首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Hypersensitive response-assisting protein (HRAP) has been previously reported as an amphipathic plant protein isolated from sweet pepper that intensifies the harpin(Pss)-mediated hypersensitive response (HR). The hrap gene has no appreciable similarity to any other known sequences, and its activity can be rapidly induced by incompatible pathogen infection. To assess the function of the hrap gene in plant disease resistance, the CaMV 35S promoter was used to express sweet pepper hrap in transgenic tobacco. Compared with wild-type tobacco, transgenic tobacco plants exhibit more sensitivity to harpin(Pss) and show resistance to virulent pathogens (Pseudomonas syringae pv. tabaci and Erwinia carotovora subsp. carotovora). This disease resistance of transgenic tobacco does not originate from a constitutive HR, because endogenous level of salicylic acid and hsr203J mRNA showed similarities in transgenic and wildtype tobacco under noninfected conditions. However, following a virulent pathogen infection in hrap transgenic tobacco, hsr203J was rapidly induced and a micro-HR necrosis was visualized by trypan blue staining in the infiltration area. Consequently, we suggest that the disease resistance of transgenic plants may result from the induction of a HR by a virulent pathogen infection.  相似文献   

2.
Activation of the tobacco gene hsr203 is rapid, highly localized, specific for incompatible plant-pathogen interactions, and strongly correlated with programmed cell death occurring in response to diverse pathogens. Functional characterization of hsr203 gene product has shown that HSR203 is a serine hydrolase that displays esterase activity. We show here that transgenic tobacco plants deficient in HSR203 protein exhibit an accelerated hypersensitive response when inoculated with an avirulent strain of Ralstonia solanacearum. This response was accompanied by a maximal level of cell death and a drastic inhibition of in planta bacterial growth. Transgenic plants deficient in HSR203 were also found to show increased resistance in a dosage-dependent manner to Pseudomonas syringae pv. pisi, another avirulent bacterial pathogen, and to virulent and avirulent races of Phytophthora parasitica, a fungal pathogen of tobacco, but not to different virulent bacteria. Surprisingly, expression of another hsr gene, hsr515, and that of the defence genes PR1-a and PR5, was strongly reduced in the transgenic lines. Our results suggest that hsr203 antisense suppression in tobacco can have pleiotropic effects on HR cell death and defence mechanisms, and induces increased resistance to different pathogens.  相似文献   

3.
4.
The rapid and effective activation of disease resistance responses is essential for plant defense against pathogen attack. These responses are initiated when pathogen-derived molecules (elicitors) are recognized by the host. We have developed a strategy for creating novel disease resistance traits whereby transgenic plants respond to infection by a virulent pathogen with the production of an elicitor. To this end, we generated transgenic tobacco plants harboring a fusion between the pathogen-inducible tobacco hsr 203J gene promoter and a Phytophthora cryptogea gene encoding the highly active elicitor cryptogein. Under noninduced conditions, the transgene was silent, and no cryptogein could be detected in the transgenic plants. In contrast, infection by the virulent fungus P. parasitica var nicotianae stimulated cryptogein production that coincided with the fast induction of several defense genes at and around the infection sites. Induced elicitor production resulted in a localized necrosis that resembled a P. cryptogea-induced hypersensitive response and that restricted further growth of the pathogen. The transgenic plants displayed enhanced resistance to fungal pathogens that were unrelated to Phytophthora species, such as Thielaviopsis basicola, Erysiphe cichoracearum, and Botrytis cinerea. Thus, broad-spectrum disease resistance of a plant can be generated without the constitutive synthesis of a transgene product.  相似文献   

5.
PopA is released by type III secretion from the bacterial plant pathogen Ralstonia solanacearum and triggers the hypersensitive response (HR) in tobacco. The function of PopA remains obscure, mainly because mutants lacking this protein are not altered in their ability to interact with plants. In an attempt to identify the site of PopA activity in plant cells, we generated transgenic tobacco plants expressing the popA gene under the control of an inducible promoter. Immunocytologic analysis revealed that the HR phenotype of these plants correlated with the presence of PopA at the plant plasma membrane. Membrane localization was observed irrespective of whether the protein was designed to accumulate in the cytoplasm or to be secreted by the plant cell, suggesting a general lipid-binding ability. We found that the protein had a high affinity for sterols and sphingolipids in vitro and that it required Ca2+ for both lipid binding and oligomerization. In addition, the protein was integrated into liposomes and membranes from Xenopus laevis oocytes where it formed ion-conducting pores. These characteristics suggest that PopA is part of a system that aims to attach the host cell plasma membrane and to allow molecules cross this barrier.  相似文献   

6.
Malnoy M  Venisse JS  Reynoird JP  Chevreau E 《Planta》2003,216(5):802-814
In order to improve pear resistance against fire blight caused by Erwinia amylovora, a search for promoters driving high-level expression of transgenes specifically in response to this bacterial pathogen has been undertaken. We have examined the ability of hsr203J, str246C and sgd24 tobacco (Nicotiana tabacum L.) promoters to drive expression of the uidA reporter gene in pear. Transgenic pear clones were obtained by Agrobacterium tumefaciens-mediated transformation. Beta-glucuronidase activity was determined quantitatively and qualitatively in these plants grown in vitro using fluorometric and histochemical assays and compared to cauliflower mosaic virus (CaMV) 35S promoter-driven activity. The hsr203J promoter appeared to be very weakly activated following inoculation in pear, which is the converse of the situation in tobacco. The str246C promoter was rapidly activated in pear during compatible and incompatible interactions, by wounding and following the application of several elicitors (capsicein, cryptogein, harpin, salicylic acid and jasmonic acid). The sgd24 promoter, a deletion derivative of str246C, exhibited a low level of expression after bacterial inoculation, was weakly activated by wounding and elicitors, and was not activated by phytohormones (salicylic acid and jasmonic acid). Interestingly, the sgd24 promoter was locally activated in pear, whereas the str246C promoter was activated systemically from the infection site. Taken together, these data show that, although the s tr246C and sgd24 promoters are less active than the CaMV35S promoter in pear, their pathogen-responsiveness would permit them to be used to drive the expression of transgenes to promote bacterial disease resistance.  相似文献   

7.
This paper describes the identification of a new class of extracellular bacterial proteins, typified by PopA1 and its derivative PopA3, which act as specific hypersensitive response (HR) elicitors. These two heat-stable proteins, with HR-like elicitor activities on tobacco (non-host plant) but without activity on tomato (host plant), have been characterized from the supernatant of the plant pathogenic bacterium Pseudomonas solanacearum strain GMI1000. These two proteins induced the same pattern of response on Petunia, as a function of the genotypes tested. popA, the structural gene for PopA1, maps outside of the hrp gene cluster but belongs to the hrp regulon. The amino acid sequence of PopA1 does not show homology to any characterized proteins. Its secretion is dependent on hrp genes and is followed by stepwise removal of the 93 amino-terminal amino acids, producing the protein PopA3. Petunia lines responsive to PopA3 and its precursors were resistant to infection by strain GMI1000, whereas non-responsive lines were sensitive, suggesting that popA could be an avirulence gene. A popA mutant remained fully pathogenic on sensitive plants, indicating that this gene is not essential for pathogenicity. While lacking PopA1, this mutant, which remained avirulent on tobacco and on resistant Petunia lines, still produced additional extracellular necrogenic compounds. On the basis of both their structural features and the biological properties of the popA mutant, PopA1 and PopA3 clearly differ from hairpins characterized in other plant pathogenic bacteria.  相似文献   

8.
The biotrophic oomycete Plasmopara halstedii is the causal agent of downy mildew in sunflower. It penetrates the roots of both susceptible and resistant sunflower lines and grows through the hypocotyls towards the upper part of the seedling. RT-PCR analysis has shown that resistance is associated with the activation of a hsr203J-like gene, which is a molecular marker of the hypersensitive reaction in tobacco. Activation of this gene was specifically observed during the incompatible interaction and coincided with cell collapse in the hypocotyls. This HR was also associated with the early and local activation of the NPR1 gene which is a key component in the establishment of the SAR. No such HR or a significant activation of the hsr203J-like gene were observed during the compatible combination. These results suggest that the resistance of sunflower to P. halstedii is associated with an HR which fails to halt the parasite. By contrast, this HR triggers a SAR which takes places in the upper part of the hypocotyls and eventually leads to the arrest of parasite growth. A model describing the resistance of plants to root-infecting oomycetes is proposed.  相似文献   

9.
Non-host resistance is the most general form of disease resistance in plants because it is effective against most phytopathogens. The importance of hypersensitive responses (HRs) in non-host resistance of Nicotiana species to the oomycete Phytophthora is clear. INF1 elicitin, an elicitor obtained from the late-blight pathogen Phytophthora infestans , is sufficient to induce a typical HR in Nicotiana species. The molecular mechanisms that underlie the non-host resistance component of plant defence responses have been investigated using differential-display polymerase chain reaction (PCR) in a model HR system between INF1 elicitin and tobacco BY-2 cells. Differential-display PCR has revealed that Cdc27B is down-regulated in tobacco BY-2 cells after treatment with INF1 elicitin. Cdc27B is one of 13 essential components of the anaphase-promoting complex or cyclosome (APC/C)-type E3 ubiquitin ligase complex in yeast. This APC/C-type E3 ubiquitin ligase complex regulates G2-to-M phase transition of the cell cycle by proteolytic degradation. In this study, we investigated the roles of this gene, NbCdc27B , in plant defence responses using virus-induced gene silencing. Suppression of NbCdc27B in Nicotiana benthamiana plants induced defence responses and a gain of resistance to Colletotrichum lagenarium fungus. Elicitin-induced hypersensitive cell death (HCD) was inhibited mildly in plants silenced with tobacco rattle virus::Cdc27B. Cdc27B could manage the signalling pathways of plant defence responses as a negative regulator without HCD.  相似文献   

10.
Ralstonia solanacearum 8107 (8107) is non-pathogenic to tobacco and elicits the hypersensitive response (HR). In Nicotiana tabacum cv. Samsun NN leaves infiltrated with 8107, acquired resistance to challenging tobacco mosaic virus (TMV) was induced 2-6 d after 8107-infiltration. hsr203J and hin1 genes were expressed only in the 8107-infiltrated area. On the other hand, the expression of PR-1a and PR-1b genes was not detected in the 8107-infiltrated area, but in areas other than that developing the HR. Expression of these PR-1 genes was regulated simultaneously and the kinetics of the expression was dependent on the distance from the infiltration area. Therefore, diffusible signal(s) might be produced in HR-causing cells and transmitted to peripheral cells resulting in expression of PR genes. In NahG10 tobacco infiltrated with 8107, the HR was induced but resistance to TMV was not. Analysis using NahG10 tobacco also showed that the salicylic acid (SA)-dependent signal regulated the expression of hsr203J and PR-1a, but not that of hin1 and PR-1b. These results suggest that resistance of tobacco to 8107 is SA-independent and involves a quite different mechanism from acquired resistance to TMV induced by 8107-infiltration which is SA-dependent.  相似文献   

11.
12.
Plant lipoxygenases (LOXs) are key enzymes involved in the generation of fatty acid derivatives, called oxylipins. In tobacco, LOX gene expression and activity are very low in healthy tissues and are highly enhanced in response to infection by Phytophthora parasitica nicotianae and to elicitor treatment. We previously showed, using antisense-LOX1 plants, that expression of the tobacco LOX1 gene is required for the race-cultivar specific resistance of tobacco to Phytophthora parasitica nicotianae. In order to investigate the effect of over-expressing a LOX gene on plant resistance, we transformed tobacco plants with the LOX1 coding sequence fused to the CaMV 35S promoter. Four transgenic lines with enhanced levels of LOX protein and specific activity over control plants were selected for further analysis. These plants were macroscopically indistinguishable from WT plants. Upon stem inoculation, the sense-LOX1 plants displayed a significantly decreased susceptibility to virulent races of Phytophthora parasitica nicotianae, stem lesions being 2- to 3-fold shorter in the transgenic lines than in WT plants. Using a root inoculation assay, the survival rate of sense-LOX1 seedlings was increased about 4-fold compared to their WT counterparts, with 60 to 80% of transgenic plants vs 15 to 20% of WT controls remaining healthy following inoculation with Phytophthora parasitica nicotianae. This is the first demonstration that the over-expression of a LOX gene is sufficient to reduce the susceptibility of a host plant to an oomycete pathogen.  相似文献   

13.
There is much interest in the transduction pathways by which avirulent pathogens or derived elicitors activate plant defense responses. However, little is known about anion channel functions in this process. The aim of this study was to reveal the contribution of anion channels in the defense response triggered in tobacco by the elicitor cryptogein. Cryptogein induced a fast nitrate (NO(3)(-)) efflux that was sensitive to anion channel blockers and regulated by phosphorylation events and Ca(2+) influx. Using a pharmacological approach, we provide evidence that NO(3)(-) efflux acts upstream of the cryptogein-induced oxidative burst and a 40-kD protein kinase whose activation seems to be controlled by the duration and intensity of anion efflux. Moreover, NO(3)(-) efflux inhibitors reduced and delayed the hypersensitive cell death triggered by cryptogein in tobacco plants. This was accompanied by a delay or a complete suppression of the induction of several defense-related genes, including hsr203J, a gene whose expression is correlated strongly with programmed cell death in plants. Our results indicate that anion channels are involved intimately in mediating defense responses and hypersensitive cell death.  相似文献   

14.
The hypersensitive response (HR) is a form of cell death associated with plant resistance to pathogen infection. Harpinpss, an elicitor from the bacterium Pseudomonas syringae pv. syringae, induces a HR in non-host plants. Previously, we reported an amphipathic protein from sweet pepper interfering with harpinpss-mediated HR. In this report, we isolated and characterized a cDNA clone encoded that amphipathic protein from sweet pepper. This protein is designated as PFLP (plant ferredoxin-like protein) by virtue of its high homology with plant ferredoxin protein containing an N-terminal signal peptide responsible for chloroplast targeting and a putative 2Fe-2S domain responsible for redox activity. Recombinant PFLP obtained from Escherichia coliwas able to significantly increase active oxygen species (AOS) generation when mixed with harpinpss in tobacco suspension cells. It also showed enhanced HR when co-infiltrated with harpinpss in tobacco leaves. We used a transgenic tobacco suspension cells system that constitutively expresses the Pflpgene driven by the CaMV 35S promoter to study the function of PFLP in enhancing harpinpss-mediated hypersensitive cell death in vivo. In response to harpinpss, suspension cells derived from Pflptransgenic tobacco showed a significant increase both in the generation of AOS and in cell death as compared to the wild type. AOS inhibitors diphenylene iodonium chloride (DPI) and lanthanum chlorate (LaCl3) were used to study the involvement of AOS in harpinpss-induced cell death. Our results demonstrate enhanced generation of AOS is necessary to cause enhanced hypersensitive cell death in Pflp transgenic tobacco cells and it is plasma membrane-bound NADPH-oxidase-dependent. Sub-cellular localization studies showed that PFLP is present in the cytoplasm and chloroplast of Pflp transgenic tobacco cells, but only in the chloroplast, not in the cytoplasm, of wild-type tobacco cells. It is possible that PFLP can change the redox state of the cell upon harpinpss inoculation to increase AOS generation and hypersensitive cell death. Overall, this study will provide a new insight in the functional properties of ferredoxin in hypersensitive cell death.  相似文献   

15.
One of the earliest signal transduction events that trigger the hypersensitive response (HR) of plants against pathogen attack is thought to be an alteration of proton flux across the plasma membrane (PM). However, no direct genetic evidence for the involvement of PM-localised proton channels or pumps in the induction of this response has been reported. We previously showed that expression of the bacterial proton pump bacterio-opsin (bO) in transgenic plants resulted in the spontaneous activation of the HR. Here we show that the bO protein is likely localised to the PM in transgenic tobacco plants. Furthermore, mutational analysis shows that induction of the HR by bO expression is dependent upon the capability of bO to translocate protons. Although bO functions as a light-driven proton pump in Halobacteria when assembled with retinal, we also show by mutational analysis that this chromophore binding is unnecessary for its in planta activity. Taken together, our results suggest that expression of bO in plants leads to the insertion of a passive proton channel into the PM. The activity of this channel in the PM results in spontaneous activation of cell death and HR-associated phenotypes including enhanced resistance to a broad spectrum of plant pathogens. Our work provides direct molecular evidence to support a working model in which alterations in ionic homeostasis at the level of the PM may work as one of the critical steps in the signalling pathway for the activation of the HR.  相似文献   

16.
17.
A novel plant defense gene, hsr203J, whose corresponding mRNA accumulates preferentially during the incompatible interaction of tobacco (Nicotiana tabacum L.) with a pathogenic bacterium, Pseudomonas solanacearum, has been isolated and sequenced. No sequence homology of the putative product of this gene has been found in data bases. Evidence is presented here that the hsr203J gene promoter, when fused to the GUS reporter gene, is selectively expressed in response to the hypersensitive response (HR)-inducing bacteria in tobacco protoplasts and that the sequences responsible for this response are contained within 1.4 kb of the 5′ noncoding region. The temporal and spatial patterns of hsr203J activation in leaves and roots inoculated with P. solanacearum indicate that the hsr 203J promoter exhibits a rapid (3–6 h post-inoculation) and high level of induction only in plant cells inoculated with the HR-inducing bacterial isolate. In addition, this gene promoter which does not respond to various stress conditions and is only very weakly induced during compatible interactions, is strongly dependent on hrp (hypersensitive response and pathogenicity) genes of P. solanacearum. These data indicate that the hsr 203J gene promoter exhibits new and original characteristics of activation with regard to the plant defense genes studied so far; its spatial and temporal program of activation together with its specific induction during the HR underline the importance of this gene as a molecular tool for studying the establishment and regulation of the HR.  相似文献   

18.
The tomato Cf9 resistance gene induces an Avr9-dependent hypersensitive response (HR) in tomato and transgenic Solanaceae spp. We studied whether the Cf9 gene product responded functionally to the corresponding Avr9 gene product when introduced in a heterologous plant species. We successfully expressed the Cf9 gene under control of its own promoter and the Avr9 or Avr9R8K genes under control of the p35S1 promoter in transgenic oilseed rape. We demonstrated that the transgenic oilseed rape plants produced the Avr9 elicitor with the same specific necrosis-inducing activity as reported for Cladosporium fulvum. An Avr9-dependent HR was induced in Cf9 oilseed rape upon injection of intercellular fluid containing Avr9. We showed Avr9-specific induction of PR1, PR2, and Cxc750 defense genes in oilseed rape expressing CJ9. Cf9 x Avr9 oilseed rape did not result in seedling death of the F1 progeny, independent of the promoters used to express the genes. The F1 (Cf9 x Avr9) plants, however, were quantitatively more resistant to Leptosphaeria maculans. Phytopathological analyses revealed that disease development of L. maculans was delayed when the pathogen was applied on an Avr9-mediated HR site. We demonstrate that the CJ9 and Avr9 gene can be functionally expressed in a heterologous plant species and that the two components confer an increase in disease resistance.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号