首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A biofiltration system inoculated with the mold Paecilomyces variotii CBS115145 showed a toluene elimination capacity (EC) of around 250 g/m3 of biofilter/h, which was higher than the values usually reported for bacteria. P. variotii assimilated m- and p-cresols but not the o isomer. Initial toluene hydroxylation occurred both on the methyl group and through the p-cresol pathway. These results were corroborated by detecting benzyl alcohol, benzaldehyde, and p-cresol as volatile intermediates. In liquid cultures with toluene as a substrate, the activity of toluene oxygenase (TO) was 5.6 nmol of O2/min/mg of biomass, and that of benzyl alcohol dehydrogenase was 16.2 nmol of NADH/min/mg of protein. Toluene biodegradation determined from the TO activity in the biofilter depended on the biomass distribution and the substrate concentration. The specific enzymatic activity decreased from 6.3 to 1.9 nmol of O2/min/mg of biomass along the reactor. Good agreement was found between the EC calculated from the TO activity and the EC measured on the biofilter. The results were confirmed by short-time biofiltration experiments. Average EC measured in different biofiltration experiments and EC calculated from the TO activity showed a linear relation, suggesting that in the biofilters, EC was limited by biological reaction. As the enzymatic activities of P. variotii were similar to those reported for bacteria, the high performance of the fungal biofilters can possibly be explained by the increased transfer of the hydrophobic compounds, including oxygen, from the gas phase to the mycelia, overcoming the transfer problems associated with the flat bacterial biofilms.  相似文献   

2.
Toluene-o-xylene monooxygenase (ToMO) from Pseudomonas stutzeri OX1 oxidizes toluene to 3- and 4-methylcatechol and oxidizes benzene to form phenol; in this study ToMO was found to also form catechol and 1,2,3-trihydroxybenzene (1,2,3-THB) from phenol. To synthesize novel dihydroxy and trihydroxy derivatives of benzene and toluene, DNA shuffling of the alpha-hydroxylase fragment of ToMO (TouA) and saturation mutagenesis of the TouA active site residues I100, Q141, T201, and F205 were used to generate random mutants. The mutants were initially identified by screening with a rapid agar plate assay and then were examined further by high-performance liquid chromatography and gas chromatography. Several regiospecific mutants with high rates of activity were identified; for example, Escherichia coli TG1/pBS(Kan)ToMO expressing the F205G TouA saturation mutagenesis variant formed 4-methylresorcinol (0.78 nmol/min/mg of protein), 3-methylcatechol (0.25 nmol/min/mg of protein), and methylhydroquinone (0.088 nmol/min/mg of protein) from o-cresol, whereas wild-type ToMO formed only 3-methylcatechol (1.1 nmol/min/mg of protein). From o-cresol, the I100Q saturation mutagenesis mutant and the M180T/E284G DNA shuffling mutant formed methylhydroquinone (0.50 and 0.19 nmol/min/mg of protein, respectively) and 3-methylcatechol (0.49 and 1.5 nmol/min/mg of protein, respectively). The F205G mutant formed catechol (0.52 nmol/min/mg of protein), resorcinol (0.090 nmol/min/mg of protein), and hydroquinone (0.070 nmol/min/mg of protein) from phenol, whereas wild-type ToMO formed only catechol (1.5 nmol/min/mg of protein). Both the I100Q mutant and the M180T/E284G mutant formed hydroquinone (1.2 and 0.040 nmol/min/mg of protein, respectively) and catechol (0.28 and 2.0 nmol/min/mg of protein, respectively) from phenol. Dihydroxybenzenes were further oxidized to trihydroxybenzenes with different regiospecificities; for example, the I100Q mutant formed 1,2,4-THB from catechol, whereas wild-type ToMO formed 1,2,3-THB (pyrogallol). Regiospecific oxidation of the natural substrate toluene was also checked; for example, the I100Q mutant formed 22% o-cresol, 44% m-cresol, and 34% p-cresol, whereas wild-type ToMO formed 32% o-cresol, 21% m-cresol, and 47% p-cresol.  相似文献   

3.
Elimination capacity (EC) is frequently used as a performance and design criterion for vapor-phase biofilters without further verification of the microbial quantity and activity. This study was conducted to investigate how biofilters respond to high pollutant loadings and ultimately how this affects the EC of the biofilter. Two identical laboratory-scale biofilters were maintained at an initial toluene loading rate of 46 g m−3 h−1 for a period of 24 days. After the initial biofilm development stage, the loading rates were increased to 91 g m−3 h−1 and 137 g m−3 h−1, respectively. Following a short period of pseudo-steady state, toluene removal efficiencies rapidly declined in both biofilters, with a concurrent decline in both critical and maximum ECs. The decline was mainly due to deterioration in the biodegradation activity of the biofilm and a decline in the toluene-degrading bacterial population within the biofilm phase. The findings imply that high toluene loadings accelerated the deterioration in overall performance due to a rapid accumulation of inactive biomass. As a result, care must be used when relying on EC values for biofilter design and operational purposes, since the values do not appropriately reflect the temporal changes in biodegradation activity and active biomass quantities that can occur in biofilters subjected to high inlet loadings.  相似文献   

4.
Wild-type toluene 4-monooxygenase (T4MO) of Pseudomonas mendocina KR1 oxidizes toluene to p-cresol (96%) and oxidizes benzene sequentially to phenol, to catechol, and to 1,2,3-trihydroxybenzene. In this study T4MO was found to oxidize o-cresol to 3-methylcatechol (91%) and methylhydroquinone (9%), to oxidize m-cresol and p-cresol to 4-methylcatechol (100%), and to oxidize o-methoxyphenol to 4-methoxyresorcinol (87%), 3-methoxycatechol (11%), and methoxyhydroquinone (2%). Apparent Vmax values of 6.6 ± 0.9 to 10.7 ± 0.1 nmol/min/ mg of protein were obtained for o-, m-, and p-cresol oxidation by wild-type T4MO, which are comparable to the toluene oxidation rate (15.1 ± 0.8 nmol/min/mg of protein). After these new reactions were discovered, saturation mutagenesis was performed near the diiron catalytic center at positions I100, G103, and A107 of the alpha subunit of the hydroxylase (TmoA) based on directed evolution of the related toluene o-monooxygenase of Burkholderia cepacia G4 (K. A. Canada, S. Iwashita, H. Shim, and T. K. Wood, J. Bacteriol. 184:344-349, 2002) and a previously reported T4MO G103L regiospecific mutant (K. H. Mitchell, J. M. Studts, and B. G. Fox, Biochemistry 41:3176-3188, 2002). By using o-cresol and o-methoxyphenol as model substrates, regiospecific mutants of T4MO were created; for example, TmoA variant G103A/A107S produced 3-methylcatechol (98%) from o-cresol twofold faster and produced 3-methoxycatechol (82%) from 1 mM o-methoxyphenol seven times faster than the wild-type T4MO (1.5 ± 0.2 versus 0.21 ± 0.01 nmol/min/mg of protein). Variant I100L produced 3-methoxycatechol from o-methoxyphenol four times faster than wild-type T4MO, and G103S/A107T produced methylhydroquinone (92%) from o-cresol fourfold faster than wild-type T4MO and there was 10 times more in terms of the percentage of the product. Variant G103S produced 40-fold more methoxyhydroquinone from o-methoxyphenol than the wild-type enzyme produced (80 versus 2%) and produced methylhydroquinone (80%) from o-cresol. Hence, the regiospecific oxidation of o-methoxyphenol and o-cresol was changed for significant synthesis of 3-methoxycatechol, methoxyhydroquinone, 3-methylcatechol, and methylhydroquinone. The enzyme variants also demonstrated altered monohydroxylation regiospecificity for toluene; for example, G103S/A107G formed 82% o-cresol, so saturation mutagenesis converted T4MO into an ortho-hydroxylating enzyme. Furthermore, G103S/A107T formed 100% p-cresol from toluene; hence, a better para-hydroxylating enzyme than wild-type T4MO was formed. Structure homology modeling suggested that hydrogen bonding interactions of the hydroxyl groups of altered residues S103, S107, and T107 influence the regiospecificity of the oxygenase reaction.  相似文献   

5.
The anaerobic bacterium Desulfobacterium cetonicum oxidized p-cresol completely to CO2 with sulfate as the electron acceptor. During growth, 4-hydroxybenzylsuccinate accumulated in the medium. This finding indicated that the methyl group of p-cresol is activated by addition to fumarate, analogous to anaerobic toluene, m-xylene, and m-cresol degradation. In cell extracts, the formation of 4-hydroxybenzylsuccinate from p-cresol and fumarate was detected at an initial rate of 0.57 nmol min−1 (mg of protein)−1. This activity was specific for extracts of p-cresol-grown cells. 4-Hydroxybenzylsuccinate was degraded further to 4-hydroxybenzoyl-coenzyme A (CoA), most likely via β-oxidation. 4-Hydroxybenzoyl-CoA was reductively dehydroxylated to benzoyl-CoA. There was no evidence of degradation of p-cresol via methyl group oxidation by p-cresol-methylhydroxylase in this bacterium.  相似文献   

6.
This study reports the biodegradation of carbon disulfide (CS2) in air biofilters packed with a pelletized mixture of composted manure and sawdust. Experiments were carried out in two lab-scale (1.2 L) biofiltration units. Biofilter B was seeded with activated sludge enriched previously on CS2-degrading biomass under batch conditions, while biofilter A was left as a negative inoculation control. This inoculum was characterized by an acidic pH and sulfate accumulation, and contained Achromobacter xylosoxidans as the main putative CS2 biodegrading bacterium. Biofilter operation start-up was unsuccessfully attempted under xerophilic conditions and significant CS2 elimination was only achieved in biofilter A upon the implementation of an intermittent irrigation regime. Sustained removal efficiencies of 90–100 % at an inlet load of up to 12 g CS2 m?3 h?1 were reached. The CS2 removal in this biofilter was linked to the presence of the chemolithoautotrophic bacterium Thiobacillus thioparus, known among the relatively small number of species with a reported capacity of growing on CS2 as the sole energy source. DGGE molecular profiles confirmed that this microbe had become dominant in biofilter A while it was not detected in samples from biofilter B. Conventional biofilters packed with inexpensive organic materials are suited for the treatment of low-strength CS2 polluted gases (IL <12 g CS2 m?3 h?1), provided that the development of the adequate microorganisms is favored, either upon enrichment or by inoculation. The importance of applying culture-independent techniques for microbial community analysis as a diagnostic tool in the biofiltration of recalcitrant compounds has been highlighted.  相似文献   

7.

The objectives of this study were to investigate the biodegradation of gaseous trichloroethylene (TCE) and tetrachloroethylene (PCE) in an activated carbon biofilter inoculated with phenol-oxidizing microorganisms and to study the effect of surfactant concentration below its critical micelle concentration (CMC) on the removal efficiency of TCE or PCE. For the enhanced biofiltration, a biodegradable nonionic surfactant was added to biofilters. The investigation was conducted using two specially built stainless steel biofilters, one for TCE and the other for PCE.

The removal efficiency of gaseous TCE was 100% at a residence time of 7?min and its average inlet concentration of 85?ppm. For gaseous PCE, 100% removal efficiency was obtained at residence times of 4–7?min and its average concentrations of 47–84?ppm. It was found that adsorption by GAC and absorption by influent nutrient solution were a minor or negligible mechanism for TCE and PCE removal in the activated carbon biofilters. The TCE and PCE activated carbon biofilter performances were observed to be a little enhanced but not significantly, when the surfactant was introduced at concentrations of 5–50?mg/l. Surfactant concentrations of 5–15?mg/l were found to be an optimal dosage in the biofilter operation for avoiding significant residual in the effluent from biofilters.

  相似文献   

8.
The removal of hydrophobic pollutants in biofilters is often limited by gas liquid mass transfer to the biotic aqueous phase where biodegradation occurs. It has been proposed that the use of fungi may improve their removal efficiency. To confirm this, the uptake of hexane vapors was investigated in 2.6-L perlite-packed biofilters, inoculated with a mixed culture containing bacteria and fungi, which were operated under neutral or acid conditions. For a hexane inlet load of around 140 g.m-3.h-1, elimination capacities (EC) of 60 and 100 g.m-3.h-1 were respectively reached with the neutral and acid systems. Increasing the inlet hexane load showed that the maximum EC obtained in the acid biofilter (150 g.m-3.h-1) was twice greater than in the neutral filter. The addition of bacterial inhibitors had no significant effect on EC in the acid system. The biomass in the acid biofilter was 187 mg.g-1 (dry perlite) without an important pressure drop (26.5 mm of water.m-1reactor). The greater efficiency obtained with the acid biofilter can be related to the hydrophobic aerial hyphae which are in direct contact with the gas and can absorb the hydrophobic compounds faster than the flat bacterial biofilms. Two fungi were isolated from the acid biofilter and were identified as Cladosporium and Fusarium spp. Hexane EC of 40 g.m-3.h-1 for Cladosporium sp. and 50 g.m-3.h-1 for Fusarium sp. were obtained in short time experiments in small biofilters (0.230 L). A biomass content around 30 mg.g-1 (dry perlite) showed the potential for hexane biofiltration of the strains.  相似文献   

9.
Phenol hydroxylase gene engineered microorganism (PHIND) was used to synthesize catechols from benzene and toluene by successive hydroxylation reaction. HPLC-MS and 1H NMR analysis proved that the products of biotransformation were the corresponding catechols via the intermediate production of phenols. It was indicated that the main products of toluene oxidation were o-cresol and p-cresol. 3-Methylcatechol was the predominant product for m-cresol biotransformation. Formation rate of catechol (25 μM/min/g cell dry weight) was 1.43-fold higher than that of methylcatechols. It was suggested that phenol hydroxylase could be successfully used to transform both benzene and toluene to catechols by successive hydroxylation.  相似文献   

10.
Interactions of toluene and p-xylene in air treatment biofilters packed with an inert filter media were studied. The effect of the inlet load of toluene, p-xylene and mixtures of both compounds on the biodegradation rate was analyzed in three lab-scale biofilters. A maximum elimination capacity (EC) of 26.5 and 40.3 g C m−3 h−1 for an inlet load (IL) of 65.6 and 57.8 g C m−3 h−1 was obtained for p-xylene and toluene biofilters, respectively. Inhibition of p-xylene biodegradation by the presence of toluene took place when the mixture was treated, whereas the presence of p-xylene had an enhancing effect on the toluene removal efficiency. Specific growth rates (μ) from 0.019 to 0.068 h−1 were calculated in the mixed biofilter, where the highest values were similar to mixtures with lower p-xylene levels (ILp-Xyl 8.84 ± 0.29 g C m−3 h−1). Michaelis-Menten and Haldane type models were fitted to experimental EC for p-xylene and toluene biofilters, respectively.  相似文献   

11.
Uneven distribution and excess accumulation of biomass within gas phase biofilters often result in operational problems such as clogging, channeling, and excessive head loss within biofilter beds, and consequently, the deterioration of performance. In this paper, the characteristics, mechanisms, and patterns of biomass accumulation in gas biofiltration were reviewed, and models for biomass accumulation were also summarized. Strategies for excess biomass control in gas biofiltration, categorized into either physical, chemical, or biological methods were also discussed, with improvements in design and operation of biofilters. Combinations of these approaches are usually necessary in order to maintain a reasonably even distribution and to minimize the accumulation of biomass in gas biofilters.  相似文献   

12.
Thermophilic biofiltration of benzene and toluene   总被引:1,自引:0,他引:1  
In the current studies, we characterized the degradation of a hot mixture of benzene and toluene (BT) gases by a thermophilic biofilter using polyurethane as packing material and high-temperature compost as a microbial source. We also examined the effect of supplementing the biofilter with yeast extract (YE). We found that YE substantially enhanced microbial activity in the thermophilic biofilter. The degrading activity of the biofilter supplied with YE was stable during long-term operation (approximately 100 d) without accumulating excess biomass. The maximum elimination capacity (1,650 g x m(-3) h(-1)) in the biofilter supplemented with YE was 3.5 times higher than that in the biofilter without YE (470 g g x m(-3) h(-1)). At similar retention times, the capacity to eliminate BT for the YE-supplemented biofilter was higher than for previously reported mesophilic biofilters. Thus, thermophilic biofiltration can be used to degrade hydrophobic compounds such as a BT mixture. Finally, 16S rDNA polymerase chain reaction-DGGE (PCR-DGGE) fingerprinting revealed that the thermophilic bacteria in the biofilter included Rubrobacter sp. and Mycobacterium sp.  相似文献   

13.
Toluene biofiltration by the fungus Scedosporium apiospermum TB1   总被引:5,自引:0,他引:5  
The performance of biofilters inoculated with the fungus Scedosporium apiospermum was evaluated. This fungus was isolated from a biofilter which operated with toluene for more than 6 months. The experiments were performed in a 2.9 L reactor packed with vermiculite or with vermiculite-granular activated carbon as packing material. The initial moisture content of the support and the inlet concentration of toluene were 70% and 6 g/m3, respectively. As the pressure drop increased from 5-40 mm H2O a strong initial growth was observed. Stable operation was maintained for 20 days with a moisture content of 55% and a biomass of 33 mg biomass/g dry support. These conditions were achieved with intermittent addition of culture medium, which permitted a stable elimination capacity (EC) of 100 g/m3(reactor)h without clogging. Pressure drop across the bed and CO2 production were related to toluene elimination. Measurement of toluene, at different levels of the biofilter, showed that the system attained higher local EC (200 g/m3(r)h) at the reactor outlet. These conditions were related to local humidity conditions. When the mineral medium was added periodically before the EC decreases, EC of approximately 258 g/m3(r)h were maintained with removal efficiencies of 98%. Under these conditions the average moisture content was 60% and 41 mg biomass/g dry support was produced. No sporulation was observed. Evaluation of bacterial content and activities showed that the toluene elimination was only due to S. apiospermum catabolism.  相似文献   

14.
Two biofilters fed toluene-polluted air were inoculated with new fungal isolates of either Exophiala oligosperma or Paecilomyces variotii, while a third bioreactor was inoculated with a defined consortium composed of both fungi and a co-culture of a Pseudomonas strain and a Bacillus strain. Elimination capacities of 77 g m–3 h–1 and 55 g m–3 h–1 were reached in the fungal biofilters (with removal efficiencies exceeding 99%) in the case of, respectively, E. oligosperma and Paecilomyces variotii when feeding air with a relative humidity (RH) of 85%. The inoculated fungal strains remained the single dominant populations throughout the experiment. Conversely, in the biofilter inoculated with the bacterial–fungal consortium, the bacteria were gradually overgrown by the fungi, reaching a maximum elimination capacity around 77 g m–3 h–1. Determination of carbon dioxide concentrations both in batch assays and in biofiltration studies suggested the near complete mineralization of toluene. The non-linear toluene removal along the height of the biofilters resulted in local elimination capacities of up to 170 g m–3 h–1 and 94 g m–3 h–1 in the reactors inoculated, respectively, with E. oligosperma and P. variotii. Further studies with the most efficient strain, E. oligosperma, showed that the performance was highly dependent on the RH of the air and the pH of the nutrient solution. At a constant 85% RH, the maximum elimination capacity either dropped to 48.7 g m–3 h–1 or increased to 95.6 g m–3 h–1, respectively, when modifying the pH of the nutrient solution from 5.9 to either 4.5 or 7.5. The optimal conditions were 100% RH and pH 7.5, which allowed a maximum elimination capacity of 164.4 g m–3 h–1 under steady-state conditions, with near-complete toluene degradation.  相似文献   

15.
Effects of nonmethane volatile organic compounds (NMVOCs) on methanotrophic biofilter were investigated. Laboratory-scale biofilters packed with pumice and granular-activated carbon (10:1, w/w) were operated with CH4 and NMVOCs including dimethyl sulfide (DMS) and benzene/toluene (B/T). DMS alone exhibited a positive effect on the methanotrophic performance; however, the coexistence of B/T removed this effect. B/T alone exerted no effect on the performance. Pyrosequencing and quantitative PCR revealed that the NMVOCs strongly influenced the bacterial and methanotrophic communities but not the population density of methanotrophs. DMS alone diversified and changed both bacterial and methantrophic communities, but its effects were nullified by the presence of B/T. Canonical correspondence analysis revealed significant correlations between the NMVOCs and community composition and significant interaction between DMS and B/T. DMS did not affect the distribution of types I/II methanotrophs (60/40), while B/T increased the abundance of type I to 82 %. DMS and B/T favored the growth of the methanotrophic bacteria Methylosarcina and Methylomonas, respectively. These results suggest that NMVOCs can be a significant abiotic factor influencing methane biofiltration.  相似文献   

16.
《Phytochemistry》1986,25(7):1537-1543
The pyruvate, phosphate dikinase activity (PPD, EC 2.7.9.1) associated with crude extracts of leaf tissue of some C3 and C4 plants was determined by phosphoenolpyruvate plus PPi-dependent phosphorylation of AMP. The PPD activity of all C4 plants examined was > 15 nmol/mg protein/min. Several factors contributed to the underestimation of PPD activity in crude extracts of at least some species. Significant PPD activity (> 0.15 nmol/mg protein/min) was not detected in the majority of C3 species but several C3 species and the two CAM species studied exhibited activity in the range 0.4–4 nmol/mg protein/min while the C3 species Avena sativa showed activity up to 8 nmol/mg protein/min. The oat leaf enzyme was partially purified; it exhibited properties similar to those of partially purified PPD from maize. Leaf extracts of the orchids Cymbidium canaliculatum and C. madidum contained high levels of PPD activity similar to the majority of C4 plants. PPD activity has also been shown in other previously unstudied species.  相似文献   

17.
To investigate the microbial degradation of ethyl acetate and toluene mixtures in biofiltration, three strains were selected, identified and studied in a shake-flask culture, and finally inoculated into biofilters. These strains, namely AC6, TO3 and B5, can degrade different substrates at a different rate. The results showed that competitive inhibition from substrate and microbial community would affect the toluene degradation efficiency. Owing to substrate competition, the toluene degradation efficiency of strain B5 would decrease in the presence of high concentration of ethyl acetate. However, the addition of strain AC6 would alleviate such inhibition because it could remove ethyl acetate rapidly. Microbial community competition from strain AC6 or B5 would impede the toluene degradation efficiency of strain TO3 unless a large amount of strain TO3 was inoculated. In biofiltration, strain B5 would be a better choice for inoculation into biofilters than strains AC6 and TO3, as it would grow rapidly under a low concentration of ethyl acetate.  相似文献   

18.
Microbiological and kinetic aspects of a biofilter inoculated with a consortium of five bacteria and two yeast adapted to remove toluene vapors were investigated. Initially the toluene sorption isotherm on peat and the effect of different environmental conditions on the toluene consumption rates of this consortium were measured. The fast start-up of the biofilter and the decay in the elimination capacity (EC) were reproduced using microcosm assays with toluene successive additions. Nutrient limitation and a large degree of heterogeneity were also detected. EC values, extrapolated from microcosms, were higher than biofilter EC when it was operating close to 100% efficiency but tended to relate better as the biofilter EC diminished. In studies on the microbial evolution in the biofilter, an increase in the cell count and variation in the ecology of the consortium were noted. Bacterial counts up to 10 x 10(11) cfu/gdry peat were found in 88 days, which corresponds to about a 10(4) increase from inoculum. Observations with SEM showed a nonuniform biofilm development on the support and the presence of an extracellular material. The results obtained in this work demonstrated that activity measurement in microcosms concomitant to the biofilter operation could be an important tool for understanding, predicting and improving the biofiltration performance. Copyright 1999 John Wiley & Sons, Inc.  相似文献   

19.
A sensitive, rapid, quantitative method for the determination of the activities of the bifunctional enzyme, mushroom tyrosinase (o-diphenol: O2 oxido-reductose, EC 1.10.3.1) has been developed. The spectrophotometric method utilizes p-cresol and 4-methyl catechol as substrates at pH 4.8. By maintaining this low pH value, the rates of the nonenzymic reactions are negligible during the course of the assay. Preliminary analysis of the rates of enzyme-catalyzed reactions gave typical results for both substrates: Lineweaver-Burk plots yielded straight lines and the initial velocities for the reactions were proportional to enzyme concentration. Tyrosinase preparations judged to be as pure as those previously reported could be assayed to enzyme concentrations as low as 1 mg/liter with p-cresol while catechol allowed lower concentrations to be assayed (0.3 mg/liter). The precise specific activities towards p-cresol and 4-methyl catechol were found to vary between enzyme solutions and were used to characterize enzyme preparations.  相似文献   

20.
The dissimilatory Fe(III) reducer, GS-15, is the first microorganism known to couple the oxidation of aromatic compounds to the reduction of Fe(III) and the first example of a pure culture of any kind known to anaerobically oxidize an aromatic hydrocarbon, toluene. In this study, the metabolism of toluene, phenol, and p-cresol by GS-15 was investigated in more detail. GS-15 grew in an anaerobic medium with toluene as the sole electron donor and Fe(III) oxide as the electron acceptor. Growth coincided with Fe(III) reduction. [ring-14C]toluene was oxidized to 14CO2, and the stoichiometry of 14CO2 production and Fe(III) reduction indicated that GS-15 completely oxidized toluene to carbon dioxide with Fe(III) as the electron acceptor. Magnetite was the primary iron end product during toluene oxidation. Phenol and p-cresol were also completely oxidized to carbon dioxide with Fe(III) as the sole electron acceptor, and GS-15 could obtain energy to support growth by oxidizing either of these compounds as the sole electron donor. p-Hydroxybenzoate was a transitory extracellular intermediate of phenol and p-cresol metabolism but not of toluene metabolism. GS-15 oxidized potential aromatic intermediates in the oxidation of toluene (benzylalcohol and benzaldehyde) and p-cresol (p-hydroxybenzylalcohol and p-hydroxybenzaldehyde). The metabolism described here provides a model for how aromatic hydrocarbons and phenols may be oxidized with the reduction of Fe(III) in contaminated aquifers and petroleum-containing sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号