首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Short, interspersed repetitive DNA sequences in prokaryotic genomes.   总被引:42,自引:2,他引:40  
  相似文献   

2.
Structural genes adjacent to interspersed repetitive DNA sequences   总被引:2,自引:0,他引:2  
The observation that repetitive and single copy sequences are interspersed in animal DNAs has suggested that repetitive sequences are adjacent to single copy structural gene sequences. To test this concept, single copy DNA sequences contiguous to interspersed repetitive sequences were prepared from sea urchin DNA by hydroxyapatite fractionation (repeat-contiguous DNA fraction). These single copy sequences included about one third of the total nonrepetitive sequence in the genome as determined by the amounts recovered during the hydroxyapatite fractionation and by reassociation kinetics. 3H-labeled mRNA from sea urchin gastrula was prepared by puromycin release from polysomes and used in DNA-driven hybridization reactions. The kinetics of mRNA hybridization reactions with excess whole DNA were carefully measured, and the rate of hybridization was found to be 3–5 times slower than the corresponding single copy DNA driver reassociation rate. The mRNA hybridized with excess repeat-contiguous DNA with similar kinetics relative to the driver DNA. At completion 80% of that mRNA hybridizable with whole DNA (approximately 65%) had reacted with the repeat-contiguous DNA fraction (50%). This result shows that 80–100% of the mRNA molecules present in sea urchin embryos are transcribed from single copy DNA sequences adjacent to interspersed repetitive sequences in the genome.  相似文献   

3.
This paper describes the characterization and chromosomal distribution of new long repetitive sequences present in all species of the genus Zea. These sequences constitute a family of moderately repetitive elements ranging approximately from 1350 to 1700 copies per haploid genome in modern maize (Zea mays ssp. mays) and teosinte (Zea diploperennis), respectively. The elements are long, probably larger than 9 kb, and they show a highly conserved internal organization among Zea subspecies and species. The elements are present in all maize chromosomes in an interspersed pattern of distribution, are absent from centromeric and pericentric heterochromatin, and with some clustering in the distal regions of chromosome arms.  相似文献   

4.
Replication time of interspersed repetitive DNA sequences in hamsters   总被引:2,自引:0,他引:2  
The replication time of 34 hamster genomic DNA segments containing interspersed repeat sequences was determined by probing the cloned segments with nick-translated early- and late-replicating hamster DNA. One-third of these cloned families replicated early, one-third replicated late, and one-third replicated without temporal bias. 19 different inserts from these clones along with the SINE, Alu, and the LINE, A36Fc, were used to probe Southern blots of early- and late-replicating hamster or human DNA. We report long interspersed repeats, LINEs, are selectively partitioned into late-replicating DNA and are often concertedly hypomethylated, while short interspersed repeats, SINEs, are selectively partitioned into early-replicating DNA. For some interspersed repeat families, this partitioning is complete or almost complete. The CCGG frequency is very low in late-replicating DNA. The mammalian chromosome's pattern of early-replicating R-bands and late-replicating G-bands reflects a differential distribution of LINEs and SINEs.  相似文献   

5.
The distribution of interspersed repetitive DNA sequences in the human genome   总被引:25,自引:0,他引:25  
The distribution of interspersed repetitive DNA sequences in the human genome has been investigated, using a combination of biochemical, cytological, computational, and recombinant DNA approaches. "Low-resolution" biochemical experiments indicate that the general distribution of repetitive sequences in human DNA can be adequately described by models that assume a random spacing, with an average distance of 3 kb. A detailed "high-resolution" map of the repetitive sequence organization along 400 kb of cloned human DNA, including 150 kb of DNA fragments isolated for this study, is consistent with this general distribution pattern. However, a higher frequency of spacing distances greater than 9.5 kb was observed in this genomic DNA sample. While the overall repetitive sequence distribution is best described by models that assume a random distribution, an analysis of the distribution of Alu repetitive sequences appearing in the GenBank sequence database indicates that there are local domains with varying Alu placement densities. In situ hybridization to human metaphase chromosomes indicates that local density domains for Alu placement can be observed cytologically. Centric heterochromatin regions, in particular, are at least 50-fold underrepresented in Alu sequences. The observed distribution for repetitive sequences in human DNA is the expected result for sequences that transpose throughout the genome, with local regions of "preference" or "exclusion" for integration.  相似文献   

6.
A major family of short, interspersed, repeated sequences in the bovine genome has been characterized. This family makes up the majority of all non-satellite repetitive DNA or about 6% of the bovine genome. It is estimated that there are at least 600 000 copies of this family interspersed among non-repetitive DNA sequences. Sequence analysis shows that this family includes sequences reported previously by Watanabe et al. (Nucleic Acids Res. 10, 1459-1469, 1982) and is distantly related to the human Alu sequence family.  相似文献   

7.
Short, interspersed, and repetitive DNA sequences in Spiroplasma species   总被引:5,自引:0,他引:5  
I Nur  D J LeBlanc  J G Tully 《Plasmid》1987,17(2):110-116
Small fragments of DNA from an 8-kbp plasmid, pRA1, from a plant pathogenic strain of Spiroplasma citri were shown previously to be present in the chromosomal DNA of at least two species of Spiroplasma. We describe here the shot-gun cloning of chromosomal DNA from S. citri Maroc and the identification of two distinct sequences exhibiting homology to pRA1. Further subcloning experiments provided specific molecular probes for the identification of these two sequences in chromosomal DNA from three distinct plant pathogenic species of Spiroplasma. The results of Southern blot hybridization indicated that each of the pRA1-associated sequences is present as multiple copies in short, dispersed, and repetitive sequences in the chromosomes of these three strains. None of the sequences was detectable in chromosomal DNA from an additional nine Spiroplasma strains examined.  相似文献   

8.
9.
We have designed and evaluated a series of class-specific (Aves), order-specific (Rodentia), and species-specific (equine, canine, feline, rat, hamster, guinea pig, and rabbit) polymerase chain reaction (PCR)-based assays for the identification and quantitation of DNA using amplification of genome-specific short and long interspersed elements. Using SYBR Green-based detection, the minimum effective quantitation levels of the assays ranged from 0.1 ng to 0.1 pg of starting DNA template. Background cross-amplification with DNA templates derived from sixteen other species was negligible prior to 30 cycles of PCR. The species-specificity of the PCR amplicons was further demonstrated by the ability of the assays to accurately detect known quantities of species-specific DNA from mixed (complex) sources. The 10 assays reported here will help facilitate the sensitive detection and quantitation of common domestic animal and bird species DNA from complex biomaterials.  相似文献   

10.
Many families of interspersed repetitive DNA elements, including human Alu and LINE (Long Interspersed Element) elements, have been proposed to have accumulated through repeated copying from a single source locus: the "master gene." The extent to which a master gene model is applicable has implications for the origin, evolution, and function of such sequences. One repetitive element family for which a convincing case for a master gene has been made is the rodent ID (identifier) elements. Here we devise a new test of the master gene model and use it to show that mouse ID element sequences are not compatible with a strict master gene model. We suggest that a single master gene is rarely, if ever, likely to be responsible for the accumulation of any repeat family.  相似文献   

11.
When genomic DNA from the European flat oyster Ostrea edulis L. was digested by BclI enzyme, a band of about 150?bp was observed in agarose gel. After cloning and sequencing this band and analysing their molecular characteristics and genomic organization by means of Southern blot, in situ hybridisation, and polymerase chain reaction (PCR) protocols, we concluded that this band is an interspersed highly repeated DNA element, which is related in sequence to the flanking regions of (CT)-microsatellite loci of the species O. edulis and Crassostrea gigas. Furthermore, we determined that this element forms part of a longer repetitive unit of 268?bp in length that, at least in some loci, is present in more than one copy. By Southern blot hybridisation and PCR amplifications-using primers designed for conserved regions of the 150-bp BclI clones of O. edulis-we determined that this repetitive DNA family is conserved in five other oyster species (O. stentina, C. angulata, C. gigas, C. ariakensis, and C. sikamea) while it is apparently absent in C. gasar. Finally, based on the analysis of the repetitive units in these oyster species, we discuss the slow degree of concerted evolution in this interspersed repetitive DNA family and its use for phylogenetic analysis.  相似文献   

12.
Repetitive DNA sequences near immunoglobulin genes in the mouse genome (Steinmetz et al., 1980a,b) were characterized by restriction mapping and hybridization. Six sequences were determined that turned out to belong to a new family of dispersed repetitive DNA. From the sequences, which are called R1 to R6, a 475 base-pair consensus sequence was derived. The R family is clearly distinct from the mouse B1 family (Krayev et al., 1980). According to saturation hybridization experiments, there are about 100,000 R sequences per haploid genome, and they are probably distributed throughout the genome. The individual R sequences have an average divergence from the consensus sequence of 12.5%, which is largely due to point mutations and, among those, to transitions. Some R sequences are severly truncated. The R sequences extend into A-rich sequences and are flanked by short direct repeats. Also, two large insertions in the R2 sequence are flanked by direct repeats. In the neighbourhood of and within R sequences, stretches of DNA have been identified that are homologous to parts of small nuclear RNA sequences. Mouse satellite DNA-like sequences and members of the B1 family were also found in close proximity to the R sequences. The dispersion of R sequences within the mouse genome may be a consequence of transposition events. The possible role of the R sequences in recombination and/or gene conversion processes is discussed.  相似文献   

13.
We have compared the amount of clustered and interspersed repetitive sequences in the genome of four Amphibia with different DNA contents per haploid nucleus: two Anura (Xenopus laevis, 3 pg and Bufo bufo, 7 pg) and two Urodela (Triturus cristatus, 23 pg and Necturus maculosus, 52 pg). High molecular weight DNA of the four species was denatured and reassociated to the same Cot in order to obtain duplex sequences with a similar reiteration frequency. Single-stranded DNA was digested off with the Aspergillus S1 nuclease. DNA was then fractionated according to the molecular weight through an agarose A-50 column. We found that the amount of long repetitive sequences is roughly proportional to the genome size in the four species, while the number of short (about 300 base pairs) repetitive sequences is increased many-fold in the species with the larger DNA content, both in Anura and in Urodela.  相似文献   

14.
15.
16.
Summary The structure of three members of a repetitive DNA family from the genome of the nematodeCaenorhabditis elegans has been studied. The three repetitive elements have a similar unitary structure consisting of two 451-bp sequences in inverted orientation separated by 491 bp, 1.5 kb, and 2.5 kb, respectively. The 491-bp sequence separating the inverted 451-bp sequences of the shortest element is found adjacent to one of the repeats in the other two elements as well. The combination of the three sequences we define as the basic repetitive unit. Comparison of the nucleotide sequences of the three elements has allowed the identification of the one most closely resembling the primordial repetitive element. Additionally, a process of co-evolution is evident that results in the introduction of identical sequence changes into both copies of the inverted sequence within a single unit. Possible mechanisms are discussed for the homogenization of these sequences. A direct test of one possible homogenization mechanism, namely homologous recombination between the inverted sequences accompanied by gene conversion, shows that recombination between the inverted repeats does not occur at high frequency.  相似文献   

17.
18.
Swine genomic DNA segments containing repetitive sequences were isolated from a porcine genomic library using genomic DNA as a probe. Three fragments containing the repetitive sequences from two of the primary phage clones were subcloned for sequence analysis, which revealed six new PRE-1 repetitive families other than those reported earlier by Singer et al. (Nucleic Acids Research 15, 2780, 1987). The frequency of the repetitive sequences in the swine genome was estimated at 2 x 10(6) per diploid genome. Sequence analysis revealed similarities between these repetitive sequences and that of arginine-tRNA gene.  相似文献   

19.
The interspersed periodic arrangement of repetitive and unique sequences in eukaryotic DNAs is proposed as the underlying molecular basis for higher-order DNA coiling in chromatin and mitotic chromosomes. It is assumed that (i) two types of interspersed repetitive sequences are distributed strictly periodically throughout the genome, splitting the single copy DNA into short and long periods respectively in such a pattern that each long period is composed of a definite number of short periods and repeats (ii) the short and long periods make the turn lengths of the solenoid and supersolenoid structures respectively determing their diameters; (iii) specific proteins interact with each type of repeats making cross ties between nearby repeats of each class helping to form, constrain, and stabilize the solenoid and the supersolenoid structures; (iv) the long period may be equated with the basic chromomere unit. The model predicts: (i) splitting of contiguous genes by inserted repetitive sequences; and (ii) two types of genomes differing in the hierarchy of DNA coiling.  相似文献   

20.
The Serrasalmidae family is composed of a number of commercially interesting species, mainly in the Amazon region where most of these fishes occur. In the present study, we investigated the genomic organization of the 18S and 5S rDNA and telomeric sequences in mitotic chromosomes of four species from the basal clade of the Serrasalmidae family: Colossoma macropomum, Mylossoma aureum, M. duriventre, and Piaractus mesopotamicus, in order to understand the chromosomal evolution in the family. All the species studied had diploid numbers 2n = 54 and exclusively biarmed chromosomes, but variations of the karyotypic formulas were observed. C-banding resulted in similar patterns among the analyzed species, with heterochromatic blocks mainly present in centromeric regions. The 18S rDNA mapping of C. macropomum and P. mesopotamicus revealed multiple sites of this gene; 5S rDNA sites were detected in two chromosome pairs in all species, although not all of them were homeologs. Hybridization with a telomeric probe revealed signals in the terminal portions of chromosomes in all the species and an interstitial signal was observed in one pair of C. macropomum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号