首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Species have phenological variation among local habitats that are located at relatively small spatial scales. However, less studies have tested how this spatial variability in phenology can mediate intra-/inter-specific interactions. When predators track phenological variation of prey among local habitats, survival of prey within a local habitat strongly influenced by phenological synchrony with their conspecifics in adjacent habitats. Theory predicts that phenological synchrony among local habitats increases prey survival in local habitat within spatially structured environments because the predators have to make a habitat choice for foraging. Consequently, total survival of prey at regional scale should be higher. By using a spatially explicit field experiment, we tested above hypothesis using a prey–predator interaction between tadpole (Rhacophorus arboreus) and newt (Cynops pyrrhogaster). We established enclosures (≈regional scale) consisting of two tanks (≈local habitat scale) with different degree of prey phenological synchrony. We found that phenological synchrony of prey between tanks within each enclosure decreased the mean residence time of the predator in each tank, which resulted in higher survival of prey at a local habitat scale, supporting the theoretical prediction. Furthermore, individual-level variation in predator residence time explained the between-tank variation in prey survival in enclosures with phenological synchrony, implying that movement patterns of the predator can mediate variation in local population dynamics of their prey. However, total survival at each enclosure was not higher under phenological synchrony. These results suggest the importance of relative timing of prey phenology, not absolute timing, among local habitats in determining prey–predator interactions.  相似文献   

2.
If predators lack information on the prey's position, prey have more chance to escape predation and will therefore reach higher population densities. One of the many possible cues that predators may use to find their prey are herbivore-induced plant volatiles. Although their effects on the behaviour of foraging predators have been well studied, little is known about how these prey-related odours affect predator–prey dynamics on a plant. We hypothesise that herbivore-induced plant volatiles provide the major cue eliciting predator arrestment on prey-infested leaves and that the response to these volatiles ultimately leads to lower prey densities. To test this hypothesis experimentally, we created two types of odour-saturated environments: one with herbivore-induced plant volatiles (treatment), and one with green-leaf volatiles (control). An odour-free environment could not be tested because herbivores require plants for population growth. We measured the rate at which predatory mites (Phytoseiulus persimilis) immigrate, emigrate and exploit a single leaf infested by two-spotted spider mites (Tetranychus urticae). The experiments did not show a significant difference between treatment and control. At best, there was a somewhat higher rate of predator (and possibly also prey) emigration in the treatment. The lack of a pronounced difference between treatment and control indicates that at the spatial scale of the experiments random searching for prey was as effective as directional searching. Alternatively, predators were arrested in the prey patch by responding not merely to herbivore-induced plant volatiles, but also to other prey-related cues, such as web and faeces. Based on our current experience we advocate to increase the spatial scale of the experiment (>1m2) and we provide other suggestions for improving the set-up.  相似文献   

3.
The spatial distributions of two-spotted spider mites Tetranychus urticae and their natural enemy, the phytoseiid predator Phytoseiulus persimilis, were studied on six full-grown cucumber plants. Both mite species were very patchily distributed and P. persimilis tended to aggregate on leaves with abundant prey. The effects of non-homogenous distributions and degree of spatial overlap between prey and predators on the per capita predation rate were studied by means of a stage-specific predation model that averages the predation rates over all the local populations inhabiting the individual leaves. The empirical predation rates were compared with predictions assuming random predator search and/or an even distribution of prey. The analysis clearly shows that the ability of the predators to search non-randomly increases their predation rate. On the other hand, the prey may gain if it adopts a more even distribution when its density is low and a more patchy distribution when density increases. Mutual interference between searching predators reduces the predation rate, but the effect is negligible. The stage-specific functional response model was compared with two simpler models without explicit stage structure. Both unstructured models yielded predictions that were quite similar to those of the stage-structured model.  相似文献   

4.
Host-parasitoid spatial ecology: a plea for a landscape-level synthesis   总被引:5,自引:0,他引:5  
A growing body of literature points to a large-scale research approach as essential for understanding population and community ecology. Many of our advances regarding the spatial ecology of predators and prey can be attributed to research with insect parasitoids and their hosts. In this review, we focus on the progress that has been made in the study of the movement and population dynamics of hosts and their parasitoids in heterogeneous landscapes, and how this research approach may be beneficial to pest management programs. To date, few studies have quantified prey and predator rates and ranges of dispersal and population dynamics at the patch level--the minimum of information needed to characterize population structure. From host-parasitoid studies with sufficient data, it is clear that the spatial scale of dispersal can differ significantly between a prey and its predators, local prey extinctions can be attributed to predators and predator extinction risk at the patch level often exceeds that of the prey. It is also evident that populations can be organized as a single, highly connected (patchy) population or as semi-independent extinction-prone local populations that collectively form a persistent metapopulation. A prey and its predators can also differ in population structure. At the landscape level, agricultural studies indicate that predator effects on its prey often spill over between the crop and surrounding area (matrix) and can depend strongly on landscape structure (e.g. the proportion of suitable habitat) at scales extending well beyond the crop margins. In light of existing empirical data, predator-prey models are typically spatially unrealistic, lacking important details on boundary responses and movement behaviour within and among patches. The tools exist for conducting empirical and theoretical research at the landscape level and we hope that this review calls attention to fertile areas for future exploration.  相似文献   

5.
This article demonstrates how perceptual constraints of predators and the possibility that predators encounter prey both sequentially (one prey type at a time) and simultaneously (two or more prey types at a time) may influence the predator attack decisions, diet composition and functional response of a behavioural predator-prey system. Individuals of a predator species are assumed to forage optimally on two prey types and to have exact knowledge of prey population numbers (or densities) only in a neighbourhood of their actual spatial location. The system characteristics are inspected by means of a discrete-time, discrete-space, individual-based model of the one-predator-two-prey interaction. Model predictions are compared with ones that have been obtained by assuming only sequential encounters of predators with prey and/or omniscient predators aware of prey population densities in the whole environment. It is shown that the zero-one prey choice rule, optimal for sequential encounters and omniscient predators, shifts to abruptly changing partial preferences for both prey types in the case of omniscient predators faced with both types of prey encounters. The latter, in turn, become gradually changing partial preferences when predator omniscience is considered only local.  相似文献   

6.
Predators and prey are often engaged in a game where their expected fitnesses are affected by their relative spatial distributions. Game models generally predict that when predators and prey move at similar temporal and spatial scales that predators should distribute themselves to match the distribution of the prey's resources and that prey should be relatively uniformly distributed. These predictions should better apply to sit-and-pursue and sit-and-wait predators, who must anticipate the spatial distributions of their prey, than active predators that search for their prey. We test this with an experiment observing the spatial distributions and estimating the causes of movements between patches for Pacific tree frog tadpoles (Pseudacris regilla), a sit-and-pursue dragonfly larvae predator (Rhionaeschna multicolor), and an active salamander larval predator (Ambystoma tigrinum mavortium) when a single species was in the arena and when the prey was with one of the predators. We find that the sit-and-pursue predator favors patches with more of the prey's algae resources when the prey is not in the experimental arena and that the prey, when in the arena with this predator, do not favor patches with more resources. We also find that the active predator does not favor patches with more algae and that prey, when with an active predator, continue to favor these higher resource patches. These results suggest that the hunting modes of predators impact their spatial distributions and the spatial distributions of their prey, which has potential to have cascading effects on lower trophic levels.  相似文献   

7.
Prey species often distribute themselves patchily in their habitats. In response to this spatial variation in prey density, some predator species aggregate in patches of higher prey density. This paper reviews a series of laboratory experiments to demonstrate the patterns of responses by phytoseiid predators (Phytoseiulus persimilis, Typhlodromus occidentalis and Amblyseius andersoni) to spatial variation in the density of their spider mite prey (Tetranychus urticae) and reveal the behavioural mechanisms underlying the observed patterns. In addition, patterns of aggregation were examined at a variety of spatial scales on plants in greenhouses. The patterns, mechanisms and spatial scale of aggregation in three predatory species are discussed in relation to their varying degrees of polyphagy. The results show that a specialist predator species (1) aggregates more strongly than generalist predators, (2) does so not because it finds prey patches of high density more easily but because it remains in these patches longer than generalist predators and (3) tends to aggregate more often at lower levels of spatial scale than generalist predators. It is suggested that these conclusions, based mainly on laboratory studies of a small sample of species, should be tested in the future on a wider selection of specialist and generalist species at different scales in the field. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

8.
Population densities, distributions and dispersal of Neoseiulus fallacis (Garman) and Tetranychus urticae (Koch) on individual hop plants, Humulus lupulus L. were studied for attributes of metapopulations such as empty patches, asynchrony of subpopulations, extinction of subpopulations, and dispersal of predators and prey among patches. Occupancy of hop leaves by predators or prey was stable over a season with 69–75% of leaves having neither predators nor prey, 4–15% with prey mites only, 9–17% with both predators and prey mites and 6–10% with predaceous mites only. Stability of occupancy classes through time indicated that inherently unstable predator and prey subpopulations developed asynchronously. Flagged hop leaves showed the existence of many empty individual leaves, colonization of some by prey, then by predators, then extinction of both, and then recolonization by spider mites. This illustrated the existence of empty patches, extinction of subpopulations, and dispersal of predators and prey to empty patches. This differed from spider mites and phytoseiid predators on apple foliage where there was a progression of occupancy status, indicating synchronous development of subpopulations on individual plants. Studies of predator and prey dispersal between hop plants showed that removal of basal leaves to 1.5 m high, a common agronomic practice, greatly limited dispersal of the predaceous mites but not the spider mites. Retaining basal leaves facilitated interplant movement of predators and improved the extent and timing of biological control. Through management, N. fallacis dispersal may be adjusted so that the entire hop planting becomes a metapopulation landscape, leading to greater stability and persistence of predator–prey within a season.  相似文献   

9.
We study a reaction-diffusion-advection model for the dynamics of populations under biological control. A control agent is assumed to be a predator species that has the ability to perceive the heterogeneity of pest distribution. The advection term represents the predator density movement according to a basic prey taxis assumption: acceleration of predators is proportional to the prey density gradient. The prey population reproduces logistically, and the local population interactions follow the Holling Type II trophic function. On the scale of the population, our spatially explicit approach subdivides the predation process into random movement represented by diffusion, directed movement described by prey taxis, local prey encounters, and consumption modeled by the trophic function. Thus, our model allows studying the effects of large-scale predator spatial activity on population dynamics. We show under which conditions spatial patterns are generated by prey taxis and how this affects the predator ability to maintain the pest population below some economic threshold. In particular, intermediate taxis activity can stabilize predator-pest populations at a very low level of pest density, ensuring successful biological control. However, very intensive prey taxis destroys the stability, leading to chaotic dynamics with pronounced outbreaks of pest density.  相似文献   

10.
That predators attack and prey defend is an oversimplified view. When size changes during development, large prey may be invulnerable to predators, and small juvenile predators vulnerable to attack by prey. This in turn may trigger a defensive response in adult predators to protect their offspring. Indeed, when sizes overlap, one may wonder "who is the predator and who is the prey"! Experiments with "predatory" mites and thrips "prey" showed that young, vulnerable prey counterattack by killing young predators and adult predators respond by protective parental care, killing young prey that attack their offspring. Thus, young individuals form the Achilles' heel of prey and predators alike, creating a cascade of predator attack, prey counterattack and predator defence. Therefore, size structure and relatedness induce multiple ecological role reversals.  相似文献   

11.
Although predator effects on the number of locally coexisting species are well understood, there are few formal predictions of how these local predator effects influence patterns of prey diversity at larger spatial scales. Building on the theory of island biogeography, we develop a simple model that describes how predators can alter the scaling of diversity in prey metacommunities and compares the effects of generalist and specialist predators on regional prey diversity. Generalist predators, which consume prey randomly with respect to species identity, are predicted to reduce α‐diversity and increase β‐diversity thereby maintaining regional diversity (γ‐diversity). Alternatively, specialist predators, which filter out prey species intolerant of predators, are predicted to reduce bothα‐diversity andβ‐diversity by causing the same prey species to be extirpated in each locality, resulting in regional prey species extinctions and lower γ‐diversity. These distinct effects of generalist and specialist predators on prey diversity at different spatial scales are uniquely shaped by the extent of predation within those metacommunities. Overall, our model results make general predictions for how different types of predators can differentially affect prey diversity across spatial scales, allowing a more complete understanding of the possible implications of predator eradications or introductions for biodiversity.  相似文献   

12.
A hierarchy of scales is introduced to the spatially heterogeneous Lotka-Volterra predator-prey diffusion model, and its effects on the model's spatial and temporal behavior are studied. When predators move on a large scale relative to prey, local coupling of the predator-prey interaction is replaced by global coupling. Prey with low dispersal ability become narrowly confined to the most productive habitats, strongly amplifying the underlying spatial pattern of the environment. As prey diffusion rate increases, the prey distribution spreads out and predator abundance declines. The model retains neutrally stable Lotka-Volterra temporal dynamics: different scales of predator and prey dispersal do not stabilize the interaction. The model predicts that, for prey populations that are limited by widely ranging predators, species with low dispersal ability should be restricted to discrete high density patches, and those with greater mobility should be more uniformly distributed at lower density.  相似文献   

13.
Numerous studies have been devoted to estimating the intrinsic rates of increase, rm, of phytoseiid and tetranychid mites. Intrinsic rates of increase may be helpful for biological control purposes, but how exactly is still unclear. In this paper, we show how rms can be used to this end, by using a simple model for the local dynamics of predator and prey populations. The application of this model critically depends on what is meant by the term local. Here, we define it as a spatial scale at which predator and prey dynamics are strongly coupled.Furthermore, it is shown that the rm of phytoseiid and tetranychid mites are correlated with mean and peak oviposition rates. Since peak oviposition rates are easy to determine, the regression equation provides a quick and simple way toestimate rm. Subsequently, it is possible to calculate appropriate predator/prey ratios for biological control by using the model and the estimated rm.  相似文献   

14.
Aggregative responses by the predatory mites, Phytoseiulus persimilis, Typhlodromus occidentalis, and Amblyseius andersoni (Acari: Phytoseiidae), to spatial variation in the density of mobile stages of Tetranychus urticae (Acari: Tetranychidae) were studied over different spatial scales on greenhouse roses. Significant spatial variations in prey numbers per leaflet, per leaf, per branch or per plant were present in all experimental plots. None of the predator species responded to prey numbers per plant, and all searched randomly among plants. Within a plant, the oligophagous P. persimilis searched randomly among branches, but aggregated strongly among leaves within a branch and among leaflets within a leaf. The narrowly polyphagous T. occidentalis searched randomly among leaflets within a leaf and amond leaves within a branch, but aggregated strongly among leaflets or leaves within a plant. The boradly polyphagous A. andersoni searched randomly among leaflets within a leaf, a branch or a plant, and among leaves within a branch or a plant, but distributed themselves more often on branches with lower prey densities. Thus, specialist predators aggregate strongly at lower spatial levels but show random search at higher spatial levels, whereas generalist predators show random search at lower spatial levels but aggregate at higher spatial levels. This is the first empirical evidence demonstrating the relation between the degree of polyphagy and the spatial scale of aggregation. It is also concluded that both the prey patch size (i.e. grain) and predator foraging range (i.e. extent) are important for analyzing spatial scales of predator aggregation. The importance of studying spatial scale of aggregation is also discussed in relation to predator-prey metapopulation dynamics.  相似文献   

15.
Predator impacts on stream benthic prey   总被引:4,自引:0,他引:4  
David Wooster 《Oecologia》1994,99(1-2):7-15
The impact that predators have on benthic, macroinvertebrate prey density in streams is unclear. While some studies show a strong effect of predators on prey density, others show little or no effect. Two factors appear to influence the detection of predator impact on prey density in streams. First, many field studies have small sample sizes and thus might be unable to detect treatment effects. Second, streams contain two broad classes of predators, invertebrates and vertebrates, which might have different impacts on prey density for a variety of reasons, including availability of refuge for prey and prey emigration responses to the two types of predators. In addition, predatory vertebrates have more complex prey communities than predatory invertebrates; this complexity might reduce the impact that predatory vertebrates have on prey because of indirect effects. I conducted a meta-analysis on the results of field studies that manipulate predator density in enclosures to determine (1) if predators have a significant impact on benthic prey density in streams, (2) if the impacts that predatory invertebrates and vertebrates have differ, and (3) if predatory vertebrates have different impacts on predatory prey versus herbivorous prey. The results of the meta-analysis suggest that on average predators have a significant negative effect on prey density, predatory invertebrates have a significantly stronger impact than predatory vertebrates, and predatory vertebrates do not differ in their impact on predatory versus herbivorous invertebrate prey. Three methodological variables (mesh size of enclosures, size of enclosures, and experimental duration) were examined to determine if cross correlations exist that may explain the differences in impact between predatory invertebrates and vertebrates. No correlation exists between mesh size and predator impact. Over all predators, no correlation exists between experimental duration and predator impact; however, within predatory invertebrates a correlation does exist between these variables. Also, a correlation was found between enclosure size and predator impact. This correlation potentially explains the difference in impact between predatory invertebrates and predatory vertebrates. Results of the meta-analysis suggest two important areas for future research: (1) manipulate both types of predators within the same system, and (2) examine their impacts on the same spatial scale.  相似文献   

16.
Prey that lives with functionally different predators may experience enhanced mortality risk, because of conflicts between the specific defenses against their predators. Because natural communities usually contain combinations of prey and functionally different predators, examining risk enhancement with multiple predators may help to understand prey population dynamics. It is also important in an applied context: risk enhancement with multiple biological control agents could lead to successful suppression of pests. We examined whether risk enhancement occurs in the spider mite Tetranychus kanzawai Kishida (Acari: Tetranychidae) when exposed to two predator species: a generalist ant, Pristomyrmex punctatus Mayr (Hymenoptera: Formicidae), and a specialist predatory mite, Neoseiulus womersleyi Schicha (Acari: Phytoseiidae). We replicated microcosms that consisted of spider mites, ants, and predatory mites. Spider mites avoided generalist ants by staying inside their webs on leaf surfaces. In contrast, spider mites avoided specialist predatory mites that intruded into their webs by exiting the web, which obviously conflicts with the defense against ants. In the presence of both predators, enhanced mortality of spider mites was observed. A conflict occurred between the spider mites’ defenses: they seemed to move out of their webs and be preyed upon by ants. This is the first study to suggest that risk enhancement occurs in web‐spinning spider mites that are exposed to both generalist and specialist predator species, and to provide evidence that ants can have remarkable synergistic effects on the biological control of spider mites using specialist predatory mites.  相似文献   

17.
Arthropods use odours associated with the presence of their food, enemies and competitors when searching for patches. Responses to these odours therefore determine the spatial distribution of animals, and are decisive for the occurrence and strength of interactions among species. Therefore, a logical first step in studying food web interactions is the analysis of behaviour of individuals that are searching for patches of food. We followed this approach when studying interactions in an artificial food web occurring on greenhouse cucumber in the Netherlands. In an earlier paper we found that one of the predators of the food web, the predatory mite Phytoseiulus persimilis Athias-Henriot, used to control spider mites, discriminates between odours from plants with spider mites, Tetranychus urticae Koch, and plants with spider mites plus conspecific predators. The odours used for discrimination are produced by adult prey in response to the presence of predators, and probably serve as an alarm pheromone to warn related spider mites. Other predator species may also trigger production of this alarm pheromone, which P. persimilis could use in turn to avoid plants with heterospecific predators. We therefore studied the response of the latter to odours from plants with spider mites and 3 other predator species, i.e. the generalist predatory bug Orius laevigatus (Fieber), the polyphagous thrips Frankliniella occidentalis and the spider-mite predator Neoseiulus californicus (McGregor). Both olfactometer and greenhouse release experiments yielded no evidence that P. persimilis avoids plants with any of the 3 heterospecific predators. This suggests that these predators do not elicit production of alarm pheromones in spider mites, and we argue that this is caused by a lack of coevolutionary history. The consequences of the lack of avoidance of heterospecific predators for interactions in food webs and biological control are discussed.  相似文献   

18.
Spatial heterogeneity of the environment has long been recognized as a major factor in ecological dynamics. Its role in predator–prey systems has been of particular interest, where it can affect interactions in two qualitatively different ways: by providing (1) refuges for the prey or (2) obstacles that interfere with the movements of both prey and predators. There have been relatively fewer studies of obstacles than refuges, especially studies on their effect on functional responses. By analogy with reaction–diffusion models for chemical systems in heterogeneous environments, we predict that obstacles are likely to reduce the encounter rate between individuals, leading to a lower attack rate (predator–prey encounters) and a lower interference rate (predator–predator encounters). Here, we test these predictions under controlled conditions using collembolans (springtails) as prey and mites as predators in microcosms. The effect of obstacle density on the functional response was investigated at the scales of individual behavior and of the population. As expected, we found that increasing obstacle density reduces the attack rate and predator interference. Our results show that obstacles, like refuges, can reduce the predation rate because obstacles decrease the attack rate. However, while refuges can increase predator dependence, we suggest that obstacles can decrease it by reducing the rate of encounters between predators. Because of their opposite effect on predator dependence, obstacles and refuges could modify in different ways the stability of predator–prey communities.  相似文献   

19.
Spatial overlap between predators and prey is key to predicting their interaction strength and population dynamics. We constructed a spatially-explicit simulation model to explore how predator and prey behavioral traits and patterns of resource distribution influence spatial overlap between predators, prey, and prey resources. Predator and prey spatial association primarily followed the ideal free distribution. Departures from this model were intriguing, especially from the interactions of predator and prey behavior. When prey weakly avoided conspecifics, they associated more highly with resources when predators were present. Predators increased the rate of prey movement between patches, which increased their ability to sample their environment and aggregate in patches with high resources. When prey strongly avoided each other, predators decreased prey association with resources. That is, an increased rate of prey movement increased the probability that prey would interact and avoid each other without regard to the distribution of resources. More generally, a more highly clumped distribution of resources acted as a spatial anchor that generally increased prey, predator, and resource association. Prey tended to congregate with resources and predators generally congregated with prey.  相似文献   

20.
We consider a bitrophic spatially distributed community consisting of prey and actively moving predators. The model is based on the assumption that the spatial and temporal variations of the predators' velocity are determined by the prey gradient. Locally, the populations follow the simple Lotka-Volterra interaction. We also assume predator reproduction and mortality to be negligible in comparison with the time scale of migration. The model demonstrates heterogeneous oscillating distributions of both species, which occur because of the active movements of predators. One consequence of this heterogeneity is increased viability of the prey population, compared to the equivalent homogeneous model, and increased consumption. Further numerical analysis shows that, on the spatially aggregated scale, the average predator density adversely affects the individual consumption, leading to a nonlinear predator-dependent trophic function, completely different from the Lotka-Volterra rule assumed at the local scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号