首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The metabotropic glutamate receptors 5 (mGlu5Rs) and the adenosine A2A receptors (A2ARs) have been reported to functionally interact in the striatum. The aim of the present work was to verify the hypothesis that the state of activation of A2A Rs could influence mGlu5R-mediated effects in the striatum. In electrophysiological experiments (extracellular recording in rat corticostriatal slices), the ability of the selective mGlu5R agonist CHPG to potentiate the reduction of the field potential amplitude induced by NMDA was prevented not only by the selective mGlu5R antagonist MPEP, but also by the selective A2AR antagonist ZM 241385. Analogously, the application of CHPG potentiated NMDA-induced toxicity (measured by LDH release) in cultured striatal neurons, an effect that was abolished by both MPEP and ZM 241385. Finally, the A2AR agonist CGS 21680 potentiated CHGP effects, an action that was reproduced and abolished, respectively, by forskolin (an activator of the cAMP/protein kinase A, PKA, pathway) and KT 5720 (a PKA inhibitor). The results indicate that A2ARs exert a permissive role on mGlu5R-induced effects in the striatum. Such an interaction may represent an additional target for the development of therapeutic strategies towards striatal disorders.  相似文献   

2.
Suramin is a well-known antitrypanosomal drug and a novel experimental agent for the treatment of several cancers. Previous study showed that suramin is an activator of extracellular signal-regulated kinase (ERK1/2) signaling in several cell lines including Chinese hamster ovary cells, although the physiological relevance of this activation remains uncertain. Here, it was shown that suramin enhances neurite outgrowth concomitant with activation of ERK1/2 in Neuro-2a cells, a neuronal cell line. These neurite outgrowth and ERK1/2 activation were significantly inhibited by PD98059, an inhibitor of mitogen-activated protein kinase kinase, as well as by activation of endogenous adenosine A2A receptors. The suramin-induced phosphorylation of ERK1/2 was also inhibited by inhibitors of Src family kinases. This attenuation of ERK1/2 activity was accompanied by a significant decrease in suramin-induced neurite outgrowth. These results suggest that suramin activates the Src/ERK1/2 signaling pathway that induces neurite outgrowth, both of which are negatively regulated by cAMP produced in response to activation of endogenous adenosine A2A receptors.  相似文献   

3.
Hippocampal metabotropic glutamate 5 receptors (mGlu5Rs) regulate both physiological and pathological responses to glutamate. Because mGlu5R activation enhances NMDA-mediated effects, and given the role played by NMDA receptors in synaptic plasticity and excitotoxicity, modulating mGlu5R may influence both the physiological and the pathological effects elicited by NMDA receptor stimulation. We evaluated whether adenosine A2A receptors (A(2A)Rs) modulated mGlu5R-dependent effects in the hippocampus, as they do in the striatum. Co-application of the A(2A)R agonist CGS 21680 with the mGlu5R agonist (RS)-2-chloro-s-hydroxyphenylglycine(CHPG) synergistically reduced field excitatory postsynaptic potentials in the CA1 area of rat hippocampal slices. Endogenous tone at A(2A)Rs seemed to be required to enable mGlu5R-mediated effects, as the ability of CHPG to potentiate NMDA effects was antagonized by the selective A(2A)R antagonist ZM 241385 in rat hippocampal slices and cultured hippocampal neurons, and abolished in the hippocampus of A(2A)R knockout mice. Evidence for the interaction between A(2A)Rs and mGlu5Rs was further strengthened by demonstrating their co-localization in hippocampal synapses. This is the first evidence showing that hippocampal A(2A)Rs and mGlu5Rs are co-located and act synergistically, and that A(2A)Rs play a permissive role in mGlu5R receptor-mediated potentiation of NMDA effects in the hippocampus.  相似文献   

4.
An interaction between adenosine A(2A) receptors (A(2A) Rs) and cannabinoid CB(1) receptors (CB(1) Rs) has been consistently reported to occur in the striatum, although the precise mechanisms are not completely understood. As both receptors control striatal glutamatergic transmission, we now probed the putative interaction between pre-synaptic CB(1) R and A(2A) R in the striatum. In extracellular field potentials recordings in corticostriatal slices from Wistar rats, A(2A) R activation by CGS21680 inhibited CB(1) R-mediated effects (depression of synaptic response and increase in paired-pulse facilitation). Moreover, in superfused rat striatal nerve terminals, A(2A) R activation prevented, while A(2A) R inhibition facilitated, the CB(1) R-mediated inhibition of 4-aminopyridine-evoked glutamate release. In summary, the present study provides converging neurochemical and electrophysiological support for the occurrence of a tight control of CB(1) R function by A(2A) Rs in glutamatergic terminals of the striatum. In view of the key role of glutamate to trigger the recruitment of striatal circuits, this pre-synaptic interaction between CB(1) R and A(2A) R may be of relevance for the pathogenesis and the treatment of neuropsychiatric disorders affecting the basal ganglia.  相似文献   

5.
6.
Growth Factor-Like Effects Mediated by Muscarinic Receptors in PC12M1 Cells   总被引:2,自引:0,他引:2  
Rat pheochromocytoma (PC12) cells stably expressing cloned m1 muscarinic acetylcholine receptors (PC12M1) undergo morphological changes when stimulated by muscarinic agonists. These changes, which include the outgrowth of neurite-like processes, are blocked by the muscarinic antagonist atropine and are not observed in PC12 cells. The observed morphological changes, which are independent of RNA and protein synthesis, are blocked by the methylation inhibitor 5'-deoxy-5'-methylthioadenosine, suggesting that methylation plays a role in this process. Analysis of cyclic AMP accumulation and phosphoinositide turnover reveals that both processes are enhanced on activation by muscarinic agonist. Our data suggest, however, that the muscarinic-dependent neurite-like outgrowth processes are not mediated by cyclic AMP, Ca2+, or protein kinase C pathways. The muscarinic-dependent neurite outgrowth effect is enhanced by nerve growth factor, with a resulting increase in both the number of neurite-extending cells and the length of the neurite. In addition, activation of muscarinic receptors in PC12M1 cells stimulates the induction of marker genes for neuronal differentiation. Muscarinic receptors may therefore mediate growth factor-like effects in these cells.  相似文献   

7.
8.
Previous studies document that PGE2 and adenosine suppress production of inflammatory cytokines. The present study demonstrates for the first time that (1) PGE2 and 2-chloroadenosine (CADO; a stable analog of adenosine) directly inhibit the cytolytic function of human tumor-infiltrating lymphocytes (TILs); (2) the combination PGE2 and CADO have additive suppressive effects; and (3) the cooperative immunosuppressive actions of PGE2 and CADO are mediated via EP2 receptors (EP2Rs) and A2A receptors (A2ARs) and are due to amplification of cAMP production, activation of protein kinase A (PKA) and T cell receptor (TCR) inhibitor Csk leading to inhibition of Lck, ZAP-70 and Akt phosphorylation. (4) During ex vivo expansion, TILs undergo three stages of differentiation converting from TILs with high cytotoxic activity and relative resistance to combined EP2R/A2AR suppression (stage I) to TILs retaining high cytotoxicity and gaining sensitivity to combined suppression (stage II) and then to TILS that are less cytotoxic and very sensitive to combined suppression (stage III). (5) Finally, we find that pretreatment of TILs with non-inhibitory concentrations of EP2R agonists (such as PGE2 or butaprost) or A2AR agonists (such as CADO or CGS21680) increases their cytotoxic activity and induces resistance to EP2R and A2AR inhibitory signaling (cross-resistance) due to homologous and heterologous desensitization and internalization of EP2Rs and A2ARs, thus preventing their inhibitory signaling. We conclude that inducing resistance of TILs to the suppressive effects of PGE2 and adenosine in the tumor microenvironment could represent a novel strategy for improving the efficacy of adoptive immunotherapy.  相似文献   

9.
Microtubule affinity-regulating kinase 2 (MARK2)/PAR-1b and protein kinase A (PKA) are both involved in the regulation of microtubule stability and neurite outgrowth, but whether a direct cross-talk exists between them remains unclear. Here, we found the disruption of microtubule and neurite outgrowth induced by MARK2 overexpression was blocked by active PKA. The interaction between PKA and MARK2 was confirmed by coimmunoprecipitation and immunocytochemistry both in vitro and in vivo. PKA was found to inhibit MARK2 kinase activity by phosphorylating a novel site, serine 409. PKA could not reverse the microtubule disruption effect induced by a serine 409 to alanine (Ala) mutant of MARK2 (MARK2 S409A). In contrast, mutation of MARK2 serine 409 to glutamic acid (Glu) (MARK2 S409E) did not affect microtubule stability and neurite outgrowth. We propose that PKA functions as an upstream inhibitor of MARK2 in regulating microtubule stability and neurite outgrowth by directly interacting and phosphorylating MARK2.  相似文献   

10.
Sigma-1 receptor (Sig-1R) is an integral membrane protein predominantly expressed in the endoplasmic reticulum. Sig-1R demonstrates a high affinity to various synthetic compounds including well-known psychotherapeutic drugs in the central nervous system (CNS). For that, it is considered as an alternative target for psychotherapeutic drugs. On the cellular level, when Sig-1R is activated, it is known to play a role in neuroprotection and neurite elongation. These effects are suggested to be mediated by its ligand-operated molecular chaperone activity, and/or upregulation of various Ca2+ signaling. In addition, recent studies show that Sig-1R activation induces neurite outgrowth via neurotrophin signaling. Here, we tested the hypothesis that Sig-1R activation promotes neurite elongation through activation of tropomyosin receptor kinase (Trk), a family of neurotrophin receptors. We found that 2-(4-morpholinethyl)1-phenylcyclohexanecarboxylate (PRE-084), a selective Sig-1R agonist, significantly promoted neurite outgrowth, and K252a, a Trk inhibitor, attenuated Sig-1R-mediated neurite elongation in cerebellar granule neurons (CGNs). Moreover, we revealed that Sig-1R interacts with TrkB, and PRE-084 treatment enhances phosphorylation of Y515, but not Y706. Thus, our results indicate that Sig-1R activation promotes neurite outgrowth in CGNs through Y515 phosphorylation of TrkB.  相似文献   

11.
We found in the present study that stimulation of the A(2A) adenosine receptor (A(2A)-R) using an A(2A)-selective agonist (CGS21680) rescued the blockage of nerve growth factor (NGF)-induced neurite outgrowth when the NGF-evoked MAPK cascade was suppressed by an MEK inhibitor (PD98059) or by a dominant-negative MAPK mutant (dnMAPK). This action of A(2A)-R (designated as the A(2A)-rescue effect) can be blocked by two inhibitors of protein kinase A (PKA) and was absent in a PKA-deficient PC12 variant. Activation of the cAMP/PKA pathway by forskolin exerted the same effect as that by A(2A)-R stimulation. PKA, thus, appears to mediate the A(2A)-rescue effect. Results from cAMP-response element-binding protein (CREB) phosphorylation at serine 133, trans-reporting assays, and overexpression of two dominant-negative CREB mutants revealed that A(2A)-R stimulation led to activation of CREB in a PKA-dependent manner and subsequently reversed the damage of NGF-evoked neurite outgrowth by PD98059 or dnMAPK. Expression of an active mutant of CREB readily rescued the NGF-induced neurite outgrowth impaired by dnMAPK, further strengthening the importance of CREB in the NGF-mediated neurite outgrowth process. Moreover, simultaneous activation of the A(2A)-R/PKA/CREB-mediated and the phosphatidylinositol 3-kinase pathways caused neurite outgrowth that was not suppressed by a selective inhibitor of TrkA, indicating that transactivation of TrkA was not involved. Collectively, CREB functions in conjunction with the phosphatidylinositol 3-kinase pathway to mediate the neurite outgrowth process in PC12 cells.  相似文献   

12.
13.
The study of the signaling pathways regulating neurite outgrowth in culture is important because of their potential role in neuronal differentiation in vivo. We have previously shown that the G alpha(o/i)-coupled CB1 cannabinoid receptor (CB1R) activates Rap1 to induce neurite outgrowth. G alpha(o/i) also activates the Src-Stat3 pathway. Here, we studied the relationship between the G alpha(o/i)-Rap1 and Src-Stat3 pathways and the role of these signaling pathways in CB1R-mediated neurite outgrowth in Neuro-2A cells. The CB1 agonist HU-210 induced pertussis toxin-sensitive Src and Stat3 phosphorylation. Dominant negative (DN) mutants of Src and Stat3 blocked CB1R-induced neurite outgrowth. Constitutively active Rap 1B and Ral-activated Src and CB1R-induced Src phosphorylation was inhibited by Rap1-DN and Ral-DN, indicating that both Rap1 and Ral mediate downstream signaling from G alpha(o/i) for Src activation. Rap1-activated Ral and Ral-DN blocked Rap-induced Src phosphorylation. G alpha(o)-induced Stat3 activation was blocked by Ral-DN, whereas v-Src-induced Stat3 activation was not inhibited by Ral-DN, indicating that the CB1R, through G alpha(o), mediates the sequential activation of Rap1 to Ral to Src to Stat3 in Neuro-2A cells. Downstream of Src, the CB1R also activated Rac1 and JNK, which enhanced CBR1-mediated Stat3 activation. Rac-DN blocked CB1R-induced activation of JNK. Pharmacological inhibition of JNK blocked Src and CB1R activation of Stat3, indicating that Rac and JNK are also involved in CB1R-mediated neurite outgrowth. Overall, this study demonstrated that G alpha(o/i)-coupled CB1R triggers neurite outgrowth in Neuro-2A through the activation of a signaling network containing two pathways that bifurcate at Src and converge at Stat3.  相似文献   

14.
15.
16.
SHP-1 and SHP-2 are intracellular protein tyrosine phosphatases containing two adjacent src homology 2 domains that target these phosphatases to cell surface receptor signaling complexes and play a role in receptor signal transduction. In this report the PC12 cell system was used to investigate the potential roles of SHP-1 and SHP-2 in the induction of neuronal differentiation by nerve growth factor (NGF). By using neurite outgrowth as a marker for differentiation, the effects of transfected constructs of SHP-1 and SHP-2 were assessed. Overexpression of a catalytically inactive SHP-2, but not a catalytically inactive SHP-1, blocked NGF-stimulated neurite outgrowth. The mitogen-activated protein kinase (MAPK) signaling cascade is important for the morphological differentiation in PC12 cells, and both SHP-1 and SHP-2 have been implicated to act upstream of MAPK in other receptor signaling systems. A positive role for SHP-2 but not SHP-1 in the activation of MAPK by NGF was demonstrated by introduction of the SHP-2 phosphatase mutants along with hemagglutinin-tagged MAPK. Coexpression studies with the SHP-2 mutant along with mutant forms of MAPK kinase suggested that SHP-2 functions upstream of MAPK kinase and MAPK in NGF-induced neurite outgrowth.  相似文献   

17.
18.
LF Lin  SP Chiu  MJ Wu  PY Chen  JH Yen 《PloS one》2012,7(8):e43304
Luteolin (3',4',5,7-tetrahydroxyflavone), a food-derived flavonoid, has been reported to exert neurotrophic properties that are associated with its capacity to promote neuronal survival and neurite outgrowth. In this study, we report for the first time that luteolin induces the persistent expression of microRNA-132 (miR-132) in PC12 cells. The correlation between miR-132 knockdown and a decrease in luteolin-mediated neurite outgrowth may indicate a mechanistic link by which miR-132 functions as a mediator for neuritogenesis. Furthermore, we find that luteolin led to the phosphorylation and activation of cAMP response element binding protein (CREB), which is associated with the up-regulation of miR-132 and neurite outgrowth. Moreover, luteolin-induced CREB activation, miR-132 expression and neurite outgrowth were inhibited by adenylate cyclase, protein kinase A (PKA) and MAPK/ERK kinase 1/2 (MEK1/2) inhibitors but not by protein kinase C (PKC) or calcium/calmodulin-dependent protein kinase II (CaMK II) inhibitors. Consistently, we find that luteolin treatment increases ERK phosphorylation and PKA activity in PC12 cells. These results show that luteolin induces the up-regulation of miR-132, which serves as an important regulator for neurotrophic actions, mainly acting through the activation of cAMP/PKA- and ERK-dependent CREB signaling pathways in PC12 cells.  相似文献   

19.
Angiotensin II (Ang II) plays an important role on the pathogenesis of cardiac fibrosis. Prolong and overstimulation of angiotensin II type 1 receptor with Ang II-induced collagen synthesis and myofibroblast differentiation in cardiac fibroblasts, leading to cardiac fibrosis. Although adenosine and its analogues are known to have cardioprotective effects, the mechanistic by which adenosine A2 receptors (A2Rs) inhibit Ang II-induced cardiac fibrosis is not clearly understood. In the present study, we examined the effects of exogenous adenosine and endogenous adenosine on Ang II-induced collagen and myofibroblast differentiation determined by α-smooth muscle action (α-SMA) overexpression and their underlying signal transduction. Elevation of endogenous adenosine levels resulted in the inhibition of Ang II-induced collagen type I and III and α-SMA synthesis in cardiac fibroblasts. Moreover, treatment with exogenous adenosine which selectively stimulated A2Rs also suppressed Ang II-induced collagen synthesis and α-SMA production. These antifibrotic effects of both endogenous and exogenous adenosines are mediated through the A2B receptor (A2BR) subtype. Stimulation of A2BR exhibited antifibrotic effects via the cAMP-dependent and Epac-dependent pathways. Our results provide new mechanistic insights regarding the role for cAMP and Epac on A2BR-mediated antifibrotic effects. Thus, A2BR is one of the potential therapeutic targets against cardiac fibrosis.  相似文献   

20.
The second messenger cAMP plays a pivotal role in neurite/axon growth and guidance, but its downstream pathways leading to the regulation of Rho GTPases, centrally implicated in neuronal morphogenesis, remain elusive. We examined spatiotemporal changes in Rac1 and Cdc42 activity and phosphatidylinositol 3,4,5-triphosphate (PIP3) concentration in dibutyryl cAMP (dbcAMP)-treated PC12D cells using Förster resonance energy transfer–based biosensors. During a 30-min incubation with dbcAMP, Rac1 activity gradually increased throughout the cells and remained at its maximal level. There was no change in PIP3 concentration. After a 5-h incubation with dbcAMP, Rac1 and Cdc42 were activated at the protruding tips of neurites without PIP3 accumulation. dbcAMP-induced Rac1 activation was principally mediated by protein kinase A (PKA) and Sif- and Tiam1-like exchange factor (STEF)/Tiam2. STEF depletion drastically reduced dbcAMP-induced neurite outgrowth. PKA phosphorylates STEF at three residues (Thr-749, Ser-782, Ser-1562); Thr-749 phosphorylation was critical for dbcAMP-induced Rac1 activation and neurite extension. During dbcAMP-induced neurite outgrowth, PKA activation at the plasma membrane became localized to neurite tips; this localization may contribute to local Rac1 activation at the same neurite tips. Considering the critical role of Rac1 in neuronal morphogenesis, the PKA—STEF–Rac1 pathway may play a crucial role in cytoskeletal regulation during neurite/axon outgrowth and guidance, which depend on cAMP signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号