首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have analyzed the mechanism by which M protein interacts with components of the viral envelope during Sendai virus assembly. Using recombinant vaccinia viruses to selectively express combinations of Sendai virus F, HN, and M proteins, we have successfully reconstituted M protein-glycoprotein interaction in vivo and determined the molecular interactions which are necessary and sufficient to promote M protein-membrane binding. Our results showed that M protein accumulates on cellular membranes via a direct interaction with both F and HN proteins. Specifically, our data demonstrated that a small fraction (8 to 16%) of M protein becomes membrane associated in the absence of Sendai virus glycoproteins, while > 75% becomes membrane bound in the presence of both F and HN proteins. Selective expression of M protein together with either F or HN protein showed that each viral glycoprotein is individually sufficient to promote efficient (56 to 73%) M protein-membrane binding. Finally, we observed that M protein associates with cellular membranes in a time-dependent manner, implying a need for either maturation or transport before binding to glycoproteins.  相似文献   

2.
Purified plasma membranes attached to polycationic polyacrylamide beads by their external surface were isolated from BHK cells infected with Sendai virus. Each of the viral proteins could be identified in the membranes of infected cells. Proteolysis with trypsin, which digests only the cytoplasmic surface of these membranes (because the external surface is protected by its attachment to beads), revealed that the internal proteins, L, P, NP, and M, were present on the cytoplasmic surface of the membrane and that small segments of the viral envelope glycoproteins, HN and F0, were partially exposed on the cytoplasmic surface. Since the major portions of HN and F0 are known to be present on the external membrane surface, these glycoproteins are transmembrane proteins before Sendai virus budding in infected cells.  相似文献   

3.
The human parainfluenza virus type 3 (HPIV3) fusion (F) and hemagglutinin-neuraminidase (HN) glycoproteins are the principal components involved in virion receptor binding, membrane penetration, and ultimately, syncytium formation. While the requirement for both F and HN in this process has been determined from recombinant expression studies, stable physical association of these proteins in coimmunoprecipitation studies has not been observed. In addition, coexpression of other heterologous paramyxovirus F or HN glycoproteins with either HPIV3 F or HN does not result in the formation of syncytia, suggesting serotype-specific protein differences. In this study, we report that simian virus 5 and Sendai virus heterologous HN proteins and measles virus hemagglutinin (H) were found to be down-regulated when coexpressed with HPIV3 F. As an alternative to detecting physical associations of these proteins by coimmunoprecipitation, further studies were performed with a mutant HPIV3 F protein (F-KDEL) lacking a transmembrane anchor and cytoplasmic tail and containing a carboxyl-terminal retention signal for the endoplasmic reticulum (ER). F-KDEL was defective for transport to the cell surface and could down-regulate surface expression of HPIV3 HN and heterologous HN/H proteins from simian virus 5, Sendai virus, and measles virus in coexpression experiments. HN/H down-regulation appeared to result, in part, from an early block to HPIV3 HN synthesis, as well as an instability of the heterologous HN/H proteins within the ER. In contrast, coexpression of F-KDEL with HPIV3 wild-type F or the heterologous receptor-binding proteins, respiratory syncytial virus glycoprotein (G) and vesicular stomatitis virus glycoprotein (G), were not affected in transport to the cell surface. Together, these results support the notion that the reported serotype-specific restriction of syncytium formation may involve, in part, down-regulation of heterologous HN expression.  相似文献   

4.
A protease activation mutant of Sendai virus, F1-R, causes a systemic infection in mice, whereas wild-type virus is exclusively pneumotropic (M. Tashiro, E. Pritzer, M. A. Khoshnan, M. Yamakawa, K. Kuroda, H.-D. Klenk, R. Rott, and J. T. Seto, Virology 165:577-583, 1988). Budding of F1-R has been observed bidirectionally at the apical and basolateral surfaces of the bronchial epithelium of mice and of MDCK cells, whereas wild-type virus buds apically (M. Tashiro, M. Yamakawa, K. Tobita, H.-D. Klenk, R. Rott, and J. T. Seto, J. Virol. 64:3627-3634, 1990). In this study, wild-type virus was shown to be produced primarily from the apical site of polarized MDCK cells grown on permeable membrane filters. Surface immunofluorescence and immunoprecipitation analyses revealed that transmembrane glycoproteins HN and F were expressed predominantly at the apical domain of the plasma membrane. On the other hand, infectious progeny of F1-R was released from the apical and basolateral surfaces, and HN and F were expressed at both regions of the cells. Since F1-R has amino acid substitutions in F and M proteins but none in HN, the altered budding of the virus and transport of the envelope glycoproteins might be attributed to interactions by F and M proteins. These findings suggest that in addition to proteolytic activation of the F glycoprotein, the differential site of budding, at the primary target of infection, is a determinant for organ tropism of Sendai virus in mice.  相似文献   

5.
In the assembly of paramyxoviruses, interactions between viral proteins are presumed to be specific. The focus of this study is to elucidate the protein-protein interactions during the final stage of viral assembly that result in the incorporation of the viral envelope proteins into virions. To this end, we examined the specificity of HN incorporation into progeny virions by transiently transfecting HN cDNA genes into Sendai virus (SV)-infected cells. SV HN expressed from cDNA was efficiently incorporated into progeny Sendai virions, whereas Newcastle disease virus (NDV) HN was not. This observation supports the theory of a selective mechanism for HN incorporation. To identify the region on HN responsible for the selective incorporation, we constructed chimeric SV and NDV HN cDNAs and evaluated the incorporation of expressed proteins into progeny virions. Chimera HN that contained the SV cytoplasmic domain fused to the transmembrane and external domains of the NDV HN was incorporated to SV particles, indicating that amino acids in the cytoplasmic domain are responsible for the observed specificity. Additional experiments using the chimeric HNs showed that 14 N-terminal amino acids are sufficient for the specificity. Further analysis identified five consecutive amino acids (residues 10 to 14) that were required for the specific incorporation of HN into SV. These residues are conserved among all strains of SV as well as those of its counterpart, human parainfluenza virus type 1. These results suggest that this region near the N terminus of HN interacts with another viral protein(s) to lead to the specific incorporation of HN into progeny virions.  相似文献   

6.
Most paramyxovirus fusion proteins require coexpression of and activation by a homotypic attachment protein, hemagglutinin-neuraminidase (HN), to promote membrane fusion. However, the molecular mechanism of the activation remains unknown. We previously showed that the incorporation of a monohistidylated lipid into F-virosome (Sendai viral envelope containing only fusion protein) enhanced its fusion to hepatocytes, suggesting that the histidine residue in the lipid accelerated membrane fusion. Therefore, we explored whether a histidine moiety in HN could similarly direct activation of the fusion protein. In membrane fusion assays, the histidine substitution mutants of HN (H247A of Sendai virus and H245A of human parainfluenza virus 3) had impaired membrane fusion promotion activity without significant changes in other biological activities. Synthetic 30-mer peptides corresponding to regions of the two HN proteins containing these histidine residues rescued the fusion promoting activity of the mutants, whereas peptides with histidine residues substituted by alanine did not. These histidine-containing peptides also activated F-virosome fusion with hepatocytes both in the presence and in the absence of mutant HN in the virosome. We provide evidence that the HN-mimicking peptides promote membrane fusion, revealing a specific histidine “switch” in HN that triggers fusion.  相似文献   

7.
S Suzu  Y Sakai  T Shioda    H Shibuta 《Nucleic acids research》1987,15(7):2945-2958
By analysing complementary DNA clones constructed from genomic RNA of bovine parainfluenza 3 virus (BPIV3), we determined the nucleotide sequence of the region containing the entire F and HN genes. Their deduced amino acid sequences showed about 80% homologies with those of human parainfluenza 3 virus (HPIV3), about 45% with those of Sendai virus, and about 20% with those of SV5 and Newcastle disease virus (NDV), indicating, together with the results described in the preceding paper on the NP, P, C and M proteins of BPIV3, that BPIV3, HPIV3 and Sendai virus constitute a paramyxovirus subgroup, and that BPIV3 and HPIV3 are very closely related. The F and HN proteins of all these viruses, including SV5 and NDV, however, were shown to have protein-specific structures as well as short but well-conserved amino acid sequences, suggesting that these structures and sequences are related to the activities of these glycoproteins.  相似文献   

8.
The biological activity of two glycoproteins, hemagglutinin and neuraminidase (HN) and fusion (F) proteins, of Sendai virus (HVJ) were studied using purified proteins. The proteins were purified by chromatography on DEAE and CM cellulose in the presence of Nonidet P-40 (NP40). The glycoproteins were reconstituted at various ratios of F to HN into lipid vesicles containing fragment A of diphtheria toxin. The association of HN and F proteins with the vesicles was confirmed by electron microscopy and sucrose density gradient centrifugation. The cytotoxic activity of vesicles containing fragment A on fusion with L cells was determined by measuring colony formation of the cells. It was found that for maximum cytotoxic activity of the vesicles, there was an optimal ratio of F to HN of two. This suggests that HN is not merely the initial binding site to the cell surface, and that interactions between HN and F proteins on the virus surface may be important for the biological activities of these proteins on the cells.  相似文献   

9.
10.
Analysis of native disulfide-bonded protein oligomers in paramyxoviruses showed that some viral proteins are consistently present as covalent complexes. In isolated Sendai virus the hemagglutinating protein HN is present in homodimeric and homotetrameric forms, and the minor nucleocapsid protein P exists partly as a monomer and partly as a disulfide-linked homotrimer. Similar disulfide-linked complexes were observed in Newcastle disease virus (strain HP-16), in which HN exists as a homodimer and some of the major nucleocapsid protein NP exists as a homotrimer. Noncovalent intermolecular interactions between proteins were studied with the reversible chemical cross-linkers dimethyl-3,3'-dithiobispropionimidate and methyl 3-[(p-azidophenyl)dithio]propionimidate, which contain disulfide bridges and a 1.1-nm separation between their functional groups. The same results were achieved with both reagents. The conditions of preparation, isolation, and storage of the viruses affected the protein-protein interactions observed upon cross-linking. Homooligomers of the glycoprotein F, the matrix protein M, and the major nucleocapsid protein NP were produced in both Sendai and Newcastle disease viruses after mild cross-linking of all viral preparations examined, but NP-M heterodimer formation in both viruses was most prevalent in early harvest preparations that were cross-linked soon after isolation. The ability of NP and M to form a heterodimer upon cross-linking indicates that the matrix protein layer lies in close proximity (within 1.1 nm) to the nucleocapsid in the newly formed virion. Some noncovalent intermolecular protein interactions in Sendai and Newcastle disease viruses, i.e., those leading to the formation of F, NP, and M homooliogmers upon cross-linking, are more stable to virus storage than others, i.e., those leading to the formation of an NP-M heterodimer upon cross-linking. The storage-induced loss of the ability of NP and M to form a heterodimer is not accompanied by any apparent loss of infectivity. This indicates that some spacial relationships which form during virus assembly can alter after particle formation and are not essential for the ensuing stages of the infectious process.  相似文献   

11.
The formation of nontransmissible virus-like particles (NTVLP) by cells infected with F-deficient Sendai virus (SeV/deltaF) was found to be temperature sensitive. Analysis by hemagglutination assays and Western blotting demonstrated that the formation of NTVLP at 38 degrees C was about 1/100 of that at 32 degrees C, whereas this temperature-sensitive difference was only moderate in the case of F-possessing wild-type SeV. In order to reduce the NTVLP formation with the aim of improving SeV for use as a vector for gene therapy, amino acid substitutions found in temperature-sensitive mutant SeVs were introduced into the M (G69E, T116A, and A183S) and HN (A262T, G264R, and K461G) proteins of SeV/deltaF to generate SeV/M(ts)HN(ts)deltaF. The use of these mutations allows vector production at low temperature (32 degrees C) and therapeutic use at body temperature (37 degrees C) with diminished NTVLP formation. As expected, the formation of NTVLP by SeV/M(ts)HN(ts)deltaF at 37 degrees C was decreased to about 1/10 of that by SeV/deltaF, whereas the suppression of NTVLP formation did not cause either enhanced cytotoxicity or reduced gene expression of the vector. The vectors showed differences with respect to the subcellular distribution of M protein in the infected cells. Clear and accumulated immunocytochemical signals of M protein on the cell surface were not observed in cells infected by SeV/deltaF at an incompatible temperature, 38 degrees C, or in those infected by SeV/M(ts)HN(ts)deltaF at 37 or 38 degrees C. The absence of F protein in SeV/deltaF and the additional mutations in M and HN in SeV/M(ts)HN(ts)deltaF probably weaken the ability to transport M protein to the plasma membrane, leading to the diminished formation of NTVLP.  相似文献   

12.
Two transmembrane glycoproteins form spikes on the surface of Sendai virus, a member of the Respirovirus genus of the Paramyxovirinae subfamily of the Paramyxoviridae family: the hemagglutinin-neuraminidase (HN) and the fusion (F) proteins. HN, in contrast to F, is dispensable for viral particle production, as normal amounts of particles can be produced with highly reduced levels of HN. This HN reduction can result from mutation of an SYWST motif in its cytoplasmic tail to AFYKD. HNAFYKD accumulates at the infected cell surface but does not get incorporated into particles. In this work, we derived experimental tools to rescue HNAFYKD incorporation. We found that coexpression of a truncated HN harboring the wild-type cytoplasmic tail, the transmembrane domain, and at most 80 amino acids of the ectodomain was sufficient to complement defective HNAFYKD incorporation into particles. This relied on formation of disulfide-bound heterodimers carried out by the two cysteines present in the HN 80-amino-acid (aa) ectodomain. Finally, the replacement of the measles virus H cytoplasmic and transmembrane domains with the corresponding HN domains promoted measles virus H incorporation in Sendai virus particles.  相似文献   

13.
Enveloped viruses contain glycoproteins protruding from the viral membrane. These proteins play a crucial role in the extra-cellular steps of the virus life cycle, namely attachment to and entry into cells. Their role during the intracellular late phase of virus multiplication has been less appreciated, overlooked by the documented central organizer role of the matrix M protein. Sendai virus, a member of the Paramyxoviridae family, expresses two trans-membrane proteins on its surface, HN and F. In previous work, we have shown that suppression of F in the context of an infection, results in about 70% reduction of virus particle production, a reduction similar to that observed upon suppression of the matrix M protein. Moreover, a TYTLE motif present in F cytoplasmic tail has been proposed essential for virus particle production. In the present work, using original alternate conditional siRNA suppression systems, we generated a double F gene recombinant Sendai virus expressing wt-F and a nonviable mutated TYTLE/5A F protein (F5A). Suppression of the wild type F gene expression in cells infected with this virus allowed the analysis of F5A properties in the context of the infection. Coupling confocal imaging analysis to biochemical characterization, we found that F5A i) was not expressed at the cell surface but restricted to the endoplasmic reticulum, ii) was still capable of interaction with M and iii) had profound effect on M and HN cellular distribution. On the basis of these data, we propose a model for SeV particle formation based on an M/F complex that would serve as nucleation site for virus particle assembly at the cell surface.  相似文献   

14.
Receptors for Sendai virions in human erythrocyte ghost membranes were identified by virus overlay of protein blots. Among the various erythrocyte polypeptides, only glycophorin was able to bind Sendai virions effectively. The detection of Sendai virions bound to glycophorin was accomplished either by employing anti-Sendai virus antibodies or by autoradiography, when 125I-labeled Sendai virions were used. The binding activity was associated with the viral hemagglutinin/neuraminidase (HN) glycoprotein, as inferred from the observation that the binding pattern of purified HN glycoprotein to human erythrocyte membranes was identical to that of intact Sendai virions. No binding was observed when blots, containing either human erythrocyte membranes or purified glycophorin, were probed with the viral fusion factor (F glycoprotein). Active virions competed effectively with the binding of 125I-labeled Sendai virions (or purified HN glycoprotein), whereas no competition was observed with inactivated Sendai virus. The results of the present work clearly show that protein blotting can be used to identify virus receptors in cell membrane preparations.  相似文献   

15.
Lateral motion of the viral envelope proteins in the target cell membrane was shown recently to be essential for cell fusion by Sendai virus (Henis, Y. I., Herman-Barhom, Y., Aroeti, B., and Gutman, O. (1989) J. Biol. Chem. 264, 17119-17125). To explore the mechanism that gives rise to this requirement, we have now investigated the distribution of Sendai virus envelope proteins (F, the fusion protein, and HN, the hemagglutinin/neuraminidase protein) on human erythrocytes in the course of fusion, using fluorescence microscopy and image analysis. In these studies, both the F and the HN proteins were found to accumulate in cell-cell contact regions, on the time scale of the fusion process. We propose that migration of the viral glycoproteins to cell contact regions and accumulation at the contact sites are essential parts of the fusion mechanism and form the basis to the requirement for their lateral motion in the fusion event.  相似文献   

16.
Previously, we showed that Sendai virus fusion protein (F) acts as an inhibitor of neuraminidase activity of hemagglutinin-neuraminidase (HN) protein. Here we report that synthetic peptides derived from the heptad repeat region proximal to the transmembrane domain (HR2) of Sendai virus F inhibit fusion and enhance the enzymatic activity of the HN. This occurs on the virus-bound HN and on its soluble globular head. The enhancing effect on virus-bound HN is reversible and depends on the presence of F. The data indicate that, by binding to the HN ectodomain, the HR2 peptides abolish the F inhibition of HN and disrupt the communication between the F and HN essential to promote virus-cell fusion.  相似文献   

17.
Q Yao  X Hu    R W Compans 《Journal of virology》1997,71(1):650-656
We previously observed that cell fusion caused by human parainfluenza virus type 2 or type 3 requires the expression of both the fusion (F) and hemagglutinin-neuraminidase (HN) glycoproteins from the same virus type, indicating that a type-specific interaction between F and HN is needed for the induction of cell fusion. In the present study we have further investigated the fusion properties of F and HN proteins of parainfluenza virus type 1 (PI1), type 2 (PI2), and type 3 (PI3), Sendai virus (SN), and simian virus 5 (SV5) by expression of their glycoprotein genes in HeLa T4 cells using the vaccinia virus-T7 transient expression system. Consistent with previous results, cell fusion was observed in cells transfected with homotypic F/HN proteins; with one exception, coexpression of any combination of F and HN proteins from different viruses did not result in cell fusion. The only exception was found with the closely related PI1 HN and SN HN glycoproteins, either of which could interact with SN F to induce cell fusion upon coexpression as previously reported. By specific labeling and coprecipitation of proteins expressed on the cell surface, we observed that anti-PI2 HN antiserum coprecipitated PI2 F when the homotypic PI2 F and PI2 HN were coexpressed, but not the F proteins of other paramyxoviruses when heterotypic F genes were coexpressed with PI2 HN, suggesting that the homotypic F and HN proteins are physically associated with each other on cell surfaces. Furthermore, we observed that PI3 F was found to cocap with PI3 HN but not with PI2 HN, also indicating a specific association between the homotypic proteins. These results indicate that the homotypic F and HN glycoproteins are physically associated with each other on the cell surface and suggest that such association is crucial to cell fusion induced by paramyxoviruses.  相似文献   

18.
19.
Fusogenic liposomes that incorporate Sendai virus envelope proteins, so-called Sendai virosomes, have been developed for in vitro and in vivo genetic modification of animal cells. In this study, several different virosomes of varying lipid compositions were formulated and their in vitro gene-transfer efficiencies compared. The virosomes were prepared by quantitative reconstitution of the Sendai envelope, fusion (F) and hemagglutinin-neuraminidase (HN) proteins into liposomal vesicles. Virosomes that contained luciferase reporter genes were tested in 293 transformed human kidney cells. F/HN-virosomes that were prepared with an artificial Sendai viral envelope (ASVE-virosomes) or phosphatidylserine (PS-virosomes) exhibited an 8- or 6-fold higher gene-transfer efficiency than cationic liposomes that were made with 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP). F/HNvirosomes that were prepared with phosphatidic acid (PA-virosomes) instead of PS were less efficient in gene transfer than either ASVE- or PS-virosomes. In addition, the gene-transfer capability of ASVE- and PS-virosomes was maximal at a Ca2+ concentration of 510 mM. These results suggest that the incorporated lipid components significantly affect the in vitro gene transfer that is mediated by Sendai F/HN-virosomes.  相似文献   

20.
Membrane vesicles containing the Sendai virus hemagglutinin/neuraminidase (HN) glycoprotein were able to induce carboxyfluorescein (CF) release from loaded phosphatidylserine (PS) but not loaded phosphatidylcholine (PC) liposomes. Similarly, fluorescence dequenching was observed only when HN vesicles, bearing self-quenched N-(7-nitro-2,1,3-benzoxadiazol-4-yl)phosphatidylethanolamine (N-NBD-PE), were incubated with PS but not PC liposomes. Thus, fusion between Sendai virus HN glycoprotein vesicles and the negatively charged PS liposomes is suggested. Induction of CF release and fluorescence dequenching were not observed when Pronase-treated HN vesicles were incubated with the PS liposomes. On the other hand, the fusogenic activity of the HN vesicles was not inhibited by treatment with dithiothreitol (DTT) or phenylmethanesulfonyl fluoride (PMSF), both of which are known to inhibit the Sendai virus fusogenic activity. Fusion was highly dependent on the pH of the medium, being maximal after an incubation of 60-90 s at pH 4.0. Electron microscopy studies showed that incubation at pH 4.0 of the HN vesicles with PS liposomes, both of which are of an average diameter of 150 nm, resulted in the formation of large unilamellar vesicles, the average diameter of which reached 450 nm. The relevance of these observations to the mechanism of liposome-membrane and virus-membrane fusion is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号