首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Suspensions of log phase cells ofRhodospirillum rubrum at pH 5.5 show a light-induced decrease in the pH of the medium which is reversed during the subsequent dark period. The velocity and magnitude of the pH change were the same whether the cells were bubbled with air, CO2-free air or N2 during experimentation. The pH response is temperature dependent. Phenazine methyl sulfate (PMS) at concentrations above 0.05mm stimulates the light-induced pH change. PMS at 1mm gives a 2-fold increase in the initial rate upon illumination and a 1.5-fold increase in the total change in pH after 2 min of illumination. The inhibition of the proton transport by 10 g/ml antimycin A or 20 m 2-n-heptyl-4-hydroxyquinoline-N-oxide can be partially relieved by PMS. However, inhibition of the light-induced proton transport with 0.5mm 2,4-dinitrophenol or 3 m carbonylcyanide-m-chlorophenylhydrazone (CCCP) cannot be overcome by addition of PMS. Valinomycin, at a concentration of 3 m, caused a slight stimulation of the light-induced proton transport in the presence of 200mm KCl. The inhibition of proton transport by 3 m CCCP was partially relieved with 3 m valinomycin in the presence of 200mm KCl, but the antibiotic was without effect when the cells were suspended in 200mm NaCl. The results are discussed in terms of current theories of the action of PMS, antimycin A, valinomycin, and uncouplers on the light-induced electron flow and photophosphorylation inR. rubrum.  相似文献   

2.
Summary Paired toad urinary bladders were prepared without or with an osmotic gradient (175 mosm) across them, stimulated for 2.5 (n=6), 5 (n=6), 30 (n=6) or 60 (n=6) min with ADH (20 mU/ml), and studied by freeze-fracture electron microscopy. Water permeability at these times was assessed in additional bladders (n=6 for each case) after tissue fixation according to the technique of Eggena. After both 60 and 30 min of ADH stimulation, the presence of a gradient compared with the absence of one was associated with fewer aggregates (242±35vs. 382±14 ×235 m–2 at 60 min,P<0.01; 279±36vs. 470±51 ×235 m–2 at 30 min,P<0.01) and lower water permeability (8.4±1.1vs. 18.8±1.8g×min–1×cm–1 ×mosm –1 at60min,P<0.005; 9.2±1.0vs. 22.0±2.1 g ×min–1×cm–2×mosm –1 at 30 min,P<0.001). In addition, with a gradient both maximum water permeability and maximum aggregate frequency were reached nearly together; a similar correspondence occurred without a gradient. We conclude that in the presence of an osmotic gradient both the ADH-associated aggregates and the water permeability response to ADH are prevented from reaching the higher levels observed in bladders not exposed to a gradient.  相似文献   

3.
Summary Proteolipids extracted from bovine kidney plasma membrane induce irreversible changes in the electrical properties of lipid bilayers formed from diphytanoyl phosphatidylcholine. The interaction with the proteolipid produces channels which are cation selective. At low protein concentrations (i.e., <0.6 g/ml), the single-channel conductance is approximately 10 pS in 100mm KCl and 3 pS in 100mm NaCl. In the presence of protein concentrations above 1 g/ml, another population of channels appears. These channels have a conductance of about 100 pS in 100mm KCl and 30 pS in 100mm NaCl. Further, these channels are voltage dependent in KCl, closing when the voltage is clamped at values 30 mV. The steady-state membrane conductance, measured at low voltages, was found to increase proportional to a high power (2–3) of the proteolipid concentration present in one of the aqueous phases. In 100mm NaCl, the conductance increases at protein concentrations above 5 g/ml, whereas in 100mm KCl in increases at protein concentrations above 0.6 g/ml. These measurements indicate that the higher steady-state conductance observed in KCl at a given proteolipid concentration in a multi-channel membrane presumably results because more channels incorporate in the presence of KCl than in the presence of NaCl.The two major fractions which comprise the proteolipid complex were also tested on bilayers. It was found that both fractions are required to produce the effects described.  相似文献   

4.
Summary The effects of local anesthetics on the topology of aminophospholipids and on the release and uptake of dopamine in rat brain synaptosomes have been examined. A metabolically intact preparation of synaptosomes was prepared which maintains aminophospholipid asymmetry and the capacity for sodium-driven uptake and depolarization-dependent release of dopamine. Incubation of synaptosomes with local anesthetics at 37°C induced perturbations in the topology of aminophospholipids as determined by their reactivities to the covalent probe trinitrobenzenesulfonic acid. The reaction of trinitrobenzenesulfonate with phosphatidylethanolamine and phosphatidylserine was inhibited 10–20% by low concentrations of tetracaine (1–100 m) and enhanced by high concentrations (0.3–1.0mm). Other local anesthetics showed a similar biphasic effect with a potency order of dibucaine>tetracaine>lidocaineprocaine. K+-stimulated, Ca2+-dependent release of [3H]dopamine was inhibited significantly at low concentrations of tetracaine (1–10 m) but enhanced at higher concentrations (0.1–1.0mm). Dibucaine and procaine had a similar biphasic effect on the dopamine release. For each of the local anesthetics tested, the inhibition of the reaction of phosphatidylethanolamine and phosphatidylserine with trinitrobenzenesulfonate occurred at concentrations which were shown also to inhibit the release of [3H]dopamine. Local anesthetics were shown to inhibit uptake of [3H]dopamine with a potency order which reflects their potency in producing anesthesia. The inhibition of dopamine uptake by dibucaine, tetracaine, lidocaine, or procaine was characterized by inhibitory constants (K I ) of 1.8±0.4 m, 27±5 m, 190 m and 0.5mm, respectively.Abbreviations TNBS 2,4,6-trinitrobenzene sulfonate - PE phosphatidylethanolamine - PS phosphatidylserine - ESR electron spin resonance - TLC thin-layer chromatography - DA dopamine  相似文献   

5.
Summary Oxalate-supported Ca accumulation by the sarcoplasmic reticulum (SR) of chemically skinned mammalian skeletal muscle fibers is activated by MgATP and Ca2+ and partially inhibited by caffeine. Inhibition by caffeine is greatest when Ca2+ exceeds 0.3 to 0.4 m, when free ATP exceeds 0.8 to 1mm, and when the inhibitor is present from the beginning of the loading period rather than when it is added after Ca oxalate has already begun to precipitate within the SR. Under the most favorable combination of these conditions, this effect of caffeine is maximal at 2.5 to 5mm and is half-maximal at approximately 0.5mm. For a given concentration of caffeine, inhibition decreases to one-half of its maximum value when free ATP is reduced to 0.2 to 0.3mm. Varying free Mg2+ (0.1 to 2mm) or MgATP (0.03 to 10mm) has no effect on inhibition. Average residual uptake rates in the presence of 5mm caffeine atpCa 6.4 range from 32 to 70% of the control rates in fibers from different animals. The extent of inhibition in whole-muscle homogenates is similar to that observed in skinned fibers, but further purification of SR membranes by differential centrifugation reduces their ability to respond to caffeine. In skinned fibers, caffeine does not alter the Ca2+ concentration dependence of Ca uptake (K 0.5, 0.5 to 0.8 m; Hilln, 1.5 to 2.1). Reductions in rate due to caffeine are accompanied by proportional reductions in maximum capacity of the fibers, and this configuration can be mimicked by treating fibers with the ionophore A23187. Caffeine induces a sustained release of Ca from fibers loaded with Ca oxalate. However, caffeine-induced Ca release is transient when fibers are loaded without oxalate. The effects of caffeine on rate and capacity of Ca uptake as well as the sustained and transient effects on uptake and release observed under different conditions can be accounted for by a single mode of action of caffeine: it increases Ca permeability in a limited population of SR membranes, and these membranes coexist with a population of caffeine-insensitive membranes within the same fiber.  相似文献   

6.
Summary To study Cl conductive and cotransport mechanisms, primary cultures of canine tracheal cells were grown to confluency on thin glass cover slips and on porous filters. Transepithelial resistance was >100 ·cm2, and short circuit current (I sc=2–20 A/cm2), representing active secretion of Cl, increased >threefold with addition of 10 m isoproterenol to the serosal solution. Cells made transiently permeable in hypotonic solution were loaded with the Cl-sensitive fluorophore 6-methoxy-N-(3-sulfopropyl) quinolinium (SPQ) (5mm, 4 min, 150 mOsm). The electrical properties of the cell monolayers were not altered by the loading procedure. Intracellular SPQ fluorescence was monitored continuously by epifluorescence microscopy (excitation 360±5 nm, emission>410 nm). SPQ leakage from the cells was <10% in 60 min at 37°C. Intracellular calibration of SPQ fluorescencevs. [Cl] (0–90mm) was carried out using high-K buffers containing the ionophores nigericin (5 m) and tributyltin (10 m); SPQ fluorescence was quenched with a Stern-Volmer constant of 13m –1. Intracellular Cl activity was 43±4mm. Cl flux was measured in response to addition and removal of 114mm Cl from the bathing solution. Addition of 10 m isoproterenol increased Cl efflux from 0.10 to 0.27mm/sec. The increase was inhibited by the Cl-channel blocker diphenylamine-2-carboxylic acid (1mm). In the absence of isoproterenol, removal of external Na or addition of 0.5mm furosemide, reduced Cl influx by >fourfold. In ouabain-treated monolayers, removal of external K in the presence of 5mm barium diminished Cl influx by >twofold, suggesting that Cl entry is in part K dependent. These results establish an accurate optical method for the realtime measurement of intracellular Cl activity in tracheal cells that does not require an electrically tight cell monolayer. The data demonstrate the presence of an isoproterenol-regulated Cl channel and a furosemide-sensitive cation-coupled transport mechanism.  相似文献   

7.
Summary The sulfhydryl reagent 5, 5-dithiobis (2-nitrobenzoic acid) (DTNB) was used to study the functional role of an exofacial sulfhydryl group on the human erythrocyte hexose carrier. Above 1mm DTNB rapidly inhibited erythrocyte 3-O-methylglucose influx, but only to about half of control rates. Efflux was also inhibited, but to a lesser extent. Uptake inhibition was completely reversed by incubation and washing with 10mm cysteine, whereas it was only partially reduced by washing in buffer alone, suggesting both covalent and noncovalent interactions. The covalent thiol-reversible reaction of DTNB occurred on the exofacial carrier, since (i) penetration of DTNB into cells was minimal, (ii) blockade of potential uptake via the anion transporter did not affect DTNB-induced hexose transport inhibition, and (iii) DTNB protected from transport inhibition by the impermeant sulfhydryl reagent glutathione-maleimide-I. Maltose at 120mm accelerated the covalent transport inhibition induced by DTNB, whereas 6.5 m cytochalasin B had the opposite effect, indicating under the one-site carrier model that the reactive sulfhydryl is on the outward-facing carrier but not in the substrate-binding site. In contrast to glutathione-maleimide-I, however, DTNB did not restrict the ability of the carrier to reorient inwardly, since it did not affect equilibrium cytochalasin B binding. Thus, carrier conformation determines exposure of the exofacial carrier sulfydryl, but reaction of this group may not always lock the carrier in an outward-facing conformation.  相似文献   

8.
Summary Mitochondrial -glycerol phosphate dehydrogenase is an important enzyme, but it is difficult to extract and purify. We have measured the activity of this enzyme in single type IIA skeletal muscle fibres under initial rate conditions by microdensitometry of the formazan reaction product.The Km (1.6mm) for the substrate (l--glycerol phosphate) was lower than reported for the extracted enzyme. Further, at low substrate concentrations (3mm), the enzyme was allosterically activated by free Ca2+ concentrations of 1 m or greater, and half-maximal stimulation occurred at 0.3 m free Ca2+. In the absence of Ca2+, there was negative cooperativity of substrate binding with a Hill constant of 0.57, but no cooperativity occurred in the presence of calcium. ATP (10mm) inhibited enzyme activity in the presence of Ca2+ but not in its absence.  相似文献   

9.
Summary Net K movements in reconstituted human red cell ghosts and the resealing of ghosts to cations after osmotic hemolysis of red cells have been studied as functions of the free Ca ion concentration. The Ca-dependent specific increase in K permeability was shown to be mediated by a site close to the internal surface of the membrane with an apparent dissociation constant at pH 7.2 for Ca (K D1) of 3–5×10–7 m, for Sr of 7×10–6 m. Ba and Mg did not increase the K-permeability of the membrane but inhibited the Ca-mediated permeability changes.K D1 decreased in a nonlinear fashion when the pH was increased from 6.0 to 8.5. Two different pK values of this membrane site were found at pH 8.3 and 6.3. The Ca-activated net K efflux into a K-free medium was almost completely inhibited by an increase in intracellular Na from 4 to 70mm. Extracellular K antagonized this Na effect. Changes in the extracellular Na (0.1–140mm) or K(0.1–6mm) concentrations had little effect and did not changeK D1. The Ca-stimulated recovery of a low cation permeability in ghost cells appeared to be mediated by a second membrane site which was accessible to divalent cations only during the process of hemolysis in media of low ionic strength. The apparent dissociation constant for Ca at this site (K D2) varied between 6×10–7 and 4×10–6 m at pH 7.2. Mg, Sr, and Ba could replace Ca functionally. The selectivity sequence was Ca>Sr>Ba>Mg.K D2 was independt on the pH value in the range between 6.0 and 8.0. Hill coefficients of 2 were observed for the interaction of Ca with both membrane sites suggesting that more than one Ca ion is bound per site. The Hill coefficients were affected neither by the ion composition nor by the pH values of the intra- and extracellular media. It is concluded that two different pathways for the permeation of cations across the membrane are controlled by membrane sites with high affinities for Ca: One specific for K, one unspecific with respect to cations. The K-specific channel has properties similar to the K channel in excitable tissues.  相似文献   

10.
Summary Heavy sarcoplasmic reticulum vesicles derived from the terminal cisternae of the sarcoplasmic reticulum have been shown to contain endogenous protein kinase activity and associated substrate proteins. Heavy vesicles were phosphorylated at room temperature in 5mm MgCl2, 1mm EGTA, 10mm HEPES (pH 7.4) and 10 m -32P-ATP.32P-phosphoproteins were determined by sodium dodecyl sulphate gel electrophoresis and autoradiography. In the absence of ethylene glycol bis (-aminoethyl ether) N,N,N,N-tetraacetic acid (EGTA), there was little phosphorylation due to the high level of ATPase activity. Phosphorylation of three proteins of 64,000 daltons (E1), 42,000 daltons (E2), and 20,000 daltons (E3) was observed in the presence of 1mm EGTA. Phosphorylation of these proteins wascAMP-independent, hydroxylamine-resistant, and was seen without the addition of protein kinase. In the presence of HgCl2 (2.5mm) or sodium deoxycholate (1%) no protein phosphorylation was observed. ProteinE1 was heavily phosphorylated in the presence of 200mm KCl, while its phosphorylation was inhibited by 20 m sodium dantrolene, an inhibitor of Ca2+ release. PhosphoproteinE3 was found in light and heavy sarcoplasmic reticulum vesicles whileE1 andE2 were found only in heavy vesicles. The phosphoproteinE2 had the properties of an intrinsic membrane protein while the proteinE1 bejaved as an extrinsic membrane protein. ProteinsE2 andE3 corresponded in mobility to minor sarcoplasmic reticulum proteins whileE1 had the same mobility as calsequestrin. The presence of high calcium (5mm) during electrophoresis caused calsequestrin to run at a lower molecular weight (56,000 instead of 64,000 daltons), and correspondingly the phosphoproteinE1 ran at a lower molecular weight. Finally, calsequestrin purified by a double gel electrophoresis method has been shown to be phosphorylated.  相似文献   

11.
Summary Isolated taste receptor cells from the frog tongue were investigated under whole-cell patch-clamp conditions. With the cytosolic potential head at –80 mV, more than 50% of the cells had a stationary inward Na current of 10 to 700 pA in Ringer's solution. This current was in some cells partially, in others completely, blockable by low concentrations of amiloride. With 110mm Na in the external and 10mm Na in the internal solution, the inhibition constant of amiloride was (at –80 mV) near 0.3 m. In some cells the amiloride-sensitive conductance was Na specific; in others it passed both Na and K. The Na/K selectivity (estimated from reversal potentials) varied between 1 and 100. The blockability bysmall concentrations of amiloride resembled that of channels found in some Na-absorbing epithelia, but the channels of taste cells showed a surprisingly large range of ionic specificities. Receptor cells, whichin situ express these channels in their apical membrane, may be competent to detect the taste quality salty. The same cells also express TTX-blockable voltage-gated Na channels.  相似文献   

12.
Summary Marine mussels can accumulate amino acids from seawater into the epithelial cells of the gill against chemical gradients in excess of 5×106 to 1. Uptake of both alanine and taurine into gill tissue isolated fromMytilus californianus was found to be dependent upon Na+ in the external solution. Uptake of these amino acids was described by Michaelis-Menten kinetics, and a reduction in external [Na+] (from 425 to 213mm) increased the apparent Michaelis constants (alanine, from 8 to 17 m; taurine, from 4 to 39 m) without a significant influence on theJ max's of these processes. Fivemm harmaline, an inhibitor of Na-cotransport processes in many systems, reduced both alanine and taurine uptake by more than 95%; this inhibition appeared to be competitive in nature, with an apparentK i of 43 m for the interaction with alanine uptake. Increasing the external [Na+] from 0 to 510mm produced a sigmoid activation of alanine and taurine uptake withK Na's of approximately 325mm. The apparent Hill coefficients for this activation were 7.3 and 7.4 for alanine and taurine, respectively. These data are consistent with uptake mechanisms which require comparatively high concentrations of Na+ to activate transport, and which couple several Na+ ions to the transport of each amino acid. These characteristics, in conjunction with the previously demonstrated low passive permeability of the apical membrane to amino acids, result in systems capable of i) accumulating amino acids from seawater to help meet the nutritional needs of this animal, and ii) maintaining the high intracellular amino-acid concentrations associated with volume regulation in the gill.  相似文献   

13.
Agaricus bisporus glutamine synthetase, a key enzyme in nitrogen metabolism, was purified to apparent homogeneity. The native enzyme appeared to be a GS-II type enzyme. It has a molecular weight of 325 kDa and consists of eight 46-kDa subunits. Its pI was found at 4.9. Optimal activity was found at 30°C. The enzyme had low thermostability. Stability declined rapidly at temperatures above 20°C. The enzyme exhibits a K m for glutamate, ammonium, and ATP of 22mm, 0.16mm and 1.25mm respectively in the biosynthetic reaction, with optimal activity at pH 7. The enzyme is slightly inhibited by 10mm concentrations of l-alanine, l-histidine, l-tryptophan, anthranilic acid, and 5-AMP and was strongly inhibited by methionine sulfoximine and phosphinothricine. For the transferase reaction K i-values were 890 m and 240 m for methionine sulfoximine and phosphinothricine respectively. For the biosynthetic reaction K i was 17 m for both methionine sulfoximine and phosphinothricine.  相似文献   

14.
Summary Cyclic AMP (300µ m) activates phosphofructokinase from dialyzed haemolysates of mature rat erythrocytes. The main conclusions are: a) Cyclic AMP, at pH 7.1 and low concentrations of fructose-6-phosphate, is able to reverse the inhibition produced by different amounts of ATP (up to 1.5mm). b) The cyclic nucleotide is a positive allosteric effector of the enzyme as shown by the displacement of sigmoidal fructose-6-phosphate saturation curve to hyperbolic kinetics in the presence of inhibitory concentrations (1.5mm) of ATP. c) Cyclic AMP has no significant influence as deinhibitor of phosphofructokinase either at pH 7.1 and non-inhibitory levels (0.25mm) of ATP or at pH 8.1 and inhibitory (1.5mm) of non-inhibitory (0.25mm) concentrations of ATP. Similar conclusions were obtained with 300µ m AMP but not at a lower concentration (3µ m) with both nucleotides.The comparison of cyclic AMP results with those obtained under similar concentrations of AMP suggest that cyclic AMP is really only an in vitro modulator of the enzyme from rat erythrocytes, presumably at an AMP regulatory site, since non-physiological concentrations are required to act as deinhibitor.  相似文献   

15.
A number of N- and C-terminal deletion and point mutants of bovine -1,4 galactosyltransferase (-1,4GT) were expressed inE. coli to determine the binding regions of the enzyme that interact withN-acetylglucosamine (NAG) and UDP-galactose. The N-terminal truncated forms of the enzyme between residues 1–129, do not show any significant difference in the apparentK ms toward NAG or linear oligosaccharide acceptors e.g. for chitobiose and chitotriose, or for the nucleotide donor UDP-galactose. Deletion or mutation of Cys 134 results in the loss of enzymatic activity, but does not affect the binding properties of the protein either to NAG- or UDP-agarose. From these columns the protein can be eluted with 15mm NAG and 50mm EDTA, like the enzymatically active protein, TL-GT129, that contains residues 130–402 of bovine -1,4GT. Also the N-terminus fragment, TL-GT129NAG, that contains residues 130–257 of the -1,4GT, binds to, and elutes with 15mm NAG and 50mm EDTA from the NAG-agarose column as efficiently as the enzymatically active TL-GT129. Unlike TL-GT129, the TL-GT129NAG binds to UDP-columns less efficiently and can be eluted from the column with only 15mm NAG. The C-terminus fragment GT-257UDP, containing residues 258–402 of -1,4GT, binds tightly to both NAG- and UDP-agarose columns. A small fraction, 5–10% of the bound protein, can be eluted from the UDP-agarose column with 50mm EDTA alone. The results show that the binding behaviour of N- and C-terminal fragments of -1,4GT towards the NAG- and UDP-agarose columns differ, the former binds preferentially to NAG-columns, while the latter binds to UDP-agarose columns via Mn2+.  相似文献   

16.
    
Filamentous fungi are capable of secreting relatively large amounts of heterologous recombinant proteins. Recombinant human glycoproteins expressed in this system, however, carry only carbohydrates of the oligomannose type limiting their potential use in humans. One approach to the problem is genetic engineering of the fungal host to permit production of complex and hybrid N-glycans. UDP-GlcNAc:3-d-mannoside -1,2-N-acetylglucosaminyltransferase I (GnT I) is essential for the conversion of oligomannose to hybrid and complex N-glycans in higher eukaryotic cells. Since GnT I is not produced by fungi, we have introduced into the genome ofAspergillus nidulans the gene encoding full-length rabbit GnT I and demonstrated the expression of GnT I enzyme activity at levels appreciably higher than occurs in most mammalian tissues. All the GnT I activity in theAspergillus transformants remains intracellular suggesting that the rabbit trans-membrane sequence may be capable of targeting GnT I to the fungal Golgi apparatus.Abbreviations CM complete medium - Gal-T UDP-Gal:GlcNAc -1,4-galactosyltransferase (EC 2.4.1.38/90) - GnT I UDP-GlcNAc:3-d-mannoside -1,2-N-acetylglucosaminyltransferase I (EC 2.4.1.101) - HPLC high performance liquid chromatography - M3-octyl Man1-6[Man1-3]Man-octyl - PAGE polyacrylamide gel electrophoresis - MES 2-(N-morpholino)ethane sulfonate - PCR polymerase chain reaction - PEG polyethylene glycol - PMSF phenyl methyl sulfonyl fluoride - SDS sodium dodecyl sulfate - SSC (1×) 0.15m NaCl/0.015m sodium citrate (pH 7.0) - STC 1.2m sorbitol, 100mm Tris-HCl, pH 7.4, and 10mm CaCl2 - STET 0.1m NaCl, 10mm Tris-HCl, pH 8.0, 1mm EDTA, pH 8.0, 5% Triton-X-100 Deceased. This paper is dedicated to the memory of Lorne S. Reid.  相似文献   

17.
Summary Antidiuretic hormone increases the water permeability of the cortical collecting tubule and causes the appearance of intramembrane particle aggregates in the apical plasma membrane of principal cells. Particle aggregates are located in apical membrane coated pits during stimulation of collecting ducts with ADHin situ. Removal of ADH causes a rapid decline in water permeability. We evaluated apical membrane retrieval associated with removal of ADH by studying the endocytosis of horseradish peroxidase (HRP) from an isotonic solution in the lumen. HRP uptake was quantified enzymatically and its intracellular distribution examined by electron microscopy. When tubules were perfused with HRP for 20 min in the absence of ADH, HRP uptake was 0.5±0.3 pg/min/m tubule length (n=6). The uptake of HRP in tubules exposed continuously to ADH during the 20-min HRP perfusion period was 1.3±0.8 pg/min/m (n=8). HPR uptake increased markedly to 3.2±1.1 pg/min/m (n=14), when the 20-min period of perfusion with HRP began immediately after removal of ADH from the peritubular bath. Endocytosis of HRP occurred in both principal and intercalated cells via apical membrane coated pits. We suggest that the rapid decline in cortical collecting duct water permeability which occurs following removal of ADH is mediated by retrieval of water permeable membrane via coated pits.  相似文献   

18.
Summary MDCK cells, when examined by low-light level video microscopy displayed an endogenous fluorescence with two differing patterns. A low intensity emission which was punctate and associated with cell organelles was observed with emission and excitation conditions generally used to observe either fluorescein (450–500 nm excitation/>510 nm emission) or rhodamine (514 nm excitation/>530 emission) type dyes. A second 5- to 10-fold brighter emission for 450–500 nm excitation was observed, which was unusual in that each cell appeared to be outlined. Evidence obtained from spectroscopy and from using culture media of altered composition supported the conclusion that the water-soluble vitamin riboflavin accumulated in the basolateral spaces and fluid-filled domes and was the source of this fluorescent emission. Quantitative measurements showed that exposure to cultures to 10 m riboflavin resulted in accumulation in domes of 565±80 m. The transport rate was calculated to be 189±30 pmol/min-cm2. Onemm probenecid, a known inhibitor of riboflavin transport in vivo, reduced transport to 54% of control, while 10mm nearly abolished the uptake. The results demonstrate that removal of riboflavin reduces MDCK cell fluorescence to levels compatable with low-light level imaging. Furthermore, these cells actively transport riboflavin and provide a new in vitro model for this process.  相似文献   

19.
Summary Single K+-selective channels were studied in excised inside-out membrane patches from dissociated mouse toe muscle fibers. Channels of 74 pS conductance in symmetrical 160mm KCl solutions were blocked reversibly by 10 m internal ATP and thus identified as ATP-sensitive K+ channels. The channels were also blocked reversibly bymm concentrations of internal adenosine, adenine and thymine, but not by cytosine and uracil. The efficacy of the reversible channel blockers was higher when they were present in internal NaCl instead of KCl solutions. An irreversible inhibition of ATP-sensitive K+ channels was observed after application of several sulphydryl-modifying substances in the internal solution: 0.5mm chloramine-T, 50mm hydrogen peroxide or 2mm n-ethylmaleimide (NEM). Largeconductance Ca-activated K+ channels were not affected by these reagents. The presence of 1mm internal ATP prevents the irreversible inhibition of ATP-sensitive K+ channels by NEM. The results suggest that internal Na+ ions increase the affinity of the ATP-sensitive K+ channel to ATP and to other reversible channel blockers and that a functionally important SH-group is located at or near the ATP-binding site.  相似文献   

20.
Summary The effect of chloride on 4,4-dibenzamido-2,2-disulfonic stilbene (DBDS) binding to band 3 in unsealed red cell ghost membranes was studied in buffer [NaCl (0 to 500mm) + Na citrate] at constant ionic strength (160 or 600mm). pH 7.4, 25°C. In the presence of chloride, DBDS binds to a single class of sites on band 3. At 160mm ionic strength, the dissociation constant of DBDS increases linearly with chloride concentration in the range [Cl]=450mm. The observed rate of DBDS binding to ghost membranes, as measured by fluorescence stopped-flow kinetic experiments, increases with chloride concentration at both 160 and 600mm ionic strength. The equilibrium and kinetic results have been incorporated into the following model of the DBDS-band 3 interaction: The equilibrium and rate constants of the model at 600mm ionic strength areK 1=0.67±0.16 m,k 2=1.6±0.7 sec–1,k –2=0.17±0.09 sec–1,K 1=6.3±1.7 m,k 2=9±4 sec–1 andk –2=7±3 sec–1. The apparent dissociation constants of chloride from band 3,K Cl, are 40±4mm (160mm ionic strength) and 11±3mm (600mm ionic strength). Our results indicate that chloride and DBDS have distinct, interacting binding sites on band 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号