首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bone morphogenetic protein (BMP) 4 plays very important roles in regulating developmental processes of many organs, including lung. Smad1 is one of the BMP receptor downstream signaling proteins that transduce BMP4 ligand signaling from cell surface to nucleus. The dynamic expression patterns of Smad1 in embryonic mouse lungs were examined using immunohistochemistry. Smad1 protein was predominantly detected in peripheral airway epithelial cells of early embryonic lung tissue [embryonic day 12.5 (E12.5)], whereas Smad1 protein expression in mesenchymal cells increased during mid-late gestation. Many Smad1-positive mesenchymal cells were localized adjacent to large airway epithelial cells and endothelial cells of blood vessels, which colocalized with a molecular marker of smooth muscle cells (alpha-smooth muscle actin). The biological function of Smad1 in early lung branching morphogenesis was then studied in our established E11.5 lung explant culture model. Reduction of endogenous Smad1 expression was achieved by adding a Smad1-specific antisense DNA oligonucleotide, causing approximately 20% reduction of lung epithelial branching. Furthermore, airway epithelial cell proliferation and differentiation were also inhibited when endogenous Smad1 expression was knocked down. Therefore, these data indicate that Smad1, acting as an intracellular BMP signaling pathway component, positively regulates early mouse embryonic lung branching morphogenesis.  相似文献   

2.
To evaluate the contribution of genetic background to phenotypic variation, we compared a large range of biochemical and metabolic parameters at different ages of four inbred mice strains, C57BL/6J, 129SvPas, C3HeB/FeJ, and Balb/cByJ. Our results demonstrate that important metabolic, hematologic, and biochemical differences exist between these different inbred strains. Most of these differences are gender independent and are maintained or accentuated throughout life. It is therefore imperative that the genetic background is carefully defined in phenotypic studies. Our results also argue that certain backgrounds are more suited to study a given physiologic phenomenon, as distinct mouse strains have a different propensity to develop particular biochemical, hematologic, and metabolic abnormalities. These genetic differences can furthermore be exploited to identify new genes/proteins that contribute to phenotypic abnormalities. The choice of the genetic background in which to generate and analyze genetically engineered mutant mice is important as it is, together with environmental factors, one of the most important contributors to the variability of phenotypic results.  相似文献   

3.
Follistatin like-1 (Fstl1) is a secreted glycoprotein and can be up-regulated by TGF-β1. To better study the function of Fstl1 in lung development, we examined Fstl1 expression in the developing lung, in a cell type specific manner, using a tamoxifen inducible Fstl1-reporter mouse strain. Our results show that Fstl1 is ubiquitously expressed at saccular stage in the developing lung. At E18.5, Fstl1 expression is robust in most type of mesenchymal cells, including airway smooth muscle cells surrounding airways, vascular smooth muscle cells, endothelial cells, and vascular pericytes from blood vessel, but not PDGFRα+ fibroblasts in the distal alveolar sacs. Meanwhile, relative weak and sporadic signals of Fstl1 expression are observed in epithelium, including a subgroup of club cells in proximal airways and a few type II alveolar epithelial cells in distal airways. Our data help to understand the critical role of Fstl1 in lung development and lung disease pathogenesis.  相似文献   

4.
5.
Drapc1 expression during mouse embryonic development   总被引:2,自引:0,他引:2  
We identified the mouse homolog of human DRAPC1 (APCDD1) gene, shown to be a target of Wnt/beta-catenin signaling pathway in cancer cell lines. Analysis of its spatiotemporal expression in mouse embryos from E7.5 to E14 showed that Drapc1 is expressed during development of the extraembryonic structures, nervous system, vascular system and inner ear. In addition, Drapc1 is expressed in the mesenchyme of several developing organs at sites of epithelio-mesenchymal interactions. Drapc1 expression was also found in the hair follicles of the adult mouse skin. Similarity of Drapc1 expression pattern to location of active beta-catenin in developing mouse embryo further suggests that mouse Drapc1 is a novel in vivo target gene of Wnt/beta-catenin signaling pathway.  相似文献   

6.
7.
Visinin like 1 (Vsnl1) encodes a calcium binding protein which is well conserved between species. It was originally found in the brain and its biological functions in central nervous system have been addressed in several studies. Low expression levels have also been found in some peripheral organs, but very little information is available regarding its physiological roles in non-neuronal tissues. Except for the kidney, the expression pattern of Vsnl1 mRNA and protein has not yet been addressed during embryogenesis. By in situ hybridization and immunolabeling we have extensively analyzed the expression pattern of Vsnl1 during murine development. Vsnl1 specifies the cardiac primordia and its expression becomes restricted to the atrial myocardium after heart looping. However, in the adult heart, Vsnl1 is expressed by all four cardiac chambers. It also serves as a specific marker for the cardiomyocyte-derived structures in the systemic and pulmonary circulation. Vsnl1 is dynamically expressed also by many other organs during development e.g. taste buds, cochlea, thyroid, tooth, salivary and adrenal gland. The stage specific expression pattern of Vsnl1 makes it a potentially useful marker particularly in studies of cardiac and vascular morphogenesis.  相似文献   

8.
During the early development of the mouse lung a number of genes encoding signaling molecules are differentially expressed in the epithelium and mesenchyme of the distal buds. Evidence suggests they play a role in regulating the stereotypic processes of bud outgrowth and branching as well as proximal-distal patterning of both cell layers. To better understand the mechanisms underlying branching morphogenesis, a subtractive hybridization and differential screen was carried out for genes preferentially expressed in the epithelium at the tips of embryonic day 11.5 lung buds, versus more proximal regions. Twenty genes were identified, assigned to different categories based on sequence analysis, and their distal expression confirmed by whole-mount in situ hybridization.  相似文献   

9.
10.
The colony-forming activity of embryo lung cells CBA mice was determined according to the Till and McCulloch technique (1961). After intravenous injection to jung cells (1 x 10(6)) from 14-day embryos the total number of colonies on the area of 1 mm2 of spleen sections from irradiated recipient mice averaged 2.31 +/- 0.39 whereas after transplantation of lung cells from 15-day embryos it averaged 2.34 +/- 0.53. The percent of macrocolonies equalled 52.5% in the former case and only 2.5% in the latter case. Macrocolonies contained cells of the myeloid, erythroid and megakaryocyte lines. Microcolonies predominantly consisted of granulocytes at various stages of differentiation. Thus, polypotent stem hematopoietic cells migrate into the fetal lung in vivo. The colony-forming ability of the lung polypotent stem cells decreases as the period of embryogenesis increases.  相似文献   

11.
Pirfenidone (5-methyl-1-phenyl-2-(1H)-pyridone) is a novel anti-fibrotic and anti-inflammatory agent that inhibits the progression of fibrosis in animal models and patients with idiopathic pulmonary fibrosis (IPF). Heat shock protein (HSP) 47, a collagen-specific molecular chaperone, is involved in the processing and/or secretion of procollagen and plays an important role in the pathogenesis of IPF. The present study evaluated the in vitro effects of pirfenidone on expression of HSP47 and collagen type I in cultured normal human lung fibroblasts (NHLF). Expression levels of HSP47 and collagen type I in NHLF stimulated by transforming growth factor (TGF)-beta1 were evaluated genetically, immunologically and immunocytochemically. Treatment with TGF-beta1 stimulated both mRNA and protein expressions of both HSP47 and collagen type I in NHLF, and pirfenidone significantly inhibited this TGF-beta1-enhanced expression in a dose-dependent manner. We concluded that the anti-fibrotic effect of pirfenidone may be mediated not only through direct inhibition of collagen type I expression but also at least partly through inhibition of HSP47 expression in lung fibroblasts, with a resultant reduction of collagen synthesis in lung fibrosis.  相似文献   

12.
Endothelial growth factors have become the target of intense research since the initial discovery of vascular endothelial growth factor (VEGF/VPF). At present, VEGF is established as a major inducer of angiogenesis in normal and pathological conditions. Recently several new members in the VEGF family have been described; VEGF-B/VRF, VEGF-C and VEGF-D. VEGF-D is most closely related to VEGF-C by virtue of the presence of N- and C-terminal extensions that are not found in other VEGF family members. We have here examined the expression pattern of vegf-d mRNA with in situ hybridization in developing and adult mice. This shows a restricted expression pattern, with high levels mainly in lung tissue. The expression in embryonic lung is upregulated prior to birth. Expression of vegf-d in other tissues, as well as in lung tissue of the E14 embryo, was either low or absent. This suggests that VEGF-D may be of special relevance for the vascularization of lung tissue during the last trimester of fetal development.  相似文献   

13.
CTGF expression during mouse embryonic development   总被引:6,自引:0,他引:6  
Connective tissue growth factor (CTGF) is a potent fibroblast mitogen and angiogenic factor which plays an important role in wound healing, cancerogenesis and fibrotic and vascular disease. Here we explored the regulation and the cellular site of the mRNA synthesis for this growth factor in the developing mouse embryo by in situ hybridisation. Strong and persistent CTGF gene expression was limited to three types of tissue: the vascular endothelium, particularly the high-pressure part of the cardiovascular system, condensed connective tissue around bone and cartilage, and maturing layer VII neurons in the cerebral cortex. With few exceptions (late tooth bud, neuroepithelium) epithelial tissue was negative. Very transient but strong expression was observed early during formation of cartilage, in late stages during perichondral ossification, on cerebral neuroepithelium, and in several discrete stages of tooth formation, on mesenchymal precursors of odontoblasts condensing on inner dental epithelium, and later on apposing regions of ameloblast and odontoblast epithelium. Altogether, the current study suggests that CTGF performs a dual role: a continuous function in the cardiovascular system, bone and cartilage-associated mesenchyme and maturing layer VII neurons, but also a more transient function associated with the formation of cartilage, bone, tooth and cerebral nerve cells.  相似文献   

14.
15.
We report the cloning of a cDNA encoding the complete mouse Gbx1 coding region as well as a comparative expression analysis of Gbx1 and Gbx2 during murine development. Gbx1 is expressed first during gastrulation and later in a dynamic pattern in the central nervous system, including rhombomeres 3 and 5, optic vesicles, and the medial ganglionic eminence. Gbx1 expression is not upregulated in Gbx2 null homozygotes. Therefore, the only regions of potential genetic redundancy are where Gbx1 and 2 are normally coexpressed: the primitive streak, regions of the ventricular zone of the neural tube and the medial ganglionic eminence. Finally, we demonstrate that neither Gbx1 nor Gbx2 require FGF8 for expression during gastrulation, contrary to previous published reports.  相似文献   

16.
TGF-beta activated kinase 1 (TAK1) is a MAP kinase kinase kinase (MAPKKK) that has been shown to function downstream of BMPs and TGF-beta (J. Biol. Chem. 275 (2000) 17647; EMBO J. 17 (1998) 1019; Science 270 (1995) 2008), as well as in the interleukin-1 (IL-1) signaling pathway (J. Biol. Chem. 276 (2001) 3508; Nature 398 (1999) 252). Using immunohistochemistry (IHC), we demonstrate that TAK1 is expressed ubiquitously during early development. At mid-gestation, TAK1 expression becomes more restricted, with high levels seen specifically during development of diverse organs and tissues including the nervous system, testis, kidney, liver and gut. Additionally, TAK1 expression is seen in the developing lung and pancreas. Our results suggest that TAK1 may play multiple roles in mouse development.  相似文献   

17.
早期小鼠胚胎发育的基因表达   总被引:5,自引:0,他引:5  
朱新产  张涌  王宝维 《动物学报》2003,49(2):272-276
受精是新个体发育的时 -空点 ,从一个形态单纯的单细胞受精卵发育成能独立生活的个体动物 ,形态上出现一系列的变化 ,而更重要的是基因表达。基因组是机体内惟一确定的 ,为所有各类细胞共同拥有 ,但基因组内各个基因表达的选择性和程度随时间、位置和环境条件的不同而发生改变 (严云勤等 ,2 0 0 2 ;胡静等 ,2 0 0 1;范衡宇等 ,2 0 0 1)。个体的发育和分化、内环境的稳定性、对外界刺激的应答、细胞循环的调节、衰老和程序化细胞死亡等正常的发育过程以及疾病的病理学过程 ,包括癌症的病理学过程 ,无论是由一个基因的突变引起的或是由于多基…  相似文献   

18.
MicroRNAs (miRNAs) are involved in several biological processes including development, differentiation and proliferation. Analysis of miRNA expression patterns in the process of embryogenesis may have substantial value in determining the mechanism of embryonic bladder development as well as for eventual therapeutic intervention. The miRNA expression profiles are distinct among the cellular types and embryonic stages as demonstrated by microarray technology and validated by quantitative real-time RT-PCR approach. Remarkably, the miRNA expression patterns suggested that unique miRNAs from epithelial and submucosal areas are responsible for mesenchymal cellular differentiation, especially regarding bladder smooth muscle cells. Our data show that miRNA expression patterns are unique in particular cell types of mouse bladder at specific developmental stages, reflecting the apparent lineage and differentiation status within the embryonic bladder. The identification of unique miRNAs expression before and after smooth muscle differentiation in site-specific area of the bladder indicates their roles in embryogenesis and may aid in future clinical intervention.  相似文献   

19.
A genetic interaction between PRUNE and NM23/NDPK has been postulated in Drosophila melanogaster. Many have focused on Drosophila for the genetic combination between PRUNE “knock down” and AWD/NM23 fly mutants bearing the P97S mutation (K-pn, Killer of PRUNE mutation). We postulated a role for PRUNE-NM23 interactions in vertebrate development, demonstrating a physical interaction between the human PRUNE and NM23-H1 proteins, and partially characterizing their functional significance in cancer progression. Here, we present an initial analysis towards the functional characterization of the PRUNE-NM23 interaction during mammalian embryogenesis. Our working hypothesis is that PRUNE, NM23-H1 and their protein-protein interaction partners have important roles in mammalian brain development and adult brain function. Detailed expression analyses from early mouse brain development to adulthood show significant co-expression of these two genes during embryonic stages of brain development, especially focusing on the cortex, hippocampus, midbrain and cerebellum. We hypothesize that their abnormal expression results in an altered pathway of activation, influencing protein complex formation and its protein partner interactions in early embryogenesis. In the adult brain, their function appears concentrated towards their enzyme activities, wherein biochemical variations can result in brain dysfunction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号