首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two basic models of mutualism are presented in which interactions among three species lead to mutualism between two of them. The models represent 2-species predator-prey or competition systems in which a third species acts as a mutualist with either the predator, the prey, or one of the competitors. The models include the assumptions that there is a cost of associating with the mutualist and that the mutualist population grows much more slowly than the other two populations. Special cases of these two models correspond to six qualitatively different types of mutualistic benefit, all of which are known to occur in nature: deterring predation, increasing prey availability, feeding on (or competing with) a predator, increasing competitive interactions, decreasing competitive interactions, and feeding on (or competing with) a competitor. These models and their special cases are subjected to a local stability analysis. The results show that mutualism based upon deterring predation, competing with a predator, or decreasing competitive interactions enhances local stability, while mutualism based upon increasing prey availability or increasing competitive interactions reduces local stability. These results clearly reject the idea that mutualism is an inherently unstable process, and reinforces the idea that each different kind of mutualism will have to be considered separately. Compared to 2-species models of mutualism, the 3-species models provide a more realistic representation of the structure of many mutualistic systems, the mechanisms by which one species benefits another, and the regulation of the interaction.  相似文献   

2.
Although numerous studies show that communities are jointly influenced by predation and competitive interactions, few have resolved how temporal variability in these interactions influences community assembly and stability. Here, we addressed this challenge in experimental microbial microcosms by employing empirical dynamic modelling tools to: (1) detect causal interactions between prey species in the absence and presence of a predator; (2) quantify the time‐varying strength of these interactions and (3) explore stability in the resulting communities. Our findings show that predators boost the number of causal interactions among community members, and lead to reduced dynamic stability, but higher coexistence among prey species. These results correspond to time‐varying changes in species interactions, including emergence of morphological characteristics that appeared to reduce predation, and indirectly facilitate growth of predator‐susceptible species. Jointly, our findings suggest that careful consideration of both context and time may be necessary to predict and explain outcomes in multi‐trophic systems.  相似文献   

3.
For purposes of theoretical analysis, competition between distantlyrelated taxa is interpreted as asymmetric competition. Severalkinds of situations are examined: A predator competes with oneof its prey species for a second resource; competitors utilizesuccessive stages in the life cycles of prey; one predator facilitatesthe resource utilization of its competitor; competitors differin their vulnerability to predation. Methods of signed digraphs(loop analysis) and statistics over time are used to predictthe qualitative consequences of the different interaction patterns.  相似文献   

4.
Competition refuges and coexistence: an example from Serengeti carnivores   总被引:10,自引:1,他引:9  
1. In the last two decades predator–prey models have shown that 'refuges', in which prey can seek respite from predation, are crucial for the persistence of prey and predator. This concept is equally applicable to interspecific competition and, in a heterogeneous environment, species with low competitive ability should seek out 'competition refuges' where competition is reduced.
2. Cheetahs have low competitive ability compared with their principal competitors, hyenas and lions, which are directly responsible for their low density. This study uses distribution data collected in the Serengeti National Park in Tanzania over a 4-year period to show that cheetahs are more strongly associated with each other than with their competitors and utilize areas with low-density prey.
3. Cheetahs exhibit local avoidance behaviour in both space and time with respect to lions and hyenas. This behaviour is facultative and is strongest when cheetahs are engaged in activities that might expose them to food loss or increase the risk of close interactions, such as when they are hunting or eating.
4. Lactating cheetahs, whose range is restricted, are more likely to have difficulties finding prey and come into more frequent contact with lions than free-ranging animals.
5. It is argued that although cheetahs always lose in direct competition, they persist in the ecosystem by seeking out 'competition refuges' with low densities of lions and hyenas and that their mobility is the key to their continued coexistence with these predators. This pattern of distribution may be generally applicable to other species which, although widely distributed, always occur at low densities.  相似文献   

5.
Occurrence of cannibalism and inferior competitive ability of predators compared to their prey have been suggested to promote coexistence in size-structured intraguild predation (IGP) systems. The intrinsic size-structure of fish provides the necessary prerequisites to test whether the above mechanisms are general features of species interactions in fish communities where IGP is common. We first experimentally tested whether Arctic char (Salvelinus alpinus) were more efficient as a cannibal than as an interspecific predator on the prey fish ninespine stickleback (Pungitius pungitius) and whether ninespine stickleback were a more efficient competitor on the shared zooplankton prey than its predator, Arctic char. Secondly, we performed a literature survey to evaluate if piscivores in general are more efficient as cannibals than as interspecific predators and whether piscivores are inferior competitors on shared resources compared to their prey fish species. Both controlled pool experiments and outdoor pond experiments showed that char imposed a higher mortality on YOY char than on ninespine sticklebacks, suggesting that piscivorous char is a more efficient cannibal than interspecific predator. Estimates of size dependent attack rates on zooplankton further showed a consistently higher attack rate of ninespine sticklebacks compared to similar sized char on zooplankton, suggesting that ninespine stickleback is a more efficient competitor than char on zooplankton resources. The literature survey showed that piscivorous top consumers generally selected conspecifics over interspecific prey, and that prey species are competitively superior compared to juvenile piscivorous species in the zooplankton niche. We suggest that the observed selectivity for cannibal prey over interspecific prey and the competitive advantage of prey species over juvenile piscivores are common features in fish communities and that the observed selectivity for cannibalism over interspecific prey has the potential to mediate coexistence in size structured intraguild predation systems.  相似文献   

6.
Recent studies suggest the necessity of understanding the interactive effects of predation and productivity on species coexistence and prey diversity. Models predict that coexistence of prey species with different competitive abilities can be achieved if inferior resource competitors are less susceptible to predation and if productivity and/or predation pressure are at intermediate levels. Hence, predator effects on prey diversity are predicted to be highly context dependent: enhancing diversity from low to intermediate levels of productivity or predation and reducing diversity of prey at high levels of productivity or predation. While several studies have examined the interactive effects of herbivory and productivity on primary producer diversity, experimental studies of such effects in predator‐prey systems are rare. We tested these predictions using an aquatic field mesocosm experiment in which initial density of the zooplankton predator Notonecta undulata and productivity were manipulated to test their interactive effects on diversity of seven zooplankton, cladoceran species that were common in surrounding ponds. Two productivity levels were imposed via phosphorus enrichment at levels comparable to low and intermediate levels found within neighboring natural ponds. We used open systems to allow for natural dispersal and behaviorally‐mediated numerical responses by the flight‐capable predator. Effects of predators on zooplankton diversity depended on productivity level. At low and high productivity, prey species richness declined while at high productivity it showed a unimodal relationship with increasing the predator density. Effects of treatments were weaker when using Pielou's evenness index or the inverse Simpson index as measures of prey diversity. Our findings are generally consistent with model predictions in which predators can facilitate prey coexistence and diversity at intermediate levels of productivity and predation intensity. Our work also shows that the functional form of the relationship between prey diversity and predation intensity can be complex and highly dependent on environmental context.  相似文献   

7.
Scavenging can have important consequences for food web dynamics, for example, it may support additional consumer species and affect predation on live prey. Still, few food web models include scavenging. We develop a dynamic model that includes two facultative scavenger species, which we refer to as the predator or scavenger species according to their natural scavenging propensity, as well as live prey, and a carrion pool to show ramifications of scavenging for predation in simple food webs. Our modeling suggests that the presence of scavengers can both increase and decrease predator kill rates and overall predation in model food webs and the impact varies (in magnitude and direction) with context. In particular, we explore the impact of the amount of dynamics (exploitative competition) allowed in the predator, scavenger, and prey populations as well as the direction and magnitude of interference competition between predators and scavengers. One fundamental prediction is that scavengers most likely increase predator kill rates, especially if there are exploitative feedback effects on the prey or carrion resources like is normally observed in natural systems. Scavengers only have minimal effects on predator kill rate when predator, scavenger, and prey abundances are kept constant by management. In such controlled systems, interference competition can greatly affect the interactions in contrast to more natural systems, with an increase in interference competition leading to a decrease in predator kill rate. Our study adds to studies that show that the presence of predators affects scavenger behavior, vital rates, and food web structure, by showing that scavengers impact predator kill rates through multiple mechanisms, and therefore indicating that scavenging and predation patterns are tightly intertwined. We provide a road map to the different theoretical outcomes and their support from different empirical studies on vertebrate guilds to provide guidance in wildlife management.  相似文献   

8.
The mineral and biochemical food quality of prey may limit predator production. This well‐studied direct bottom–up effect is especially prominent for herbivore–plant interactions. Low‐quality prey species, particularly when defended, are generally considered to be less prone to predator‐driven extinction. Undefended high‐quality prey species sustain high predator production thereby potentially increasing their own extinction risk. The food quality of primary producers is highly species‐specific. In communities of competing prey species, predators thus may supplement their diets of low‐quality prey with high‐quality prey, leading to indirect horizontal interactions between prey species of different food quality. We explore how these predator‐mediated indirect interactions affect species coexistence in a general predator–prey model that is parametrized for an experimental algae– rotifer system. To cover a broad range of three essential functional traits that shape many plant–herbivore interactions we consider differences in 1) the food quality of the prey species, 2) their competitive ability for nutrient uptake and 3) their defence against predation. As expected, low food quality of prey can, similarly to defence, provide protection against extinction by predation. Counterintuitively, our simulations demonstrate that being of high food quality also prevents extinction of that prey species and additionally promotes coexistence with a competing, low‐quality prey. The persistence of the high‐quality prey enables a high conversion efficiency and control of the low‐quality prey by the predator and allows for re‐allocation of nutrients to the high‐quality competitor. Our results show that high food quality is not necessarily detrimental for a prey species but instead can protect against extinction and promote species richness and functional biodiversity.  相似文献   

9.
Experimental studies in temperate regions have revealed that competition and predation interact to shape aquatic communities. Predators typically reduce the effect of competition on growth and competitors provide alternative prey subjects, which may also alter predation. Here, we examine the independent and combined effects of competition and predation on the survival and growth of hatchling tadpoles of two widespread co‐occurring Neotropical hylid frogs (Agalychnis callidryas and Dendropsophus ebraccatus). Using 400 L mesocosms, we used a 2 × 3 factorial substitutive design, which crossed tadpole species composition with the presence or absence of a free‐roaming predator (Anax amazili dragonfly larva). Dragonflies were effective predators of both species, but had larger effects on A. callidryas survival. Both species had similar growth rates when alone, whereas A. callidryas grew 30 percent faster than D. ebraccatus when they co‐occurred, suggesting interspecific rather than intraspecific competition had relatively stronger effects on D. ebraccatus growth, while the opposite was true for A. callidryas. Predator presence dramatically reduced growth rates of both species and erased this asymmetry. Results suggest that the effects of predator induction (i.e., nonconsumptive effects) on growth were larger than both consumptive and competitive effects. Our study demonstrates that predators have strong effects on both survival and growth of prey, highlighting the potential importance of predators in shaping prey populations and tropical aquatic food web interactions. Abstract in Spanish is available at http://www.blackwell‐synergy.com/loi/btp .  相似文献   

10.
Predator–prey interactions presumably play major roles in shaping the composition and dynamics of microbial communities. However, little is understood about the population biology of such interactions or how predation-related parameters vary or correlate across prey environments. Myxococcus xanthus is a motile soil bacterium that feeds on a broad range of other soil microbes that vary greatly in the degree to which they support M. xanthus growth. In order to decompose predator–prey interactions at the population level, we quantified five predation-related parameters during M. xanthus growth on nine phylogenetically diverse bacterial prey species. The horizontal expansion rate of swarming predator colonies fueled by prey lawns served as our measure of overall predatory performance, as it incorporates both the searching (motility) and handling (killing and consumption of prey) components of predation. Four other parameters—predator population growth rate, maximum predator yield, maximum prey kill, and overall rate of prey death—were measured from homogeneously mixed predator–prey lawns from which predator populations were not allowed to expand horizontally by swarming motility. All prey species fueled predator population growth. For some prey, predator-specific prey death was detected contemporaneously with predator population growth, whereas killing of other prey species was detected only after cessation of predator growth. All four of the alternative parameters were found to correlate significantly with predator swarm expansion rate to varying degrees, suggesting causal interrelationships among these diverse predation measures. More broadly, our results highlight the importance of examining multiple parameters for thoroughly understanding the population biology of microbial predation.  相似文献   

11.
Trophic interactions in multiprey systems can be largely determined by prey distributions. Yet, classic predator–prey models assume spatially homogeneous interactions between predators and prey. We developed a spatially informed theory that predicts how habitat heterogeneity alters the landscape-scale distribution of mortality risk of prey from predation, and hence the nature of predator interactions in multiprey systems. The theoretical model is a spatially explicit, multiprey functional response in which species-specific advection–diffusion models account for the response of individual prey to habitat edges. The model demonstrates that distinct responses of alternative prey species can alter the consequences of conspecific aggregation, from increasing safety to increasing predation risk. Observations of threatened boreal caribou, moose and grey wolf interacting over 378 181 km2 of human-managed boreal forest support this principle. This empirically supported theory demonstrates how distinct responses of apparent competitors to landscape heterogeneity, including to human disturbances, can reverse density dependence in fitness correlates.  相似文献   

12.
1. Predation risk affects interspecific competition by decreasing foraging activity and relative competitive ability. Predation risk is determined by predators' prey choice and prey responses, both of which can be influenced by temperature. Temperature is especially important for larval prey and can result in a trade‐off between predator‐induced decreases in foraging activity and growth. Interspecific competition must also be examined in relation to intraspecific density‐dependent competition; weaker interspecific competition leads to coexistence of competitors. 2. This study explored how temperature (15 and 25 °C) could affect a focal species, larvae of the mosquito Culex quinquefasciatus, by examining prey choice in a shared predator (mosquitofish; Gambusia holbrooki) and the effects of predation risk on interspecific competition with Limnodynastes peronii tadpoles. Intraspecific density‐dependent competition in C. quinquefasciatus at these temperatures was also examined. 3. At 25 °C, G. holbrooki consumption of both C. quinquefasciatus and L. peronii increased; however, the effects of interspecific competition on mosquito survival did not decrease with L. peronii exposure to predation risk. The relationship between intraspecific density‐dependent competition and interspecific competition was temperature‐dependent, with competitive dominance of L. peronii at 25 °C. Male and female mosquitoes had different temperature‐dependent responses, indicating sex‐specific intrinsic responses to starvation and differential selection pressures. At 25 °C, females were susceptible to interspecific competition by L. peronii, while males were susceptible to intraspecific competition. 4. The use of competitors as biological controls has implications for mosquito disease transmission, and these results suggest that control effectiveness may be modified by climate change.  相似文献   

13.
We consider systems with one predator and one prey, or a common predator and two prey species (apparent competitors) in source and sink habitats. In both models, the predator species is vulnerable to extinction, if productivity in the source is insufficient to rescue demographically deficient sink populations. Conversely, in the model with two prey species, if the source is too rich, one of the prey species may be driven extinct by apparent competition, since the predator can maintain a large population because of the alternative prey. Increasing the rate of predator movement from the source population has opposite effects on prey and predator persistence. High emigration rate exposes the predator population to danger of extinction, reducing the number of individuals that breed and produce offspring in the source habitat. This may promote coexistence of prey by relaxing predation pressure and apparent competition between the two prey species. The number of sinks and spatial arrangement of patches, or connectivity between patches, also influence persistence of the species. More sinks favor the prey and fewer sinks are advantageous to the predator. A linear pattern with the source at one end is profitable for the predator, and a centrifugal pattern in which the source is surrounded by sinks is advantageous to the prey. When the dispersal rate is low, effects of the spatial structure may exceed those of the number of sinks. In brief, productivity in patches and patterns of connectivity between patches differentially influence persistence of populations in different trophic levels.  相似文献   

14.
Summary Species interactions, as revealed by historical introductions of predators and competitors, affect population densities and sometimes result in extinctions of island reptiles. Mongoose introductions to Pacific islands have diminished the abundance of diurnal lizards and in some cases have led to extinctions. Through these population level effects, biogeographic patterns are produced, such as the reciprocal co-occurrence pattern seen with the tuatara and its predator, the Polynesian rat, and with the tropical gecko competitorsHemidactylus frenatus andLepidodactylus lugubris in urban habitats in the Pacific. Although competition has led to changes in abundance and has caused habitat displacement and reduced colonization success, extinctions of established reptile populations usually occur only as a result of predation.These introductions, along with many manipulative experiments, demonstrate that present day competition and predation are potent forces shaping community structure and geographic distributions. The human introduction of species to islands can be viewed as an acceleration of the natural processes of range expansion and colonization. The immediate biotic consequences of these natural processes should be of the same intensity as those of the human introductions. Coevolution may subsequently act to ameliorate these interactions and reduce the dynamical response of one species to the other. The role played by coevolution in mediating interactions between competitors and predator and prey is highlighted by the susceptibility of predator-naive endemic species to introduced predators and the invalidity of species-poor communities.  相似文献   

15.
We present a complete parametric analysis of a predator–prey system influenced by a top predator. We study ecosystems with abundant nutrient supply for the prey where the prey multiplication can be considered as proportional to its density. The main questions we examine are the following: (1) Can the top predator stabilize such a system at low densities of prey? (2) What possible dynamic behaviors can occur? (3) Under which conditions can the top predation result in the system stabilization? We use a system of two nonlinear ordinary differential equations with the density of the top predator as a parameter. The model is investigated with methods of qualitative theory of ODEs and the theory of bifurcations. The existence of 12 qualitatively different types of dynamics and complex structure of the parametric space are demonstrated. Our studies of phase portraits and parametric diagrams show that a top predator can be an important factor leading to stabilization of the predator-prey system with abundant nutrient supply. Although the model here is applied to the plankton communities with fish (or carnivorous zooplankton) as the top trophic level, the general form of the equations allows applications of our results to other ecological systems.  相似文献   

16.
Susan C. Walls 《Oecologia》1995,101(1):86-93
The aquatic larvae of two species of salamanders coexist as a result of differences in their competitive abilities: Ambystoma talpoideum is a superior aggressor, whereas A. maculatum is a superior forager. I examined the behavioral mechanisms that permit these species to coexist with their predatory congener, A. opacum. I asked whether the two prey species differ in their vulnerability to predation and in their use of structural and spatial refugia when under the risk of predation; such inter-specific variation may allow predation to contribute indirectly to prey coexistence. Larval A. maculatum (the superior forager) was more vulnerable to predation by A. opacum than was A. talpoideum, and only the latter species significantly increased its use of structural refugia (leaf litter) in the presence of the predator. In pond enclosures, both species of prey exhibited diel patterns of microhabitat use; significantly more larvae occupied shallow regions of enclosures during the day and migrated to deeper water (a spatial refugium) at night. However, when considered separately, neither (1) the presence of a predatory larval A. opacum nor (2) an increased density of intra- and interspecific competitors significantly altered this habitat shift for either prey species. Rather, diel microhabitat usage in A. talpoideum was significantly affected by an interaction between predator presence and competitor density. My results demonstrate the importance of refugia to coexistence in this predator-prey assemblage. Furthermore, predation by A. opacum may mediate prey competition; that is, preferential consumption of A. maculatum may reduce the competitive impact of this superior forager on A. talpoideum, thus enhancing their coexistence.  相似文献   

17.
While the majority of studies on dispersal effects on patterns of coexistence among species in a metacommunity have focused on resource competitors, dispersal in systems with predator–prey interactions may provide very different results. Here, we use an analytical model to study the effect of dispersal rates on coexistence of two prey species sharing a predator (apparent competition), when the traits of that predator vary. Specifically, we explore the range in immigration rates where apparent competitors are able to coexist, and how that range changes with predator selectivity and efficiency. We find that if the inferior apparent competitor has a higher probability of being consumed, it will require less immigration to invade and to exclude the superior prey as the predator becomes more opportunistic. However, if the inferior apparent competitor has a lower probability of being consumed (and lower growth rates), higher immigration is required for the inferior prey to invade and exclude the superior prey as the predator becomes more opportunistic. We further find that the largest range of immigration rates where prey coexist occurs when predator selectivity is intermediate (i.e. they do not show much bias towards consuming one species or the other). Increasing predator efficiency generally reduces the immigration rates necessary for the inferior apparent competitor to invade and exclude the superior apparent competitor, but also reduces the range of immigration rates where the two apparent competitors can coexist. However, when the superior apparent competitor has a higher probability of being consumed, increased predator efficiency can increase the range of parameters where the species can coexist. Our results are consistent with some of the variation observed in the effect of dispersal on prey species richness in empirical systems with top predators.  相似文献   

18.
A model for two competing prey species and one predator is formulated in which three essential nutrients can limit growth of all populations. Prey take up dissolved nutrients and predators ingest prey, assimilating a portion of ingested nutrients and recycling or respiring the balance. For all species, the nutrient contents of individuals vary and growth is coupled to increasing content of the limiting nutrient. This model was parameterized to describe a flagellate preying on two bacterial species, with carbon (C), nitrogen (N), and phosphorus (P) as nutrients. Parameters were chosen so that the two prey species would stably coexist without predators under some nutrient supply conditions. Using numerical simulations, the long-term outcomes of competition and predation were explored for a gradient of N:P supply ratios, varying C supply, and varying preference of the predator for the two prey. Coexistence and competitive exclusion both occurred under some conditions of nutrient supply and predator preference. As in simpler models of competition and predation these outcomes were largely governed by apparent competition mediated by the predator, and resource competition for nutrients whose effective supply was partly governed by nutrient recycling also mediated by the predator. For relatively small regions of parameter space, more complex outcomes with multiple attractors or three-species limit cycles occurred. The multiple constraints posed by multiple nutrients held the amplitudes of these cycles in check, limiting the influence of complex dynamics on competitive outcomes for the parameter ranges explored.  相似文献   

19.
The ecological effects of predator removal and its consequence on prey behavior have been investigated widely; however, predator removal can also cause contemporary evolution of prey resulting in prey genetic change. Here we tested the role of predator removal on the contemporary evolution of prey traits such as movement, reproduction and foraging. We use EcoSim simulation which allows complex intra- and inter-specific interactions, based on individual evolving behavioral models, as well as complex predator–prey dynamics and coevolution in spatially homogenous and heterogeneous worlds. We model organisms' behavior using fuzzy cognitive maps (FCM) that are coded in their genomes which has a clear semantics making reasoning about causality of any evolved behavior possible. We show that the contemporary evolution of prey behavior owing to predator removal is also accompanied by prey genetic change. We employed machine learning methods, now recognized as holding great promise for the advancement of our understanding and prediction of ecological phenomena. A classification algorithm was used to demonstrate the difference between genomes belonging to prey coevolving with predators and prey evolving in the absence of predation pressure. We argue that predator introductions to naive prey might be destabilizing if prey have evolved and adapted to the absence of predators. Our results suggest that both predator introductions and predator removal from an ecosystem have widespread effects on the survival and evolution of prey by altering their genomes and behavior, even after relatively short time intervals. Our study highlights the need to consider both ecological and evolutionary time scales, as well as the complex interplay of behaviors between trophic levels, in determining the outcomes of predator–prey interactions.  相似文献   

20.
It is well known that young, small predator stages are vulnerable to predation by conspecifics, intra-guild competitors or hyperpredators. It is less known that prey can also kill vulnerable predator stages that present no danger to the prey. Since adult predators are expected to avoid places where their offspring would run a high predation risk, this opens the way for potential prey to deter dangerous predator stages by killing vulnerable predator stages. We present an example of such a complex predator–prey interaction. We show that (1) the vulnerable stage of an omnivorous arthropod prey discriminates between eggs of a harmless predator species and eggs of a dangerous species, killing more eggs of the latter; (2) prey suffer a minor predation risk from newly hatched predators; (3) adult predators avoid ovipositing near killed predator eggs, and (4) vulnerable prey near killed predator eggs experience an almost fourfold reduction of predation. Hence, by attacking the vulnerable stage of their predator, prey deter adult predators and thus reduce their own predation risk. This provides a novel explanation for the killing of vulnerable stages of predators by prey and adds a new dimension to anti-predator behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号