首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three 35 bp-DNA duplexes have been assembled from synthetic oligonucleotides by means of DNA ligase or 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide in two parallel series of experiments. The "top" strands of these duplexes correspond either to the imperfect (natural) or perfect terminal inverted repeats of the IS1. Tm of DNA duplexes composed of 2 to 6 different oligonucleotides were investigated by UV spectroscopy. It was shown that DNA ligase effectively joined oligonucleotides even under conditions of DNA duplex instability. However, there is a minimum duplex size (within the range of 9-15 bp) below which the enzymatic ligation is ineffective. Chemical assembly of duplexes took place only if the double helix was stable. The yield was 50% after two successive ligation cycles. Efficiency of the chemical ligation depends on the nature of the nucleotide units to be joined.  相似文献   

2.
C Goffin  V Bailly    W G Verly 《Nucleic acids research》1987,15(21):8755-8771
Using synthetic oligodeoxynucleotides with 3'-OH ends and 32P-labelled 5'-phosphate ends and the technique of polyacrylamide gel electrophoresis, it is shown that, in the presence of the complementary polynucleotide, an AP (apurinic or apyrimidinic) site at the 3' or the 5' end of the labelled oligodeoxynucleotides does not prevent their ligation by T4 DNA ligase, although the reaction rate is decreased. This decrease is more severe when the AP site is at the 3' end; the activated intermediates accumulate showing that it is the efficiency of the adenyl-5'-phosphate attack by the 3'-OH of the base-free deoxyribose which is mostly perturbed. Using the same technique, it is shown that a mispaired base at the 3' or 5' end of oligodeoxynucleotides does not prevent their ligation. A one-nucleotide gap, limited by 3'-OH and 5'-phosphate, can also be closed by T4 DNA ligase although with difficulty; here again the activation of the 5'-phosphate end does not seem to be slowed down, but rather the 3'-OH attack of the adenyl-5'-phosphate. All these anomalous ligations take place with the nick or the gap in front of a continuous complementary strand. Blunt ends ligation of correct duplexes occurs readily; however an AP site or a mispaired base at the 3' or 5' end of one strand of the duplexes prevents ligation between these strands. But a missing nucleotide (responsible for one unpaired nucleotide protruding at the 3' or 5' end of the complementary strand) does not stop ligation of the shorter oligodeoxynucleotides between independent duplexes.  相似文献   

3.
Purification and properties of two DNA ligases from human placenta   总被引:3,自引:0,他引:3  
Two DNA ligase activities have been separated, purified, and characterized. The resolution of the two enzymes from crude extracts was initially achieved through Polymin P precipitation. The ligation activity precipitating with the nucleic acids on treatment with Polymin P is designated as DNA ligase I, and an activity remaining in the supernatant fraction, as DNA ligase II. DNA ligase I and II are ATP and Mg2+-dependent enzymes with pH optima of 7.8 and 8.0 and isoelectric points of 6.9 and 7.6, respectively. The purified I and II DNA ligase activities have molecular weights of 83,000 and 89,000, respectively. Both activities are inhibited by dATP and inorganic pyrophosphate. However, in the presence of optimum rATP levels, dATP stimulates DNA ligase II activity, whereas DNA ligase I is inhibited under the same conditions. Both activities are DNA specific and ligation follows reaction steps similar to those described for the Escherichia coli DNA ligase.  相似文献   

4.
Non-enzymatic, template-directed ligation of oligonucleotides in aqueous solution has been of great interest because of its potential synthetic and biomedical utility and implications for the origin of life. Though there are many methods for template-directed chemical ligation of oligonucleotides, there are only three reported photochemical methods. In the first report, template-directed photoligation was effected by cyclobutane dimer formation between the 5'- and 3'-terminal thymidines of two oligonucleotides with >290 nm light, which also damages DNA itself. To make the photochemistry of native DNA more selective, we have replaced the thymidine at the 5'-end of one oligonucleotide with 4-thiothymidine (s4T) and show that it photoreacts at 366 nm with a T at the 3'-endof another oligonucleotide in the presence of a complementary template. When a single mismatch is introduced opposite either the s4T or its adjoining T, the ligation efficiency drops by a factor of five or more. We also show that by linking the two ends of the oligonucleotides together, photoligation can be used to form circular DNA molecules and to 'photopadlock' circular DNA templates. Thus, s4T-mediated photo-ligation may have applications to phototriggered antisense-based or antigene-based genetic tools, diagnostic agents and drugs, especially for those situations in which chemical or enzyme-mediated ligation isundesirable or impossible, for example inside a cell.  相似文献   

5.
A Masny  A Plucienniczak 《BioTechniques》2001,31(4):930-4, 936
A method for generating limited representations of total bacterial DNA, without prior knowledge of the DNA sequence, has been developed. This method consists of three steps: digestion with two restriction enzymes, ligation of two oligonucleotide adapters corresponding to the restriction sites, and selective PCR amplification of the ligation products. The method relies on the use of two restriction enzymes with considerable differences in cleavage frequency of the investigated DNA and the ligation of two different oligonucleotides, each corresponding to one of the two cohesive ends of DNA fragments. Three subsets of DNA fragments are generated during digestion and subsequent ligation: terminated with the same oligonucleotide on both 5' ends of DNA fragments (two subsets) and terminated with two different oligonucleotides. Suppression PCR allows only the third subset of DNA fragments to be amplified exponentially. The method allows bacterial species strain differentiation on the basis of the different DNA band patterns obtained after electrophoresis in polyacrylamide gels stained with ethidium bromide and visualized in UV light.  相似文献   

6.
Design and calibration of a semi-synthetic DNA phasing assay   总被引:2,自引:2,他引:0  
Electrophoretic assays of intrinsic DNA shape and shape changes induced by ligand binding are extremely useful because of their convenience and simplicity. The development of calibrations and empirical quantitative relationships permits highly accurate measurement of DNA shape using electrophoresis. Many conventional analyses employ the unidirectional ligation of short DNA duplexes. However, many oligonucleotides (typically more than 20) must often be synthesized for a single experiment. Additionally, the length of the DNA duplex can become limiting, preventing the analysis of certain DNA sequences. We now describe a semi-synthetic electrophoretic phasing method that offers several advantages, including a reduced number of required synthetic oligonucleotides, the ability to analyze longer DNA duplexes and a simplified approach for data analysis. We characterize semi-synthetic DNA probes in electrophoretic phasing assays by ligation of synthetic duplexes containing A5 tracts between two longer restriction fragments. Upon electrophoresis, the gel mobility is strongly correlated with the predicted DNA curvature provided by the reference A5 tracts. Having obtained this calibration, we show that the semi-synthetic phasing assay can be readily and economically applied to analyze DNA curvature induced by DNA charge modifications and DNA bending due to peptide binding.  相似文献   

7.
The efficiency of enzymatic conversion of DNA complexes containing non-nucleotide inserts has been studied. T4 DNA ligase and Taq DNA polymerase have been included in the study as examples of widely used DNA-dependent enzymes. A series of substrate DNA complexes have been formed using native oligonucleotides and bridged ones bearing non-nucleotide inserts based on phosphodiesters of di-, tetra-, or hexaethylene glycol, 1,5-pentanediol, 1,10-decanediol, and 3-hydroxy-2(hydroxymethyl)-tetrahydrofuran. The perturbation in DNA located far from the site of the enzyme action had almost no influence on the substrate properties of the complex, while insertion near this site significantly deteriorated them. The use of a series of modified duplexes allows one to locate the position of the enzyme-binding site on DNA substrate with the accuracy of 1–2 nucleotides. The presence of a non-nucleotide insert in the complex has been also shown to enhance the efficiency of single mismatch discrimination upon both template-directed ligation and extension of oligonucleotides.  相似文献   

8.
Oligodeoxyribonucleotides (5'-phosphorylated) of varying lengths were capped using a polyamide linker to form thermodynamically stable, endcapped DNA duplexes containing 8-14 bp. We have employed these endcapped DNA duplexes as tools to determine the DNA footprint of T4 DNA ligase. By high-performance liquid chromatography and PAGE analysis of the ligation mixtures of the endcapped DNA duplexes, we have found that by varying the lengths and the position of the nick, we can determine the minimal DNA-binding site as well as the mode of binding (symmetrical or asymmetrical binding) by the enzyme. The results of the study revealed that a 11 bp endcapped duplex was the shortest duplex effectively ligated. Dependence of ligation efficiency on nick position demonstrates that T4 DNA ligase bound asymmetrically to its DNA substrate. The use of a set of thermodynamically stable endcapped deoxyribonucleoside duplexes as a tool to elucidate the DNA footprint provides an efficient strategy for footprinting, which avoids ambiguities associated with chemical and biochemical footprinting methods.  相似文献   

9.
Highly purified DNA ligase from T4 infected E. coli displays an RNA nicking activity which cleaves endonucleolytically the RNA of ribo-desoxy-and ribo-ribo type doublestranded structures to oligonucleotides with 5'phosphoryl-and 3'hydroxy termini. In the presence of ATP the generated nicks are repaired by the ligase except at the ends of the doublestranded regions where some short oligonucleotides are released before ligation can occur. As judged from its behaviour during the various purification steps and from some of its properties, the nicking activity seems to be different from known nicking enzymes.  相似文献   

10.
To mimic large numbers of nicked DNA duplexes we used a technique that produces nicked duplex DNA substrates by hybridization of complementary oligonucleotides, adjacent to an initiating primer, which are ligated together by a thermostable DNA ligase. Sequential ligation of nonanucleotides to this primary duplex results in the formation of polymers that can be analyzed by gel electrophoresis. The extent of polymerization is a measure of the efficiency of ligation. We determined the efficiency of ligation of nonanucleotides, using various length initiating primers, with three thermostable DNA ligases: Thermus thermophilus (Tth), Thermus scotoductus (Ts), and Rhodothermus marinus (Rm). Analysis of the effect of temperature for each ligase, and for each directing primer length, revealed that at 37 and 41 degrees C there was variation between ligase efficiency in the order Rm > or = Ts > or = Tth. The higher temperature of 46 degrees C was optimal for polymerization with each of the ligases and Rm ligase was the most efficient. Analysis of directionality of the ligations reactions suggests that for each of the Thermus ligases we tested, there was a bias to polymerization of nonanucleotides in a 5'-3' direction.  相似文献   

11.
Oligodeoxyribonucleotides (5′-phosphorylated) of varying lengths were capped using a polyamide linker to form thermodynamically stable, endcapped DNA duplexes containing 8–14 bp. We have employed these endcapped DNA duplexes as tools to determine the DNA footprint of T4 DNA ligase. By high-performance liquid chromatography and PAGE analysis of the ligation mixtures of the endcapped DNA duplexes, we have found that by varying the lengths and the position of the nick, we can determine the minimal DNA-binding site as well as the mode of binding (symmetrical or asymmetrical binding) by the enzyme. The results of the study revealed that a 11 bp endcapped duplex was the shortest duplex effectively ligated. Dependence of ligation efficiency on nick position demonstrates that T4 DNA ligase bound asymmetrically to its DNA substrate. The use of a set of thermodynamically stable endcapped deoxyribonucleoside duplexes as a tool to elucidate the DNA footprint provides an efficient strategy for footprinting, which avoids ambiguities associated with chemical and biochemical footprinting methods.  相似文献   

12.
Substrate properties of 25-nt parallel-stranded linear DNA duplexes   总被引:2,自引:0,他引:2  
K Rippe  T M Jovin 《Biochemistry》1989,28(24):9542-9549
Four 25-nt oligonucleotides consisting of sequences of dA and dT (D1-4) have been synthesized. As shown in a companion paper (Rippe et al., 1989), the two combinations D1.D3 and D2.D4 form normal antiparallel duplexes, whereas the pairs D1.D2 and D3.D4 constitute duplexes with the same sequences, but with the two strands parallel to each other. The activities of the following DNA processing enzymes and chemical reagents on the parallel stranded (ps) and antiparallel stranded (aps) duplexes were tested. (i) The restriction endonucleases DraI, SspI, and MseI do not cut the ps duplexes. (ii) DNase I and exonuclease III exhibit a much lower activity with the ps duplexes. (iii) The nuclease activities of S 1 nuclease, micrococcal nuclease (S 7), phage lambda 5'-exonuclease, and the 3'-5' nuclease activity of Escherichia coli DNA polymerase I and its large fragment are higher with the ps than with the aps substrates. (iv) Bal 31 nuclease and the chemical nuclease 1,10-phenanthroline-copper ion [(OP)2Cu+] degrade ps-DNA and aps-DNA at approximately the same rate but show preferred cutting sites only with the aps molecules. (v) The iron(II)-EDTA complex has equivalent nuclease activities with the ps and the aps molecules. (vi) The ps duplex is not a substrate for blunt-end ligation with phage T4 DNA ligase.  相似文献   

13.
Specific, complete and reversible inhibition of the joining of blunt ended DNA duplexes catalyzed by the T4 DNA ligase can be obtained by using ATP, the enzyme cofactor, at concentrations of 5 mM and higher. On cohesive DNA ends, 5 mM ATP, which completely inhibits blunt end ligation, brings about only a limited (8%) reduction in the level of joining obtainable under optimal ATP concentration (0,5 mM or lower). A similar but less drastic uncoupling of the two kinds of joining can be achieved at lower ATP concentration (2,5 mM) using 1 mM Mg++. The joining of DNA blunt ends can also be inhibited almost completely by 10 mM spermidine, without noticeable effect on the joining of cohesive termini.  相似文献   

14.
15.
Effects of dangling ends on duplex yield have been assessed by hybridisation of oligonucleotides to an array of oligonucleotides synthesised on the surface of a solid support. The array consists of decanucleotides and shorter sequences. One of the decanucleotides in the array was fully complementary to the decanucleotide used as solution target. Others were complementary over seven to nine bases, with overhangs of one to three bases. Duplexes involving different decanucleotides had different overhangs at the 3' and 5' ends. Some duplexes involving shorter oligonucleotides had the same regions of complementarity as these decanucleotides, but with fewer overhanging bases. This analysis allows simultaneous assessment of the effects of differing bases at both 5' and 3' ends of the oligonucleotide in duplexes formed under identical reaction conditions. The results indicate that a 5' overhang is more stabilising than a 3' overhang, which is consistent with previous results obtained with DNA overhangs. However, it is not clear whether this is due to the orientation of the overhang or to the effect of specific bases.  相似文献   

16.
Chlorella virus PBCV-1 DNA ligase seals nicked duplex DNA substrates consisting of a 5'-phosphate-terminated strand and a 3'-hydroxyl-terminated strand annealed to a bridging template strand, but cannot ligate a nicked duplex composed of two DNAs annealed on an RNA template. Whereas PBCV-1 ligase efficiently joins a 3'-OH RNA to a 5'-phosphate DNA, it is unable to join a 3'-OH DNA to a 5'-phosphate RNA. The ligase discriminates at the substrate binding step between nicked duplexes containing 5'-phosphate DNA versus 5'-phosphate RNA strands. PBCV-1 ligase readily seals a nicked duplex DNA containing a single ribonucleotide substitution at the reactive 5'-phosphate end. These results suggest a requirement for a B-form helical conformation of the polynucleotide on the 5'-phosphate side of the nick. Single base mismatches at the nick exert disparate effects on DNA ligation efficiency. PBCV-1 ligase tolerates mismatches involving the 5'-phosphate nucleotide, with the exception of 5'-A:G and 5'-G:A mispairs, which reduce ligase activity by two orders of magnitude. Inhibitory configurations at the 3'-OH nucleotide include 3'-G:A, 3'-G:T, 3'-T:T, 3'-A:G, 3'-G:G, 3'-A:C and 3'-C:C. Our findings indicate that Chlorella virus DNA ligase has the potential to affect genome integrity by embedding ribonucleotides in viral DNA and by sealing nicked molecules with mispaired ends, thereby generating missense mutations.  相似文献   

17.
Oligonucleotide-directed mutagenesis is a widely used method for studying enzymes and improving their properties. The number of mutants that can be obtained with this method is limited by the number of synthetic 25-30mer oligonucleotides containing the mutation mismatch, becoming impracticably large with increasing size of a mutant library. To make this approach more practical, shorter mismatching oligonucleotides (7-12mer) might be employed. However, the introduction of these oligonucleotides in dsDNA poses the problem of sealing a DNA nick containing 5'-terminal base pair mismatches. In the present work we studied the ability of T4 DNA ligase to catalyze this reaction. It was found that T4 DNA ligase effectively joins short oligonucleotides, yielding dsDNA containing up to five adjacent mismatches. The end-joining rate of mismatching oligonucleotides is limited by the formation of the phosphodiester bond, decreasing with an increase in the number of mismatching base pairs at the 5'-end of the oligonucleotide substrate. However, in the case of a 3 bp mismatch, the rate is higher than that obtained with a 2 bp mismatch. Increasing the matching length with the number of mismatching base pairs fixed, or moving the mismatching motif downstream with respect to the joining site increases the rate of ligation. The ligation rate increases with the molar ratio [oligonucleotide:dsDNA]; however, at high excess of the oligonucleotide, inhibition of joining was observed. In conclusion, 9mer oligonucleotides containing a 3 bp mismatch are found optimal substrates to introduce mutations in dsDNA, opening perspectives for the application of T4 DNA ligase in mutagenesis protocols.  相似文献   

18.
Genetic experiments have determined that Ku, XRCC4, and ligase IV are required for repair of double-strand breaks by the end-joining pathway. The last two factors form a tight complex in cells. However, ligase IV is only one of three known mammalian ligases and is intrinsically the least active in intermolecular ligation; thus, the biochemical basis for requiring this ligase has been unclear. We demonstrate here a direct physical interaction between the XRCC4-ligase IV complex and Ku. This interaction is stimulated once Ku binds to DNA ends. Since XRCC4-ligase IV alone has very low DNA binding activity, Ku is required for effective recruitment of this ligase to DNA ends. We further show that this recruitment is critical for efficient end-joining activity in vitro. Preformation of a complex containing Ku and XRCC4-ligase IV increases the initial ligation rate 20-fold, indicating that recruitment of the ligase is an important limiting step in intermolecular ligation. Recruitment by Ku also allows XRCC4-ligase IV to use Ku's high affinity for DNA ends to rapidly locate and ligate ends in an excess of unbroken DNA, a necessity for end joining in cells. These properties are conferred only on ligase IV, because Ku does not similarly interact with the other mammalian ligases. We have therefore defined cell-free conditions that reflect the genetic requirement for ligase IV in cellular end joining and consequently can explain in molecular terms why this factor is required.  相似文献   

19.
Conditions for the ligation with T4 induced DNA ligase of two DNA molecules via their complementary sticky ends have been established which lead preferentially to the formation of hybrid molecules. This is demonstrated with two combinations of parent molecules varying greatly in their relative molecular weights. In one case the intact hybrid molecule could be directly isolated. In addition a DNA dependent quantitative electrophoretic assay for DNA ligase activity is described which does not need a radioactively labeled substrate. The ligation procedure has been shown to be useful in molecular cloning experiments.  相似文献   

20.
Site-directed modification of DNA duplexes by chemical ligation.   总被引:8,自引:8,他引:0       下载免费PDF全文
The efficiency of chemical ligation method have been demonstrated by assembling a number of DNA duplexes with modified sugar phosphate backbone. Condensation on a tetradecanucleotide template of hexa(penta)- and undecanucleotides differing only in the terminal nucleoside residue have been performed using water-soluble carbodiimide as a condensing agent. As was shown by comparing the efficiency of chemical ligation of single-strand breaks in those duplexes, the reaction rate rises 70 or 45 times if the 3'-OH group is substituted with an amino or phosphate group (the yield of products with a phosphoramidate or pyrophosphate bond is 96-100% in 6 d). Changes in the conformation of reacting groups caused by mismatched base pairs (A.A, A.C) as well as the hybrid rU.dA pair or an unpaired base make the template-directed condensation less effective. The thermal stability of DNA duplexes was assayed before and after the chemical ligation. Among all of the modified duplexes, only the duplex containing 3'-rU in the nick was found to be a substrate of T4 DNA ligase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号