首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 93 毫秒
1.
李秀  杨海涛  王泽方 《微生物学报》2019,59(12):2251-2262
聚对苯二甲酸乙二醇酯(Polyethylene terephthalate,PET)因其良好的耐用性和可塑性,已在世界范围内的工业领域和日常生活中得到广泛应用。目前自然环境中大量PET使用废弃物的积累和迁移给全球生态系统带来了严重负担,因此PET的降解问题已成为全球性的热点问题。微生物酶降解法目前被认为是一种理想绿色PET降解方法,有希望应用于大规模降解PET废弃物降解处理。传统的PET降解酶主要包括脂肪酶、酯酶和角质酶等,但这些酶的PET降解活性相对不高。近期科学家从Ideonella sakaiensis细菌中分离了一种新型水解酶PETase,能够特异性高效降解PET。本文从结构生物学角度对多种PET降解酶进行梳理,重点总结了新近发现的PETase催化机制,为发展改造更有效的PET降解酶提供理论依据。  相似文献   

2.
塑料自20世纪首次合成以来给人类生活带来了极大的便利。然而,塑料稳定的高分子结构导致了塑料废弃物的持续堆积,对生态环境和人类健康均造成严重威胁。聚对苯二甲酸乙二醇酯[poly(ethylene terephthalate),PET]是产量最高的一种聚酯类塑料,近年来PET水解酶的相关研究展现出生物酶法对塑料进行降解、回收的巨大潜力,也为塑料生物降解机制研究建立了参考范例。本文综述了不同微生物来源的PET水解酶及其PET降解能力,阐述了最具代表性的PET水解酶—IsPETase降解PET的催化机理,并总结了近年来通过酶工程改造而获得的高效降解酶,为未来的PET降解机制研究、PET高效降解酶的进一步挖掘和改造提供参考。  相似文献   

3.
塑料的大量生产和无节制的使用已造成严重的环境污染。为了减少塑料废物对环境的影响,近年来塑料酶法降解已成为国内外研究者关注的热点。例如,通过蛋白质工程策略提高塑料降解酶催化活性和热稳定性,进一步提高酶法降解的效率。另外,通过融合酶策略将塑料结合模块与塑料降解酶融合,也可以促进塑料降解。近期发表在期刊Chem Catalysis的一项研究表明,采用碳水化合物结合模块融合策略可以在低浓度(<10 wt%)的底物聚对苯二甲酸乙二醇酯[poly(ethylene terephthalate),PET]中提高塑料降解酶的活性。但是在高浓度底物(10 wt%−20 wt%)中,该策略无法提高PET的酶法降解。该项研究对于采用塑料结合模块促进酶法降解塑料具有重要的指导意义。  相似文献   

4.
塑料广泛存在于人类的日常生活中,在给人们生活带来便利的同时,大量塑料废物也给环境带来很大压力。聚对苯二甲酸乙二醇酯(polyethylene terephthalate, PET)是一种以石油为原料的高分子热塑性材料,因其具有耐用、透明度高、重量轻等特性,已成为世界上使用最广泛的塑料之一。由于PET具有结构复杂以及难降解的特性,可在自然界中长期存在,不仅对全球生态环境造成严重的污染,而且已经威胁到人类健康。如何对PET废弃物进行降解已成为全球的难题之一,相较于物理法和化学法,生物降解法是目前处理PET废弃物最为绿色环保的方法。本文分别介绍了微生物和生物酶对PET生物降解的研究现状、PET的生物降解途径、PET生物降解机制以及PET降解酶的分子改造等方面的研究,并对如何实现PET的高效降解、寻找和改造可降解高结晶度PET的微生物或酶进行展望,为PET的生物降解微生物或酶的有效开发应用提供理论依据。  相似文献   

5.
聚对苯二甲酸乙二醇酯(polyethylene terephthalate,PET)是应用最广泛的合成聚酯之一。由于PET不易降解,在环境中积累,对陆地、水生生态系统以及人类健康构成严重威胁。基于生物酶催化的生物降解策略为PET回收利用提供了一种绿色途径,在过去20年间,已发现了多种PET水解酶,并通过蛋白质工程等手段来改善这些酶的降解性能,但是目前仍未找到适合大规模工业应用的PET水解酶。利用传统的检测方法筛选PET水解酶是一个缓慢而复杂的过程。为了促进PET酶法回收的工业化应用,需要研发高效的检测方法。近年来,研究人员开发了多种表征PET水解酶的分析方法。本文总结了可用于筛选PET水解酶的检测方法,如高效液相色谱法、紫外吸光度法和荧光激活液滴分选法等,并对其在筛选PET水解酶的应用方面进行了展望。  相似文献   

6.
王慧  吴敬  陈晟  夏伟 《生物工程学报》2023,39(5):1987-1997
随着废弃塑料带来的环境污染越来越严重,生物可降解聚酯已成为大众关注的焦点。聚己二酸/对苯二甲酸丁二醇酯[poly(butylene adipate-co-terephthalate),PBAT]是脂肪族和芳香族共聚形成的生物可降解聚酯,兼具两者的优异性能。针对PBAT在自然条件下对降解环境要求严格且降解周期长的不足之处,本研究探究了角质酶在PBAT降解中的应用和对苯二甲酸-丁二醇酯(butylene terephthalate,BT)含量对PBAT生物降解性的影响,以实现对PBAT降解速率的提升。选取5种不同来源的聚酯降解酶对PBAT进行降解应用并比较出降解效果最优的酶,并测定了含有不同BT含量的PBAT聚酯的降解效率。结果表明,角质酶ICCG为降解效果最好的酶,且BT含量越高PBAT的降解率越低。此外,还确定了角质酶ICCG对高BT含量的PBAT(H)降解的最适温度、最适缓冲液类型、最适pH、最适E/S(enzyme to substrate)和最适底物浓度比分别为75℃、Tris-HCl、9.0、0.4%和1.0%。本研究结果可为角质酶在PBAT降解中的应用提供一定的理论依据和实验...  相似文献   

7.
随着生物技术的迅速发展,酶解法作为一种绿色可持续的聚对苯二甲酸乙二醇酯(polyethylene terephthalate, PET)回收处理方案,有望解决全球范围内废弃PET带来的环境污染问题。众多PET水解酶中,来自Ideonella sakaiensis的PETase因其对PET底物的高特异性成为当下研究的热点。基于对酶的结构和功能的深刻理解,本文总结了近年来PETase的工程改造进展,以提高酶的降解活性、热稳定性和对底物的吸附性;介绍了PETase的分泌表达策略、细胞表面展示技术,以及PETase与MHETase双酶系统的应用;最后,我们对塑料生物降解领域存在的挑战及可能的解决途径进行了展望,这些工作将为促进聚合物生物降解的实际应用提供参考。  相似文献   

8.
聚对苯二甲酸乙二醇酯[poly(ethylene terephthalate),PET]降解酶的发掘是国内外研究的热点。双(2-羟乙基)对苯二甲酸酯[bis-(2-hydroxyethyl)terephthalic acid,BHET]是PET降解过程的一种中间化合物,会与PET竞争酶的底物结合位点,从而抑制PET进一步降解。因此,探寻新型BHET降解酶,对进一步提高PET的降解效率具有促进作用。本研究通过基因挖掘发现了一种来源于浅黄糖丝菌(Saccharothrix luteola)参与PET降解过程的水解酶基因sle(ID:CP064192.1,5085270–5086049),其编码的蛋白质可以将BHET水解为单(2-羟乙基)对苯二甲酸酯[mono-(2-hydroxyethyl)terephthalate,MHET]和对苯二甲酸(terephthalic acid,TPA)。将BHET水解酶(Sle)通过重组质粒在大肠杆菌(Escherichia coli)中异源表达,结果表明,在异丙基-β-D-硫代半乳糖苷(isopropyl-β-D-thiogalactoside,IPTG)诱导终浓度为0.4 mmol/L,诱导时长为12 h,诱导温度为20℃时蛋白的表达量最高。通过镍亲和层析、阴离子交换层析和凝胶过滤层析3步分离纯化,获得了高纯度的Sle重组蛋白;同时对其酶学性质进行了表征,Sle最适温度和pH分别为35℃和8.0,在25–35℃和pH 7.0–9.0区间内能保持80%以上的残余酶活,且金属离子Co^(2+)能提高酶活力;进一步通过同源序列及Sle复合物结构分析得知,该酶属于二烯酸内酯水解酶(dienelactone hydrolase,DLH)家族,具备该家族典型的催化三联体,预测其催化位点分别为S129、D175和H207,并初步分析了其催化机理。最后,利用高效液相色谱法(high performance liquid chromatography,HPLC)鉴定了该酶能够特异性降解BHET生成MHET和TPA,属于BHET降解酶。本研究为生物酶法高效降解PET塑料提供了新的酶资源。  相似文献   

9.
目的:通过对聚对苯二甲酸乙二醇酯(Polyethylene terephthalate,PET)材料的编织和力学性能的分析,初步探讨使用该材料构建组织工程韧带支架的可行性。方法:将不同强度的PET单纤维通过经编法编织成支架材料;然后使用电子拉力机对编织好的支架材料以及消毒处理后的支架材料进行力学性能测试并进行分析。结果:PET编织构建的支架材料结构稳定,其极限抗张强度已达到了前交叉韧带的力学要求。辐照消毒对支架材料的力学性能无短期影响。结论:该支架材料编织结构设计合理,具有优良的力学性能,消毒后对其力学性能无短期影响,有望通过改进生物学性能后成为一种较理想的组织工程前交叉韧带支架材料。  相似文献   

10.
【目的】大量聚对苯二甲酸乙二醇酯(polyethylene terephthalate,PET)塑料作为废弃物被丢弃,严重危害生态健康。针对嗜热PET降解菌缺乏这一情况,本研究旨在获得能够降解PET的嗜热菌,并阐述其降解机制。【方法】采集云南腾冲热泉中的废弃PET瓶,分析其表面生物膜的微生物群落多样性,从中筛选能够以PET为营养源生长的嗜热菌,并基于16S rRNA基因序列加以鉴定;以菌株的定殖能力与生长曲线为指标,优选出降解能力较强的降解菌,并测定其最适pH、温度和NaCl浓度;降解能力较强的降解菌分别作用于PET及PET中间体双(羟乙基)对苯二甲酸酯[bis(hydroxyethyl)terephthalate,BHET]和对苯二甲酸单(2-羟乙基)酯[mono(2-hydroxyethyl)terephthalate,MHET],测定产物生成量与降解率;通过观察PET膜表面微观结构、活菌数、酯酶活性等探究降解菌与PET的互作过程。【结果】废弃PET瓶表面生物膜中的微生物群落多样性低;从生物膜中筛选出5株能够以PET为营养源生长的嗜热菌;其中,菌株JQ3以PET为唯一碳源生长最佳,作为降解能力较强的降解菌,被鉴定为嗜热淀粉芽孢杆菌(Bacillus thermoamylovorans),其最适生长pH为7.0、最适生长温度为50℃、最适生长NaCl浓度为0.5%;菌株JQ3以0.043 mg PET/d的速率降解PET,对苯二甲酸(terephthalic acid,TPA)产量在第7天达到峰值45.2 mmol/L;菌株JQ3对PET中间体降解效率显著,6 h可降解85.9%的BHET,60 h可降解50.1%的MHET。菌株JQ3能够定殖于PET表面并形成生物膜,侵蚀PET并造成开裂和剥落。【结论】B.thermoamylovorans JQ3作为一株嗜热PET降解菌,能够高温(60℃)降解PET及其中间体,为实现PET的有效降解提供了新策略。  相似文献   

11.
The handling of plastic waste and the associated ubiquitous occurrence of microplastic poses one of the biggest challenges of our time. Recent investigations of plastic degrading enzymes have opened new prospects for biological microplastic decomposition as well as recycling applications. For polyethylene terephthalate, in particular, several natural and engineered enzymes are known to have such promising properties. From a previous study that identified new PETase candidates by homology search, we chose the candidate PET6 from the globally distributed, halophilic organism Vibrio gazogenes for further investigation. By mapping the occurrence of Vibrios containing PET6 homologs we demonstrated their ubiquitous prevalence in the pangenome of several Vibrio strains. The biochemical characterization of PET6 showed that PET6 has a comparatively lower activity than other enzymes but also revealed a superior turnover at very high salt concentrations. The crystal structure of PET6 provides structural insights into this adaptation to saline environments. By grafting only a few beneficial mutations from other PET degrading enzymes onto PET6, we increased the activity up to three‐fold, demonstrating the evolutionary potential of the enzyme. MD simulations of the variant helped rationalize the mutational effects of those mutants and elucidate the interaction of the enzyme with a PET substrate. With tremendous amounts of plastic waste in the Ocean and the prevalence of Vibrio gazogenes in marine biofilms and estuarine marshes, our findings suggest that Vibrio and the PET6 enzyme are worthy subjects to study the PET degradation in marine environments.  相似文献   

12.
From a screening on agar plates with bis(benzoyloxyethyl) terephthalate (3PET), a Bacillus subtilis p‐nitrobenzylesterase (BsEstB) was isolated and demonstrated to hydrolyze polyethyleneterephthalate (PET). PET‐hydrolase active strains produced clearing zones and led to the release of the 3PET hydrolysis products terephthalic acid (TA), benzoic acid (BA), 2‐hydroxyethyl benzoate (HEB), and mono‐(2‐hydroxyethyl) terephthalate (MHET) in 3PET supplemented liquid cultures. The 3PET‐hydrolase was isolated from non‐denaturating polyacrylamide gels using fluorescein diacetate (FDA) and identified as BsEstB by LC‐MS/MS analysis. BsEstB was expressed in Escherichia coli with C‐terminally fused StrepTag II for purification. The tagged enzyme had a molecular mass of 55.2 kDa and a specific activity of 77 U/mg on p‐nitrophenyl acetate and 108 U/mg on p‐nitrophenyl butyrate. BsEstB was most active at 40°C and pH 7.0 and stable for several days at pH 7.0 and 37°C while the half‐life times decreased to 3 days at 40°C and only 6 h at 45°C. From 3PET, BsEstB released TA, MHET, and BA, but neither bis(2‐hydroxyethyl) terephthalate (BHET) nor hydroxyethylbenzoate (HEB). The kcat values decreased with increasing complexity of the substrate from 6 and 8 (s?1) for p‐nitrophenyl‐acetate (4NPA) and p‐nitrophenyl‐butyrate (4NPB), respectively, to 0.14 (s?1) for bis(2‐hydroxyethyl) terephthalate (BHET). The enzyme hydrolyzed PET films releasing TA and MHET with a concomitant decrease of the water‐contact angle (WCA) from 68.2° ± 1.7° to 62.6° ± 1.1° due to formation of novel hydroxyl and carboxyl groups. These data correlated with a fluorescence emission intensity increase seen for the enzyme treated sample after derivatization with 2‐(bromomethyl)naphthalene. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

13.
14.
重组角质酶的发酵制备及其对涤纶纤维的表面改性   总被引:1,自引:1,他引:0  
张瑶  陈晟  吴丹  何淼  朱孔亮  陈坚  吴敬 《生物工程学报》2011,27(7):1057-1064
对大肠杆菌表达嗜热子囊菌Thermobifida fusca角质酶的摇瓶诱导条件及3 L发酵罐扩大培养进行了研究,并探讨了角质酶对涤纶纤维的改性作用。结果表明,在摇瓶培养中,采用工业级TB培养基,用2 g/L乳糖诱导,菌体培养至对数生长前期添加0.5%甘氨酸,角质酶产量可达到128 U/mL。在3 L发酵罐扩大培养中,补料培养生物量 (OD600) 最大达到35,角质酶酶活最高达506 U/mL,是迄今国内外报道细菌来源角质酶的最高水平。紫外分光光度法分析初步表明涤纶纤维经角质酶水解产生了对苯二甲酸类物质  相似文献   

15.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号