首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The Spitzenkörper, located in the apex of growing hyphae of septate fungi, has been portrayed previously as a spheroid complex containing a cluster of apical (secretory) vesicles which sometimes encloses a differentiated core area. With the aid of computer-enhanced video microscopy and phase-contrast optics, we studied 32 fungi in the Ascomycetes, Deuteromycetes, Hyphomycetes, Basidiomycetes, and Agonomycetes. The Spitzenkörper appeared as a highly dynamic and pleomorphic multicomponent complex capable of changing shape, size, and position within the hyphal apex during growth. The main theme of this study is to demonstrate two kinds of morphological diversity/variation in Spitzenkörper from diverse fungi: (a) inherent diversity — Spitzenkörper features characteristic of particular fungi, and (b) dynamic pleomorphism — gradual or rapid changes in size, shape, and position of the Spitzenkörper within a single hyphal tip. Several components associated with the Spitzenkörper were identified: (a) vesicle cluster, (b) vesicle cloud, (c) differentiated core region(s) within the Spitzenkörper, (d) apical granules, (e) cytoplasmic filaments. Eight morphological patterns of Spitzenkörper organization are described in the higher fungi based on the shape and distribution of their components. An additional (ninth) pattern was recognized in the chytridiomyceteAllomyces macrogynous from recent work by others. All these patterns appeared to be conserved at the genus level. In all patterns but one, a core region was observed by light microscopy. The Spitzenkörper not only exhibited spontaneous dynamic pleomorphism but also reacted to stress conditions (light, mechanical, and electrical fields). These reactions include migration of the Spitzenkörper back into the subapical zone and/or disassembly of its components. The understanding and conceptualization of this dynamic complex is problematic and should remain flexible enough to encompass the diversity of Spitzenkörper patterns and the dynamic pleomorphism of this specialized apical apparatus which appears to drive hyphal tip growth in the higher fungi.Dedicated to Professor Eldon H. Newcomb in recognition of his contributions to cell biology  相似文献   

2.
Summary Growing hyphal tips of higher fungi contain an organized assemblage of secretory vesicles and other cell components collectively known as the Spitzenkörper. Until now, the Spitzenkörper has been portrayed as a single spheroid complex located near the apical cell wall. This study demonstrates the occurrence of multiple Spitzenkörper in growing hyphal apices imaged by video-enhanced phase-contrast microscopy. In addition to the main Spitzenkörper, smaller satellite Spitzenkörper arise a few micrometers behind the apical pole. Four developmental stages were identified: (a) the satellites first appeared as faint phase-dark plaques next to the plasma membrane, (b) gradually increased in size and assumed an ovoid profile, (c) they migrated to the hyphal apex, and (d) finally they merged with the main Spitzenkörper. After the merger, the main Spitzenkörper temporarily increased in size. Satellites were observed in 14 fungi, most of which had relatively large (5–10 m diam.), fast-growing hyphae (2–33 m/min elongation rate). The average frequency of in-focus satellites was 7+/min forFusarium culmorum and 11+/min forTrichoderma viride. As with the main Spitzenkörper, satellites were present only in growing cells. They were transient and remained visible for 3–8 s before merging with the main Spitzenkörper. Within the hyphae, satellites travelled up to six times faster than the average cell elongation rate. Multiple satellites sometimes occurred simultaneously; up to three were seen within a hyphal apex at the same time. Localized cell enlargement occurred next to stationary satellites, suggesting that satellite Spitzenkörper are functional as sources of new cell surface before they reach the main Spitzenkörper; therefore, they account for some variations in the profiles of the growing hyphae. By electron microscopy, satellites consisted of small clusters of apical vesicles surrounding a group of microvesicles located next to the plasma membrane. The identification and behavior of the satellites represent clear evidence of directional mass transport of vesicles toward the hyphal apex. Our observations indicate that satellites are a common phenomenon in growing hyphal apices of septate fungi and that they contribute to growth of the hyphal apex.Abbreviations VSC vesicle supply center  相似文献   

3.
Fungal hyphae are among the most highly polarized cells. Hyphal polarized growth is supported by tip-directed transport of secretory vesicles, which accumulate temporarily in a stratified manner in an apical vesicle cluster, the Spitzenkörper. The exocyst complex is required for tethering of secretory vesicles to the apical plasma membrane. We determined that the presence of an octameric exocyst complex is required for the formation of a functional Spitzenkörper and maintenance of regular hyphal growth in Neurospora crassa. Two distinct localization patterns of exocyst subunits at the hyphal tip suggest the dynamic formation of two assemblies. The EXO-70/EXO-84 subunits are found at the peripheral part of the Spitzenkörper, which partially coincides with the outer macrovesicular layer, whereas exocyst components SEC-5, -6, -8, and -15 form a delimited crescent at the apical plasma membrane. Localization of SEC-6 and EXO-70 to the plasma membrane and the Spitzenkörper, respectively, depends on actin and microtubule cytoskeletons. The apical region of exocyst-mediated vesicle fusion, elucidated by the plasma membrane–associated exocyst subunits, indicates the presence of an exocytotic gradient with a tip-high maximum that dissipates gradually toward the subapex, confirming the earlier predictions of the vesicle supply center model for hyphal morphogenesis.  相似文献   

4.
The intracellular origins of polarity and branch initiation in fungi centre upon a localization in the supply of fungal wall constituents to specific regions on the hyphal wall. Polarity is achieved and maintained by accumulating secretory vesicles, prior to incorporation into the wall, in the form of an apical body or Spitzenkörper. However, neither the mechanisms leading to this accumulation nor the initiation of branching, are as yet understood. We propose a mechanism, based on experimental evidence, which considers the mechanical properties of the cytoskeleton in order to explain these phenomena. Cytoskeletal viscoelastic forces are hypothesized to be responsible for biasing vesicles in their motion, and a mathematical model is derived to take these considerations into account. We find that, as a natural consequence of the assumed interactions between vesicles and cytoskeleton, wall vesicles aggregate in a localized region close to the tip apex. These results are used to interpret the origin of the Spitzenkörper. The model also shows that an aggregation peak can collapse and give rise to two new centres of aggregation coexisting near the tip. We interpret this as a mechanism for apical branching, in agreement with published observations. We also investigate the consequences and presumptive role of vesicle–cytoskeleton interactions in the migration of satellite Spitzenkörper. The results of this work strongly suggest that the formation of the Spitzenkörper and the series of dynamical events leading to hyphal branching arise as a consequence of the bias in vesicle motion resulting from interactions with the cytoskeleton.  相似文献   

5.
Summary The hyphal tip ofSclerotium rolfsii was examined after fixation by freeze substitution. The Spitzenkörper consisted of a dense mass of apical vesicles and microvesicles surrounding a vesicle-free zone. Linear arrangements of microvesicles were occasionally observed within the Spitzenkörper. Abundant microfilaments were seen within the Spitzenkörper region, often in close association with apical vesicles and microvesicles. Microtubules passed through the Spitzenkörper and terminated at the plasmalemma at the extreme hyphal apex. Filasomes were mostly observed within the apical region and were in close proximity to the plasmalemma. Rough ER, mitochondria, microtubules, and vacuoles were abundant in the subapical region and were usually oriented parallel to the long axis of the hypha. Ribosomes were aligned on the outer surfaces of mitochondria. Golgi body equivalents were observed throughout the subapical region and appeared as inflated cisternae of varying shapes and electron opacities. Relationships to other basidiomycetous hyphal tip cells are discussed.Abbreviations AV apical vesicle - C Celsius - diam diameter - f filasome - G Golgi body equivalent - h hour - nm nanometer - M mitochondria - ME membranous elements; min minute - MV microvesicle - MVB multivesicular body - N nucleus - OsO4 osmium tetroxide - R ribosome - ER endoplasmic reticulum - S Spitzenkörper - Va vacuole - m micrometer  相似文献   

6.
A gene (NhKIN1) encoding a kinesin was cloned from Nectria haematococca genomic DNA by polymerase chain reaction amplification, using primers corresponding to conserved regions of known kinesin-encoding genes. Sequence analysis showed that NhKIN1 belongs to the subfamily of conventional kinesins and is distinct from any of the currently designated kinesin-related protein subfamilies. Deletion of NhKIN1 by transformation-mediated homologous recombination caused several dramatic phenotypes: a 50% reduction in colony growth rate, helical or wavy hyphae with reduced diameter, and subcellular abnormalities including withdrawal of mitochondria from the growing hyphal apex and reduction in the size of the Spitzenkörper, an apical aggregate of secretory vesicles. The effects on mitochondria and Spitzenkörper were not due to altered microtubule distribution, as microtubules were abundant throughout the length of hyphal tip cells of the mutant. The rate of spindle elongation during anaphase B of mitosis was reduced 11%, but the rate was not significantly different from that of wild type. This lack of a substantial mitotic phenotype is consistent with the primary role of the conventional kinesins in organelle motility rather than mitosis. Our results provide further evidence that the microtubule-based motility mechanism has a direct role in apical transport of secretory vesicles and the first evidence for its role in apical transport of mitochondria in a filamentous fungus. They also include a unique demonstration that a microtubule-based motor protein is essential for normal positioning of the Spitzenkörper, thus providing a new insight into the cellular basis for the aberrant hyphal morphology.  相似文献   

7.
Summary Light and transmission electron microscopy were used to examine hyphal tip cells of the fungusAllomyces macrogynus (Chytridiomycetes). A well defined apical body, i.e., Spitzenkörper, was observed at the extreme apex of hyphal cells. This distinctive, spherical cytoplasmic region consisted of a granular matrix devoid of ribosomes and most organelles. To our knowledge this is the first report describing such a structure in hyphae of an aseptate fungus. Vesicles (45–65 nm diameter) were concentrated in the peripheral cytoplasm of the apex, while relatively few were observed within the Spitzenkörper. Filasomes, spherical patches of dense fibrillar material containing a microvesicle core, were abundant in the apical regions near the plasma membrane. Microtubules traversed the Spitzenkörper at various angles and were in close association with the plasma membrane. Microfilaments were observed as individual elements in the cytoplasm or were organized into bundles. Individual microfilaments were frequently in close association with the plasma membrane, vesicles and microtubules. In the immediate subapical region mitochondria, multivesicular bodies, microbodies, Golgi equivalents and nuclei were abundant.Abbreviations CW cell wall - F filasome - M mitochondria - N nucleus - PM plasma membrane - TEM transmission electron microscopy  相似文献   

8.
F. M. Harold 《Protoplasma》1997,197(3-4):137-147
Summary Apical growth of fungal hyphae represents a relatively simple instance of cellular morphogenesis. Thanks to the polarized transport and exocytosis of precursor vesicles, new cell wall and plasma membrane are continuously deposited at the hyphal apex; the question is how the characteristic shape of tube and tapered tip comes about. Recent experiments lend support to a model whose central feature is a mobile vesicle supply center corresponding to the Spitzenkörper (apical body) visible in growing hyphae. Shapes predicted by the model agree remarkably well with those of actual hyphae. Nevertheless, critical examination of the model's premises suggests that it requires extension so as to incorporate both a driving force for expansion and a gradient of cell wall plasticity. I propose that a mobile vesicle supply center may be one, but only one, of a range of physiological devices employed by tip-growing organisms to localize the exocytosis of precursor vesicles. Apical growth should ensue whenever the loci of exocytosis advance vectorially, and nascent cell wall expands in a graded manner.Abbrevations VSC vesicle supply center - SPK Spitzenkörper  相似文献   

9.
Most models for fungal growth have proposed a directional traffic of secretory vesicles to the hyphal apex, where they temporarily aggregate at the Spitzenkörper before they fuse with the plasma membrane (PM). The PM H+-translocating ATPase (PMA-1) is delivered via the classical secretory pathway (endoplasmic reticulum [ER] to Golgi) to the cell surface, where it pumps H+ out of the cell, generating a large electrochemical gradient that supplies energy to H+-coupled nutrient uptake systems. To characterize the traffic and delivery of PMA-1 during hyphal elongation, we have analyzed by laser scanning confocal microscopy (LSCM) strains of Neurospora crassa expressing green fluorescent protein (GFP)-tagged versions of the protein. In conidia, PMA-1-GFP was evenly distributed at the PM. During germination and germ tube elongation, PMA-1-GFP was found all around the conidial PM and extended to the germ tube PM, but fluorescence was less intense or almost absent at the tip. Together, the data indicate that the electrochemical gradient driving apical nutrient uptake is generated from early developmental stages. In mature hyphae, PMA-1-GFP localized at the PM at distal regions (>120 μm) and in completely developed septa, but not at the tip, indicative of a distinct secretory route independent of the Spitzenkörper occurring behind the apex.  相似文献   

10.
Growth and organelle morphology in the wood rotting basidiomycete fungus Phanerochaete velutina were examined in Petri dishes, on agar-coated slides, and in submerged cultures, using DIC, fluorescence and four-dimensional (4-D; x,y,z,t) confocal microscopy, with several fluorescent probes. Phanerochaete is ideal for this work because of its fast growth, robustness, and use in a wide range of other studies. The probe carboxy-DFFDA, widely used for labelling vacuoles, has no effect either on hyphal tip extension or colony growth at the concentrations usually applied in labelling experiments. Carboxy-DFFDA labels the vacuoles and these form a tubular reticulum in hyphal tip cells. The probe also labels extremely small vesicles (punctate fluorescence) in the apex of tip cells, the Spitzenkörper, and short tubules that undergo sequences of characteristic movements and transformations to produce various morphologies, including ring-like structures. Their location and behaviour suggest that they are a distinct group of structures, possibly a subset of vacuoles, but as yet to be fully identified. Regular incursions of tubules extending from these structures and from the vacuolar reticulum into the apical dome indicate the potential for delivery of material to the apex via tubules as well as vesicles. Such structures are potential candidates for delivering chitin synthases to the apex. Spitzenkörper behaviour has been followed as hyphal tips with linear growth encounter obstacle hyphae and, as the hydrolysis product of carboxy-DFFDA only accumulates in membrane-enclosed compartments, it can be inferred that the labelled structures represent the Spitzenkörper vesicle cloud. Mitochondria also form a reticular continuum of branched tubules in growing hyphal tips, and dual localisation with DiOC6(3) and CMAC allows this to be distinguished from the vacuolar reticulum. Like vacuolar tubules, mitochondrial tubules also span the septa, indicating that they may also be a conduit for intercellular transport.  相似文献   

11.
During the extreme polarized growth of fungal hyphae, secretory vesicles are thought to accumulate in a subapical region called the Spitzenkörper. The human fungal pathogen Candida albicans can grow in a budding yeast or hyphal form. When it grows as hyphae, Mlc1 accumulates in a subapical spot suggestive of a Spitzenkörper-like structure, while the polarisome components Spa2 and Bud6 localize to a surface crescent. Here we show that the vesicle-associated protein Sec4 also localizes to a spot, confirming that secretory vesicles accumulate in the putative C. albicans Spitzenkörper. In contrast, exocyst components localize to a surface crescent. Using a combination of fluorescence recovery after photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP) experiments and cytochalasin A to disrupt actin cables, we showed that Spitzenkörper-located proteins are highly dynamic. In contrast, exocyst and polarisome components are stably located at the cell surface. It is thought that in Saccharomyces cerevisiae exocyst components are transported to the cell surface on secretory vesicles along actin cables. If each vesicle carried its own complement of exocyst components, then it would be expected that exocyst components would be as dynamic as Sec4 and would have the same pattern of localization. This is not what we observe in C. albicans. We propose a model in which a stream of vesicles arrives at the tip and accumulates in the Spitzenkörper before onward delivery to the plasma membrane mediated by exocyst and polarisome components that are more stable residents of the cell surface.Polarized growth of fungi requires that a supply of secretory vesicles is delivered along cytoskeletal tracks to the site of cell expansion (for reviews, see references 13, 29, 30, and 31). Fusion of these membrane-bound vesicles with the plasma membrane allows the necessary expansion of the plasma membrane and releases the enzymes and raw materials for the synthesis of new cell wall material and the remodeling necessary to allow this newly synthesized material to be inserted into the existing cell wall. The process of polarized growth has been extensively studied in the budding yeast Saccharomyces cerevisiae and provides a model for studying the process in other fungi (for a review, see reference 20). Post-Golgi vesicles travel to sites of polarized growth along actin cables (23). Actin cables are nucleated at sites of polarized growth by the formin Bni1 facilitated by a multiprotein complex called the polarisome, which consists of Spa2, Bud6, and Pea1(5, 22, 24, 27). The motive force for vesicle transport is provided by Myo2, a class V myosin, complexed to its regulatory light chain Mlc1 (22, 26). At the plasma membrane, secretory vesicles dock with a second multiprotein complex called the exocyst before fusion with the plasma membrane (14, 15, 32, 33), mediated by v-SNARES on the vesicle and t-SNARES on the membrane. The exocyst is an octomeric complex composed of Sec3, Sec5, Sec6, Sec8, Sec10, Sec15, Exo70, and Exo84 (21). It is thought that Sec3 and a fraction of the Exo70 pool are localized at sites of polarized growth independently of the actin cytoskeleton (3, 6). The other exocyst subunits and the remainder of the Exo70 pool are thought to be transported to sites of polarized growth on secretory vesicles, where together with Sec3 and Exo70 they form the exocyst complex (3). Secretory vesicles exit the Golgi apparatus, travel toward sites of polarized growth, and dock with the exocyst by use of the Rab-type GTPase Sec4 in its GTP-bound form, which is activated by its GEF, Sec2 (12, 19, 35, 36). In the S. cerevisiae cell cycle, polarized growth is initially directed toward the bud tip in young buds (17). Growth subsequently becomes isotropic in larger buds before being directed toward the mother bud neck during cytokinesis at the end of the cell cycle. Accordingly, polarisome and exocyst components localize to the tips of young buds (7, 27, 28).The rate of hyphal tip extension is much greater than that of the growth of a yeast or pseudohyphal bud. In rich yeast extract-peptone-dextrose (YEPD) medium, Candida albicans hyphae extend at the rate of 0.25 μm min−1, compared to 0.0625 μm min−1 in yeast buds and 0.125 μm min−1 in pseudohyphal cells (P. Sudbery unpublished observations). In hyphae of filamentous fungi, a structure called a Spitzenkörper is present at the tip, which is rich in secretory vesicles (8, 9, 11, 29, 34). It is believed that the Spitzenkörper acts as a vesicle supply center (VSC) (1). This model proposes that the Spitzenkörper is maintained at a fixed distance from the hyphal tip. Vesicles radiate out in equal directions to fuse with the plasma membrane, so that more vesicles per unit area fuse with the hyphal tip itself than with other parts of the hyphae. Mathematical modeling shows that this explains the distinctive shape of hyphal tips.In order to investigate the mechanism of polarized growth in the hyphae of Candida albicans, we previously determined the localization of Mlc1-yellow fluorescent protein (YFP) and the polarisome components Bud6-YFP and Spa2-YFP (4). We found that in hyphae, polarisome components localized to a surface crescent, as they did in young yeast buds and the tips of elongated pseudohyphal buds. However, in hyphae Mlc1-YFP localized to a bright spot, which at least in some hyphae was clearly inside the tip, rather than at the surface, and which appeared spherical in three-dimensional reconstructions. We concluded that this represented a Spitzenkörper. In some hyphae Mlc1-YFP also localized to a surface crescent, similar to the pattern displayed by polarisome components. This observation suggested that the Spitzenkörper and polarisome were separate structures, both of which were present at hyphal tips, but that only the polarisome was present at the bud tips of pseudohyphae and yeast. Moreover, the dual localization of Mlc1-YFP to a crescent and a spot suggested that Mlc1 may be present in both structures.While S. cerevisiae has proved to be an excellent model to investigate the molecular genetics of polarized growth, it is less optimal to study the spatial organization of the molecular components because polarized growth of the bud is restricted to a short period after bud emergence when the nascent bud is small. Thus, there has been little effort to investigate the fine detail of the spatial organization of the different components of the polarization machinery beyond noting that they localize to sites of polarized growth. In this study we exploited the opportunities afforded by the continuous polarized growth of C. albicans hyphae to clarify the relationship between the Spitzenkörper, polarisome, and exocyst, which cooperate to mediate the extreme polarized growth of hyphae. We show that the vesicle-associated marker Sec4 also localizes to a Spitzenkörper-like structure, confirming the existence of a vesicle-rich area corresponding to a Spitzenkörper at the hyphal tip. We show that exocyst components such as Sec3, Sec6, Sec8, Exo70, and Exo84 localize to a surface crescent, so the exocyst, like the polarisome, is also a spatially separate structure from the Spitzenkörper. We used three independent strategies to investigate the dynamic properties of these structures. Fluorescence recovery after photobleaching (FRAP) was used to measure the rate at which new proteins arrived at the tip. Fluorescence loss in photobleaching (FLIP) was used to measure the rate at which proteins exited the tip. Cytochalasin A was used to disrupt actin cables, allowing the persistence of proteins at the tip to be measured after the supply of new proteins was blocked. In each case we found that Spitzenkörper components Sec4, Sec2, and Mlc1 were highly dynamic, while the polarisome component Spa2 was stable. Intriguingly, exocyst components showed intermediate dynamic properties, suggesting that they are delivered to the tip on vesicles but that not all vesicles carry a complement of exocyst components. We suggest that these data are consistent with a model in which a stream of vesicles arrives at the tip and accumulates in the Spitzenkörper before onward delivery to the plasma membrane mediated by exocyst and polarisome components that are more stable residents of the cell surface.  相似文献   

12.
Dijksterhuis J 《Protoplasma》2003,222(1-2):53-59
Summary. The membrane-selective fluorescent dye FM4-64, N-(3-triethylammoniumpropyl)-4-(6-(4-(diethylamino)phenyl)hexatrienyl)pyridium dibromide, was used to stain the apical vesicle cluster within the specialized Spitzenkörper of the germ tube of the rust fungi Uromyces vignae and Puccinia graminis f. sp. tritici grown on glass surfaces. The Spitzenkörper stained within 15 min following addition of the dye. Optical sectioning by confocal microscopy of stained hyphal tips showed that the Spitzenkörper was asymmetrically positioned close to the cell–substratum interface during germ tube growth. The Spitzenkörper showed variations in shape and positioning over short (5 s) time intervals. The movement to a new location in the hyphal dome was followed by new growth in that region, consistent with the view that the Spitzenkörper supplies secretory vesicles for germ tube growth. A pronounced Spitzenkörper disappeared at the onset of appressorium differentiation during swelling of the germ tube. However, a stained structure, similar in appearance to a Spitzenkörper, was again observed during the formation of the highly polarized penetration peg.Correspondence and reprints: Centraalbureau voor Schimmelcultures, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.Received October 25, 2002; accepted February 26, 2003; published online August 26, 2003  相似文献   

13.
Summary Light and electron microscopic observations on vegetative hyphae ofAllomyces arbuscula revealed the specialized organization of the tip. There were some minor differences related to culture conditions, but the main ultrastructural features common to all hyphal tips disclosed a special type of organization distinct from that of other fungi. A crescent-shaped apical zone consisted of vesicles and membrane cisternae embedded in a granular matrix. Vesicles fused with the apical plasmalemma and presumably contributed to its expansion and to wall growth. The apical zone contained few ribosomes and generally no other organelles. Mitochondria were concentrated in the immediate subapical zone and scattered through the remainder of the hyphae, as were microbodies. Microtubules formed an asterlike structure with its center in the apical zone. Proximally of the apex, microtubules were axially oriented. Nuclei occurred only a certain distance from the tip. The elements of the apex may maintain the polarity of the hyphae via a gradient and hold it in a state of vegetative growth.  相似文献   

14.
Video-enhanced light microscopy of the apical and subapical regions of growing hyphae of several fungal species revealed the existence of momentary synchronized motions of subcellular organelles. First discovered in a temperature-sensitive morphological mutant (ramosa-1) of Aspergillus niger, these seemingly spontaneous cytoplasmic contractions were also detected in wild-type hyphae of A. niger, Neurospora crassa, and Trichoderma atroviride. Cytoplasmic contractions in all fungi lasted about 1 s. Although the cytoplasm recovered its motility and appearance, the contraction usually led to drastic changes in Spitzenkörper (apical body) behavior and hyphal morphology, often both. Within 10 s after the contraction, the Spitzenkörper commonly became dislodged from its polar position; sometimes it disassembled into phase-dark and phase-light components; more commonly, it disappeared completely. Whether partial or complete, the dislocation of the Spitzenkörper was always accompanied by a sharp reduction or cessation of growth, and was usually followed by marked morphological changes that included bulbous hyphal tips, bulges in the hyphal profile, and formation of subapical and apical branches. The cytoplasmic contractions are vivid evidence that the most conspicuous cell organelles (membrane-bound) in living hyphae are interconnected via a contractile cytoskeletal network.  相似文献   

15.
Kinesin is a force-generating molecule that is thought to translocate organelles along microtubules, but its precise cellular function is still unclear. To determine the role of kinesin in vivo, we have generated a kinesin-deficient strain in the simple cell system Neurospora crassa. Null cells exhibit severe alterations in cell morphogenesis, notably hyphal extension, morphology and branching. Surprisingly, the movement of organelles visualized by video microscopy is hardly affected, but apical hyphae fail to establish a Spitzenkörper, an assemblage of secretory vesicles intimately linked to cell elongation and morphogenesis in Neurospora and other filamentous fungi. As cell morphogenesis depends on polarized secretion, our findings demonstrate that a step in the secretory pathway leading to cell shape determination and cell elongation cannot tolerate a loss of kinesin function. The defect is suggested to affect the transport of small, secretory vesicles to the site involved in protrusive activity, resulting in the uncoordinated insertion of new cell wall material over much of the cell surface. These observations have implications for the presumptive function of kinesin in more complex cell systems.  相似文献   

16.
An apical branching, temperature-sensitive, mutant ofAspergillus niger(ramosa-1) was isolated by UV mutagenesis.Ramosa-1has a wild type morphology at 23°C, but branches apically when shifted to 34°C. The cytological events leading to apical branching were recorded by video-enhanced phase contrast microscopy. The first event was a momentary, localized, cytoplasmic contraction lasting approximately 1 s. This contraction was seen as a sudden unidirectional movement of visible organelles (mitochondria, spheroid bodies) toward the hyphal apex. During the contraction, there was a transitory sharp increase in refractive index in a localized area of cytoplasm in the apex or subapex of the cell. Within 5 s, the Spitzenkörper retracted from its normal position next to the apical pole and disappeared from view 20 to 50 s later. Hyphal elongation rate diminished sharply, and the typical distribution of organelles at the hyphal tip was disturbed. After 210–240 s, organelle distribution returned to normal, polarized growth resumed, but instead of one Spitzenkörper two new Spitzenkörper appeared, each giving rise to an apical branch. The second branch Spitzenkörper appeared with a 60- to 100-s delay. We did not observe the original Spitzenkörper dividing in two; instead, the new Spitzenkörper arosede novofrom vesicle clouds that formed in the apical region next to the future site of branch emergence. In all instances that we examined, the dislocation and disappearance of the Spitzenkörper was preceded by cytoplasmic contractions. We therefore suspect the existence of an intimate connection between the cytoskeletal network and the Spitzenkörper. Accordingly, we propose that the apical branching phenotype inramosa-1is triggered by a molecular event that induces a transient alteration in cytoskeleton organization.  相似文献   

17.
Because of their wide range of apical morphology, several members of saprolegniaceous fungi (Oomycetes) were chosen to examine concordance with the vesicle supply center (VSC) model of hyphal morphogenesis. Two computer routines were devised to measure diameter changes over long stretches of hyphae and to test compatibility with the theoretical hyphoid shape, y = xcot(xV/N). In all four genera examined, the apex followed closely the contour described by the hyphoid equation; divergences became evident in the subapex. The hyphae of Saprolegnia parasitica showed maximum concordance with the VSC model, i.e., their profile matched a hyphoid curve from the apex to the entire length of the mature hyphal tube. In Aphanomyces and Leptolegnia, growth in the subapical region subsided becoming less than that specified by the hyphoid equation. In Achlya bisexualis, the reverse was true, the subapical region expanded beyond that specified by the hyphoid equation. The two divergent subapical tendencies gave the hyphal tips a cylindroid or conoid appearance, respectively. Since the hyphal apex of all four species conformed to the curvature dictated by the hyphoid equation, we concluded that a basic VSC mechanism operates in all of these oomycetous fungi. Accordingly, we suggest that the shape of an oomycetous hypha is generated by a VSC-driven gradient of wall formation, which is subject to additional modification in the subapex to produce a range of hyphal tip morphologies. The mathematical basis for generating a conoid hyphal tip by elongating the VSC is described in Appendix A.  相似文献   

18.
To date, among the zygomycete fungi that have been examined, a Spitzenk?rper has not been reported. In this paper, the cytoplasmic order of hyphal tip cells of Basidiobolus sp.,?a zygomycete genus of uncertain phylogeny, has been examined using light microscopy and transmission electron microscopy methods. With phase-contrast light optics, a phase-dark body was observed at the tips of growing hyphae of Basidiobolus sp. The hyphal apex also showed high affinity for FM4-64 labelling resulting in an intense fluorescence signal. The phase-dark inclusion exhibited independent motility within the hyphal apex and its presence and position were correlated to the rate and direction of hyphal growth. The hyphal apex of Basidiobolus sp. did not contain γ-tubulin. Ultrastructural observations revealed a dense cluster of vesicles at the hyphal apex. These results suggest that the growing hypha of Basidiobolus sp. contains a Spitzenk?rper, a character generally attributed to members of the ascomycete and basidiomycete fungi and not to zygomycete fungi.  相似文献   

19.
20.
We have used light and electron microscopy to document the cytoplasmic effects of the ropy (ro-1) mutation in mature hyphae of Neurospora crassa and to better understand the role(s) of dynein during hyphal tip growth. Based on video-enhanced DIC light microscopy, the mature, growing hyphae of N. crassa wild type could be divided into four regions according to cytoplasmic organization and behavior: the apical region (I) and three subapical regions (II, III, and IV). A well-defined Spitzenk?rper dominated the cytoplasm of region I. In region II, vesicles ( approximately 0.48 micro m diameter) and mitochondria maintained primarily a constant location within the advancing cytoplasm. This region was typically void of nuclei. Vesicles exhibited anterograde and retrograde motility in regions III and IV and followed generally parallel paths along the longitudinal axis of the cell. A small population of mitochondria displayed rapid anterograde and retrograde movements, while most maintained a constant position in the advancing cytoplasm in regions III and IV. Many nuclei occupied the cytoplasm of regions III and IV. In ro-1 hyphae, discrete cytoplasmic regions were not recognized and the motility and/or positioning of vesicles, mitochondria, and nuclei were altered to varying degrees, relative to the wild type cells. Immunofluorescence microscopy revealed that the microtubule cytoskeleton was severely disrupted in ro-1 cells. Transmission electron microscopy of cryofixed cells confirmed that region I of wild-type hyphae contained a Spitzenk?rper composed of an aggregation of small apical vesicles that surrounded entirely or partially a central core composed, in part, of microvesicles embedded in a dense granular to fibrillar matrix. The apex of ro-1 the hypha contained a Spitzenk?rper with reduced numbers of apical vesicles but maintained a defined central core. Clearly, dynein deficiency in the mutant caused profound perturbation in microtubule organization and function and, consequently, organelle dynamics and positioning. These perturbations impact negatively on the organization and stability of the Spitzenk?rper, which, in turn, led to severe reduction in growth rate and altered hyphal morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号