首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monoclonal antibodies directed against rabbit reticulocyte protein synthesis initiation factor 4A (eIF-4A) were used to isolate mouse cDNA clones expressing eIF-4A protein sequences in E. coli. The identity of cDNA clones encoding eIF-4A sequences was confirmed by hybrid-selected translation and peptide mapping of the translation product. Analysis of the mRNA coding for eIF-4A from mouse liver and HeLa cells by Northern hybridization revealed two discrete mRNA species of approximately 2000 and 1600 nucleotides in length. The existence of two mRNAs in mouse and HeLa cells encoding eIF-4A was confirmed by cDNA sequencing.  相似文献   

2.
Structure of the beta subunit of translational initiation factor eIF-2   总被引:13,自引:0,他引:13  
  相似文献   

3.
Three cDNA clones coding for eukaryotic translation initiation factor 4A, eIF-4A, were isolated from a Nicotiana plumbaginifolia root cDNA library by heterologous screening. The clones comprise two distinct gene classes as two clones are highly similar while the third is divergent. The genes belong to a highly conserved gene family, the DEAD box supergene family, although the divergent clone contains a DESD box rather than the characteristic DEAD box. The two clones are representatives of separate small multigene families in both N. plumbaginifolia and N. tabacum. Representatives of each family are coordinately expressed in all plant organs examined. The 47 kD polypeptide product of one clone, overexpressed in E. coli, crossreacts immunologically with a rabbit reticulocyte eIF-4A polyclonal antibody. Taken together the data suggest that the two Nicotiana eIF-4A genes encode translation initiation factors. The sequence divergence and the coordinate expression of the two Nicotiana eIF-4A families provide an excellent system to determine if functionally distinct eIF-4A polypeptides are required for translation initiation in plants.  相似文献   

4.
A 24 000-dalton protein [yeast eukaryotic initiation factor 4E (eIF-4E)] was purified from yeast Saccharomyces cerevisiae postribosomal supernatant by m7GDP-agarose affinity chromatography. The protein behaves very similarly to mammalian protein synthesis initiation factor eIF-4E with respect to binding to and elution from m7GDP-agarose columns and cross-linking to oxidized reovirus mRNA cap structures. Yeast eIF-4E is required for translation as shown by the strong and specific inhibition of cell-free translation in a yeast extract by a monoclonal antibody directed against yeast eIF-4E.  相似文献   

5.
6.
7.
8.
Characterization of the 46,000-dalton subunit of eIF-4F   总被引:5,自引:0,他引:5  
Three protein synthesis initiation factors, eukaryotic initiation factor (eIF)-4A, -4B, and -4F are required for the ATP-dependent binding of mRNA to the ribosome. To extend the characterization of the eIF-4A-like subunit of eIF-4F, a cDNA clone encoding eIF-4A has been isolated from a rabbit liver cDNA library and sequenced. The clone is almost full length for the coding region and complete for the 3' noncoding region. The sequence of the rabbit cDNA has been compared to the sequence of the two similar, but not identical, genes and cDNAs encoding mouse eIF-4A (termed eIF-4AI and eIF-4AII). The rabbit cDNA sequence is very similar to the mouse eIF-4AI genomic and liver cDNA sequence with 100% identity at the amino acid level and 90% identity at the nucleotide level within the protein coding region; however, there is very little similarity in the 3' noncoding region. Amino acid sequencing of purified rabbit reticulocyte eIF-4A protein indicates that it is eIF-4AI (encoded by the eIF-4AI gene and cDNA) and none of the amino acid residues sequenced are in disagreement with those predicted from the mouse liver or rabbit liver cDNA sequences. Subsequently, we have analyzed the p46 subunit of eIF-4F, a three subunit protein whose molecular weights have been estimated by sodium dodecyl sulfate gel electrophoresis to be 220,000, 46,000 and 24,000. The p46 subunit has physical properties similar to eIF-4A. This subunit was isolated from rabbit reticulocyte eIF-4F and sequenced chemically. Our results indicate that this peptide is a mixture of eIF-4AI and eIF-4AII in an approximate ratio of 4 to 1, respectively. No eIF-4AII was observed in our rabbit reticulocyte eIF-4A preparation. Therefore we have concluded that either the eIF-4AI and the eIF-4AII proteins were resolved from each other in the purification of rabbit reticulocyte eIF-4A or that eIF-4AII preferentially associates with the p220 and p24 subunits of eIF-4F. Evidence favoring the latter possibility is discussed.  相似文献   

9.
Messenger RNA for yeast cytosolic polypeptide chain elongation factor 1 alpha (EF-1 alpha) was partially purified from Saccharomyces cerevisiae. Double-stranded complementary DNA (cDNA) was synthesized and cloned in Escherichia coli with pBR327 as a vector. Recombinant plasmid carrying yEF-1 alpha cDNA was identified by cross-hybridization with the E. coli tufB gene and the yeast mitochondrial EF-Tu gene (tufM) under non-stringent conditions. A yeast gene library was then screened with the EF-1 alpha cDNA and several clones containing the chromosomal gene for EF-1 alpha were isolated. Restriction analysis of DNA fragments of these clones as well as the Southern hybridization of yeast genomic DNA with labelled EF-1 alpha cDNA indicated that there are two EF-1 alpha genes in S. cerevisiae. The nucleotide sequence of one of the two EF-1 alpha genes (designated as EF1 alpha A) was established together with its 5'- and 3'-flanking sequences. The sequence contained 1374 nucleotides coding for a protein of 458 amino acids with a calculated mol. wt. of 50 300. The derived amino acid sequence showed homologies of 31% and 32% with yeast mitochondrial EF-Tu and E. coli EF-Tu, respectively.  相似文献   

10.
cDNA clones from Nicotiana plumbaginifolia have been isolated by hybridization to a yeast H+-ATPase gene. The largest one encodes a polypeptide (PMA2) of 956 amino acid residues which exhibits a homology of 73% with a limited protein sequence obtained from purified oat plasma membrane H+-ATPase (Schaller and Sussman, Plant Physiol. 86, 512-516, 1988) and an 82% homology with the Arabidopsis thaliana pma gene (Harper et al., Proc. Natl. Acad. Sci. USA 86, 1234-1238). It is therefore concluded that the N. plumbaginifolia pma2 gene encodes a plasma membrane H+-ATPase. Southern blot hybridization indicates that the plant pma2 gene belongs to a multigene family. Partial sequences of cDNA clones show that at least three pma genes are expressed in root cells.  相似文献   

11.
We have isolated and characterized a Neurospora crassa gene homologous to the yeast CYH2 gene encoding L29, a cycloheximide sensitivity-conferring protein of the cytoplasmic ribosome. The cloned Neurospora gene was isolated by cross-hybridization to CYH2. It was sequenced from both cDNA and genomic clones. The coding region is interrupted by seven intervening sequences. Its deduced amino acid sequence shows 70% homology to that of yeast ribosomal protein L29 and 60% homology to that of mammalian ribosomal protein L27', suggesting that the protein has an important role in ribosomal function. The pattern of codon usage is highly biased, consistent with high translation efficiency. There is a single copy of this gene in N. crassa, and R. Metzenberg and coworkers have mapped its genetic location to the vicinity of the cyh-2 locus.  相似文献   

12.
13.
D S Olsen  B Jordan  D Chen  R C Wek  D R Cavener 《Genetics》1998,149(3):1495-1509
Genomic and cDNA clones homologous to the yeast GCN2 eIF-2alpha kinase (yGCN2) were isolated from Drosophila melanogaster. The identity of the Drosophila GCN2 (dGCN2) gene is supported by the unique combination of sequence encoding a protein kinase catalytic domain and a domain homologous to histidyl-tRNA synthetase and by the ability of dGCN2 to complement a deletion mutant of the yeast GCN2 gene. Complementation of Deltagcn2 in yeast by dGCN2 depends on the presence of the critical regulatory phosphorylation site (serine 51) of eIF-2alpha. dGCN2 is composed of 10 exons encoding a protein of 1589 amino acids. dGCN2 mRNA is expressed throughout Drosophila development and is particularly abundant at the earliest stages of embryogenesis. The dGCN2 gene was cytogenetically and physically mapped to the right arm of the third chromosome at 100C3 in STS Dm2514. The discovery of GCN2 in higher eukaryotes is somewhat unexpected given the marked differences between the amino acid biosynthetic pathways of yeast vs. Drosophila and other higher eukaryotes. Despite these differences, the presence of GCN2 in Drosophila suggests at least partial conservation from yeast to multicellular organisms of the mechanisms responding to amino acid deprivation.  相似文献   

14.
We have isolated a portion of the uridine diphosphate N-acetyl-D-glucosamine:dolichol phosphate N-acetyl-glucosamine-1-phosphate transferase gene (GTR2) from the genome of a tunicamycin-resistant clonal Chinese hamster ovary cell line, 3E11. The genomic fragment was selected by its hybridization to the yeast ALG-7 gene at low stringency. A 2.46-kilobase cDNA was isolated from a library prepared from 3E11 mRNA and probed with GTR2. The cDNA contained an open reading frame that encodes a protein of 408 amino acids with a molecular mass of 44.9 kDa. This protein was 43% identical in amino acid sequence to the protein of 448 amino acids encoded by the ALG-7 gene. The GTR2 gene fragment contained sequences for four exons coding for the carboxyl-terminal half of the protein. Transferase DNA sequences in 3E11 cells were 12-fold elevated over wild-type cells and 25-fold elevated when 3E11 cells were grown in the presence of tunicamycin. Transferase RNA levels in 3E11 cells were also elevated over wild-type levels but appeared unchanged by the presence of tunicamycin in the medium.  相似文献   

15.
We have cloned and characterized a family of mouse genomic sequences hybridizing to mouse cDNA probes coding for eIF-4A, one of the protein synthesis initiation factors involved in the binding of mRNA to the ribosome. We estimate that there is a total of approximately 9-13 eIF-4A pseudogenes. We also found an eIF-4A intronless retroposon which, when compared to the cDNA, contains a single nucleotide difference. This possibly functional gene contains a mouse repetitive B1 element integrated in the promoter region. Furthermore, we have cloned two intron-containing eIF-4A genes (termed eIF-4AI and eIF-4AII). The eIF-4AII gene codes for a previously unknown form of eIF-4A. Northern blot hybridization with RNA from several mouse organs shows a variation in eIF-4AI expression within a factor of 7. In contrast, relative to liver, eIF-4AII expression is 20- to 30-times higher in brain and kidney, 10- to 17-fold higher in lung and heart, and is about equally abundant in liver, spleen and thymus. These data suggest that the relative efficiency of protein synthesis initiation for different mRNAs, as reflected by discrimination in messenger 5'-terminal cap recognition and binding to ribosomes, varies in different tissues.  相似文献   

16.
17.
cDNA and genomic clones corresponding to the human factor VIII-associated gene (F8A) were isolated from mouse cDNA and F8A-enriched genomic libraries. The sequences of these clones revealed an intronless gene coding for 380 amino acids, with 85% identity to the predicted human sequence. The single murine gene copy is genetically linked to factor VIII, but appears to lie outside the factor VIII gene by physical mapping. Like the human gene, the mouse F8A gene is highly expressed in a wide variety of tissues. This evolutionary comparison has helped to clarify the derived amino acid sequence in the human and strongly supports the hypothesis that the F8A gene encodes a protein.  相似文献   

18.
19.
Full-length cDNA clones encoding deoxyhypusine synthase (DHS) and eucaryotic initiation factor 5A (eIF-5A) have been isolated from a cDNA expression library prepared from tomato leaves (Lycopersicon esculentum, cv. Match) exposed to environmental stress. DHS mediates the first of two enzymatic reactions that activate eIF-5A by converting a conserved lysine to the unusual amino acid, deoxyhypusine. Recombinant protein obtained by expressing tomato DHS cDNA in Escherichia coli proved capable of carrying out the deoxyhypusine synthase reaction in vitro in the presence of eIF-5A. Of particular interest is the finding that DHS mRNA and eIF-5A mRNA show a parallel increase in abundance in senescing tomato flowers, senescing tomato fruit, and environmentally stressed tomato leaves exhibiting programmed cell death. Western blot analyses indicated that DHS protein also increases at the onset of senescence. It is apparent from previous studies with yeast and mammalian cells that hypusine-modified eIF-5A facilitates the translation of a subset of mRNAs mediating cell division. The present study provides evidence for senescence-induced DHS and eIF-5A in tomato tissues that may facilitate the translation of mRNA species required for programmed cell death.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号