 to 80 ocelli per animal each enclosed in a fibrous capsule to which muscle fibers may attach. An ocellus consists of a pigmented eyecup into which 30 to 50 photoreceptor cells send dendritic processes through interruptions in or among pigment cell projections across the eyecup opening. The dendritic processes terminate in numerous long intertwined microvilli which fill the eyecup. The nucleated cell body of each photoreceptor cell lies outside the eyecup and projects an axonal process to the cerebral mass. Within the dendritic processes are observed mitochondria, ribosomes, neurotubules, multivesicular bodies, vesicles and vacuoles. The cell body contains smaller mitochondria, endoplasmic reticulum, ribosomes, vesicles and prominent Golgi complexes.After dark adaptation, there are some structural alterations in terms of swelling of microvilli, increased numbers of vacuoles associated with the microvilli and dendritic processes, and changes in the pigment cell projections.This work was supported by Grant No. GM 10292 from the U.S. Public Health Service to Professor Richard M. Eakin, Department of Zoology at the University of California, Berkeley, U.S.A., where this investigation was conducted during the author's sabbatical leave of absence from the University of Illinois, and by Grant No. 1 SO 1 FR 5369 from the U.S. Public Health Service to the University of Illinois at the Medical Center.I express appreciation to Professor Eakin for interesting discussions and generous hospitality to me as a guest in his laboratory, and to the John Simon Guggenheim Memorial Foundation for the Fellowship which I held during 1964–65. I thank Dr. John P. Marbarger, Director of the Aeromedical Laboratory for the electron microscope facilities used at the University of Illinois.  相似文献   

10.
Summary In order to study the synthesis and degradation processes of the photoreceptor membranes in the abalone, Nordotis discus, the localization of acyltransferase and acid hydrolase activities, respectively, were determined at the electron-microscopic level. Acyltransferase activity was localized on the cytoplasmic sides of thick (>10 nm) membranes of the following organelles: a few cisternae at the trans (or concave) side of Golgi apparatus, Golgi and probably related vesicles, short tubules, curved pentalaminar disks and limiting membranes of the phagosomal multivesicular bodies; all organelles were scattered in the peri- to supranuclear cytoplasm. The phospholipids, which are major components of the photoreceptor membrane, are considered to be synthesized by these membranes. Acid phosphatase activity was localized in the lumina of Golgi cisternae and vesicles, lysosomes, and smaller multivesicular and related bodies, but not in multilamellar bodies. The matrices of the larger multivesicular bodies and of the pigment granule complexes showed arylsulfatase activity. Vesiculated and autophagocytosed photoreceptor microvilli seemed to be degraded by acid hydrolases, forming multivesicular and related bodies. Supporting cells also showed acyltransferase and acid hydrolase activities.Abbreviations used in this Paper AcP acid phosphatase - ArS arylsulfatase - AT acyltransferase - ER endoplasmic reticulum - GERL Golgi-endoplasmic reticulum-lysosomal complex - MEB meshwork body - MLB multilamellar body - MVB multivesicular body - VLB vesiculolamellar body  相似文献   

11.
The evolution of photoreceptor cells and eyes in Metazoa is far from being resolved, although recent developmental and morphological studies provided strong evidence for a common origin of photoreceptor cells and existence of sister cell types in early metazoans. Photoreceptor cells are of two types, rhabdomeric and ciliary, depending on which part of the cells is involved in photoreception proper. A crucial point in understanding eye evolution is the explanation of the enormous structural diversity of photoreceptor cells and visual systems, given the general tendency for molecular conservation. One example of such diversity occurs in Annelida. In this taxon three types of photoreceptor cells exist: rhabdomeric, ciliary and phaosomous sensory cells. Whether the latter evolved independently or have been derived from one of the former cell types is still unresolved, since cilia and microvilli are found in these cells. These different photoreceptor cells are present in cerebral ocelli and eyes, in various ectopic ocelli and eyes situated in different places as well as in various photoreceptor-like sense organs. Whereas rhabdomeric cells mostly occur in connection with pigmented supportive cells, the other types are usually found with unpigmented supportive cells. Thus for the latter cells clear evidence for photoreception is still lacking in most cases. However, initial molecular-developmental investigations have shown that in fact ciliary photoreceptor cells exist within Annelida. Certain visual systems are only present during the larval phase and either replaced by the adult eyes or completely reduced during postlarval and adult stages. In the present paper the diversity of cerebral and extracerebral photoreceptor cells and ocelli as well as corresponding organs devoid of shading pigment is reviewed in Annelida.  相似文献   

12.
The retina and optic nerve of Strombus luhuanus were examined by transmission electron microscopy in order to provide an ultrastructural basis for their electrophysiological responses, described elsewhere. The retina exhibits a distinct rhabdomeric layer and layers of cell nuclei and neuropile. These layers are comprised predominantly of three cell types that can be readily distinguished on the basis of their shape, their nuclei and cytoplasmic inclusions such as vesicles and filaments. One type of cell, apparently a photoreceptor that depolarizes in response to photic stimulation, possesses a long distal segment with microvilli; such distal segments comprise the bulk of the rhabdomeric layer. A second cell type, which appears to be supportive in function, contains a bundle of tightly packed tonofilaments that extend across the retina from the capsule to the vitreous body; this cell is quite narrow except in the region near the rhabdomeric layer, where it is expanded and wraps around the other cell types. A third type of cell possesses many short microvilli that project from its apical end into the rhabdomeric layer; it may be a second type of photoreceptor or another type of neuron. The retina also contains bundles of cilia that appear to project from a possible fourth type of cell. The layer of neuropile contains numerous processes that exhibit a variety of vesicle types and structures generally associated with synapses; these appear to play a role in mediating inhibitory and excitatory interactions between the retinal neurons. The optic nerve exhibits two populations of fiber distinguishable on the basis of mean diameter. Fibers in these two populations apparently yield “on” and “off” discharges in response to photic stimulation of the eye.  相似文献   

13.
In addition to the pigmented ocelli, four different types of photoreceptor-like organs without shading pigment have been found in Saccocirrus papillocercus and S. krusadensis. The sensory cells of these presumed ocelli are either ciliary or rhabdomeric with ciliary rudiments. With the exception of the multicellular type-2 ocelli they are bicellular consisting of a sensory cell and a supportive cell. In each ocellus the supportive cell forms a thin cup-shaped envelope around the sensory elements. In the type-2 ocellus, 7 supportive cells form an ovoid cavity leaving openings through which dendritic processes of an equal number of sensory cells enter the cavity. The pigmented ocelli possess an ocellar cavity communicating with the exterior through a pore in the eyecup, ciliary rudiments in both sensory and supportive cell, and additional non-photoreceptive sensory cells in the opening of the eyecup. The sensory organs show characteristic differences between the two species, such as presence or absence of a particular type of ocellus (type 2 is absent in S. krusadensis, type 3 in S. papillocercus), number of cilia in type-4 ocelli, density of microvilli, number of non-photoreceptive sensory cells in the pore of the pigmented ocellus, etc. These differences provide important characters which can be used for discrimination either of species or of subgeneric taxa in Saccocirrus. The phylogenetic significance of the different photoreceptive organs is discussed.  相似文献   

14.
Summary Three dorsal ocelli are present inCaenis robusta (Ephemeroptera), Trichostegia minor, Agrypnia varia, andLimnephilus flavicornis (Trichoptera). The dioptric apparatus of the ocelli differs between the four species. InTrichostegia andAgrypnia a biconvex corneal lens is present, inLimnephilus the corneal lens is convexo-concave complemented by an underlying haemocoelic space, whereas a cellular vitreous body is found between the cuticle and the retinal layer in the ephemerid. In the three trichopteroid species the ocelli are surrounded by an array of longitudinally arranged tracheoles; inCaenis a layer of screening pigments is found in this position. In this species the rhabdoms formed by microvilli of neighbouring retinula cells have a randomly arranged meshwork pattern; in the three trichopteroid species the rhabdoms are isolated, built up of four retinula cells. Cells with basally situated nuclei and lamellar extensions between the retinular cells are found in the ocelli ofTrichostegia, Agrypnia, andLimnephilus.  相似文献   

15.
Cerebral and branchial eyes of serpulid polychaetes have been studied by electron microscopy for the first time. In one species both eye types possess a novel ultrastructure. The receptor cells of the simple cerebral ocelli are rhabdomeric and display a close structural and functional relationship between ciliary rootlets and mitochondria. The receptors of the compound branchial eyes contain both a rhabdom and a stack of photosensitive ciliary membranes.  相似文献   

16.
The lateral ocelli of Scolopendra cingulata and Scolopendra oraniensis were examined by electron microscopy. A pigmented ocellar field with four eyes arranged in a rhomboid configuration is present frontolaterally on both sides of the head. Each lateral ocellus is cup-shaped and consists of a deeply set biconvex corneal lens, which is formed by 230–2,240 cornea-secreting epithelial cells. A crystalline cone is not developed. Two kinds of photoreceptive cells are present in the retinula. 561–1,026 cylindrical retinula cells with circumapically developed microvilli form a large distal rhabdom. Arranged in 13–18 horizontal rings, the distal retinula cells display a multilayered appearance. Each cell layer forms an axial ring of maximally 75 rhabdomeres. In addition, 71–127 club-shaped proximal retinula cells make up uni- or bidirectional rhabdomeres, whose microvilli interdigitate. 150–250 sheath cells are located at the periphery of the eye. Radial sheath cell processes encompass the soma of all retinula cells. Outside the eye cup there are several thin layers of external pigment cells, which not only ensheath the ocelli but also underlie the entire ocellar field, causing its darkly pigmented. The cornea-secreting epithelial cells, sheath cells and external pigment cells form a part of the basal matrix extending around the entire eye cup. Scolopendromorph lateral ocelli differ remarkably with respect to the eyes of other chilopods. The dual type retinula in scolopendromorph eyes supports the hypothesis of its homology with scutigeromorph ommatidia. Other features (e.g. cup-shaped profile of the eye, horizontally multilayered distal retinula cells, interdigitating proximal rhabdomeres, lack of a crystalline cone, presence of external pigment and sheath cells enveloping the entire retinula) do not have any equivalents in scutigeromorph ommatidia and would, therefore, not directly support homology. In fact, most of them (except the external pigment cells) might be interpreted as autapomorphies defining the Pleurostigmophora. Certain structures (e.g. sheath cells, interdigitating proximal rhabdomeres, discontinuous layer of cornea-secreting epithelial cells) are similar to those found in some lithobiid ocelli (e.g. Lithobius). The external pigment cells in Scolopendra species, however, must presently be regarded as an autapomorphy of the Scolopendromorpha.  相似文献   

17.
Summary Aberrations of photoreceptor ultrastructure resulting from carotenoid/retinoid (vitamin A) deprivation were studied in the retina of Manduca sexta. The syndrome of chromophore deficiency included hypertrophy of smooth endoplasmic reticulum, variable dilation of rhabdomeric microvilli, the insertion of endomembrane fingers into such enlarged microvilli, and the formation of rhabdomeric vacuoles, intracellular compartments containing microvilli similar to those of the rhabdomere. Retinas were processed either with conventional procedures employing preliminary aldehyde fixation followed by heavy metal postfixation, or by fixation and incubation in unbuffered OsO4. The latter method deposits osmium throughout the endomembrane system, within the rhabdomeric vacuoles, and in the extracellular space of the rhabdom. However, the intravillous fingers were rarely impregnated with osmium, despite their continuity with densely stained cisternae of the smooth endoplasmic reticulum. We suggest that the insertion of endomembrane fingers into dilated microvilli results from a cytoskeleton-mediated link between cisternae of the smooth endoplasmic reticulum and the rhabdomeric membrane, an association that may be important in the turnover of photoreceptor membrane. We interpret endomembrane hypertrophy and development of rhabdomeric vacuoles as symptoms of disturbance in the pathway leading to the assembly of the rhabdomere resulting from reduced synthesis of visual pigment.  相似文献   

18.
The phospholipase C (PLC) pathway is the major signaling mechanism of photoactivation in invertebrate photoreceptors. Here we report the cloning of a cDNA encoding a 140-kDa retinal PLC that is uniquely expressed in squid photoreceptors. This cDNA encodes a protein with multiple distinct modular domains: PH, X and Y catalytic, and C2 domains, as well as G- and P-box motifs and two GTP/ATP binding motifs. The PLC was stimulated by activated squid Gq alpha but not by squid Gq beta gamma or mammalian beta gamma subunits. The PLC was inhibited by monophosphate, diphosphate and triphosphate nucleotides but not cyclic nucleosides. We also tested the ability of PLC-140 to regulate the GTPase activity of Gq alpha in the rhabdomeric membranes. Depletion of PLC-140 from the rhabdomeric membranes decreased the GTP hydrolysis but not GTP gamma S binding to the membranes. Reconstitution of purified PLC-140 with membranes accelerated Gq alpha GTPase activity by fivefold at a concentration of 2.5 microM. Our data suggest that PLC-140 plays an important role in both the activation and inactivation pathways of invertebrate visual transduction.  相似文献   

19.
A pair of spherical unpigmented ocelli in addition to pigmented eyes have been observed in the anterior part of the prostomium in larvae of more than 40 species of Spionidae examined alive with light microscopy. Ocelli become visible in larvae at the one- to three-segment stage, increase in size as growth proceeds, and probably disintegrate in the course of metamorphosis because they were not observed in adults and settled juveniles. One pair of transparent, spherical bodies is also found in the anterior part of the head of planktotrophic pelagosphera larvae of Sipuncula. These bodies are in a similar position and have a similar appearance and size to unpigmented ocelli in Spionidae larvae. A pair of epidermal invaginations, densely covered with short cilia, is also observed antero-laterally in the head in pelagospheras of one species. These invaginations appear similar to the nuchal organs present in many polychaete larvae. Photoreceptive organs so far reported for sipunculan larvae comprise only pigmented eyes. Unpigmented ocelli and nuchal organs have never been reported in pelagospheras. Further ultrastructural investigations on sipunculan larvae are encouraged to clarify the composition, function and morphogenesis of transparent, spherical bodies and ciliated invaginations in the anterior part of the head. Such investigations may help to better understand the nature of photoreceptive structures and nuchal organs in Sipuncula, and also contribute to phylogenetic hypotheses regarding relationships of the Sipuncula and Annelida.  相似文献   

20.
In free-living Plathelminthes, the best-known photoreceptors are pigment-cup ocelli, eyes formed of one or several pigmented supportive cells into whose cup-shaped cavity project the light-sensitive elements of one or several sensory cells. Besides these, so-called Sehkolben, photoreceptors lacking pigment granules, are found in some species. Sensory cells in plathelminth photoreceptors most commonly use microvilli as the light-sensitive organelles, but some use cilia and combinations of microvilli and cilia. Lamellate ciliary bodies with cilia whose membranes are strongly flattened and rolled and pericerebral ciliary aggregations with interwoven cilia protruding into an intracellular cavity are likely photoreceptors in that they show amplification of membrane likely to bear photoreceptive pigments. Cells with ballooned cilia and tubular vacuoles are other differentiations to which light-sensitivity has been attributed. A variety of structures serve as lenses, all usually formed from parts of the pigment cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号