首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human leukocyte antigen-related (PTP-LAR) is a receptor-like transmembrane phosphatase and a potential target for diabetes, obesity and cancer. In the present study, a sequence of in silico strategies (pharmacophore mapping, a 3D database searching, SADMET screening, and docking and toxicity studies) was performed to identify eight novel nontoxic PTP-LAR inhibitors. Twenty different pharmacophore hypotheses were generated using two methods; the best (hypothesis 2) consisted of three hydrogen-bond acceptor (A), one ring aromatic (R), and one hydrophobic aliphatic (Z) features. This hypothesis was used to screen molecules from several databases, such as Specs, IBS, MiniMaybridge, NCI, and an in-house PTP inhibitor database. In order to overcome the general bioavailability problem associated with phosphatases, the hits obtained were filtered by Lipinski’s rule of five and SADMET properties and validated by molecular docking studies using the available crystal structure 1LAR. These docking studies suggested the ligand binding pattern and interactions required for LAR inhibition. The docking analysis also revealed that sulfonylurea derivatives with an isoquinoline or naphthalene scaffold represent potential LAR drugs. The screening protocol was further validated using ligand pharmacophore mapping studies, which showed that the abovementioned interactions are indeed crucial and that the screened molecules can be presumed to possess potent inhibitory activities.  相似文献   

2.
Glycogen synthase kinase-3β (GSK-3β) is an attractive therapeutic target for human diseases, such as diabetes, cancer, neurodegenerative diseases, and inflammation. Thus, structure-based virtual screening was performed to identify novel scaffolds of GSK-3β inhibitors, and we observed that conserved water molecules of GSK-3β were suitable for virtual screening. We found 14 hits and D1 (IC50 of 0.71?μM) were identified. Furthermore, the neuroprotection activity of D1D3 was validated on a cellular level. 2D similarity searches were used to find derivatives of high inhibitory compounds and an enriched structure–activity relationship suggested that these skeletons were worthy of study as potent GSK-3β inhibitors.  相似文献   

3.
Lysyl oxidase (LOX) enzymes as potential drug targets maintain constant attention in the therapy of fibrosis, cancer and metastasis. In order to measure the inhibitory activity of small molecules on the LOX enzyme family members a fluorometric activity screening method was developed. During assay validation, previously reported non-selective small inhibitor molecules (BAPN, MCP-1, thiram, disulfiram) were investigated on all of the major LOX enzymes. We confirmed that MCP-1, thiram, disulfiram are in fact pan-inhibitors, while BAPN inhibits only LOX-like enzymes (preferably LOX-like-protein-2, LOXL2) in contrast to the previous reports. We measured the LOX inhibitory profile of a small targeted library generated by 2D ligand-based chemoinformatics methods. Ten hits (10.4% hit rate) were identified, and the compounds showed distinct activity profiles. Potential inhibitors were also identified for LOX-like-protein-3 (LOXL3) and LOX-like-protein-4 (LOXL4), that are considered as emerging drug targets in the therapy of melanoma and gastric cancer.  相似文献   

4.
The interaction between HIV-1 integrase and LEDGF/P75 has been validated as a target for anti-HIV drug development. Based on the crystal structure of integrase in complex with LEDGF/P75, a library containing 80 thousand natural compounds was filtered with virtual screening. 11 hits were selected for cell based assays. One compound, 3-(1,3-benzothiazol-2-yl)-8-{[bis(2-hydroxyethyl)amino]methyl}-7-hydroxy-2H-chromen-2-one (D719) inhibited integrase nuclear translocation in cell imaging. The binding mode of D719 was analyzed with molecular simulation. The anti-HIV activity of D719 was assayed by measuring the p24 antigen production in acute infection. The structure characteristics of D719 may provide valuable information for integrase inhibitor design.  相似文献   

5.
Abstract

Owing to its negative regulatory role in insulin signaling, protein tyrosine phosphatase of leukocyte antigen-related protein (PTP-LAR) was widely thought as a potential drug target for diabetes. Now, it was urgent to search for potential LAR inhibitors targeting diabetes. Initially, the pharmacophore models of LAR inhibitors were established with the application of the HypoGen module. The cost analysis, test set validation, as well as Fischer’s test was used to verify the efficiency of pharmacophore model. Then, the best pharmacophore model (Hypo-1-LAR) was applied for the virtual screening of the ZINC database. And 30 compounds met the Lipinski’s rule of five. Among them, 10 compounds with better binding affinity than the known LAR inhibitor (BDBM50296375) were discovered by docking studies. Finally, molecular dynamics simulations and post-analysis experiments (RMSD, RMSF, PCA, DCCM and RIN) were conducted to explore the effect of ligands (ZINC97018474 and Compound 1) on LAR and preliminary understand why ZINC97018474 had better inhibitory activity than Compound 1 (BDBM50296375).

Communicated by Ramaswamy H. Sarma  相似文献   

6.
The Grb2-associated binding protein 1 (GAB1) integrates signals from different signaling pathways and is over-expressed in many cancers, therefore representing a new therapeutic target. In the present study, we aim to target the pleckstrin homology (PH) domain of GAB1 for cancer treatment. Using homology models we derived, high-throughput virtual screening of five million compounds resulted in five hits which exhibited strong binding affinities to GAB1 PH domain. Our prediction of ligand binding affinities is also in agreement with the experimental K D values. Furthermore, molecular dynamics studies showed that GAB1 PH domain underwent large conformational changes upon ligand binding. Moreover, these hits inhibited the phosphorylation of GAB1 and demonstrated potent, tumor-specific cytotoxicity against MDA-MB-231 and T47D breast cancer cell lines. This effort represents the discovery of first-in-class GAB1 PH domain inhibitors with potential for targeted breast cancer therapy and provides novel insights into structure-based approaches to targeting this protein.  相似文献   

7.
Protein-tyrosine phosphatases (PTPs) are important signaling enzymes that have emerged within the last decade as a new class of drug targets. It has previously been shown that suramin is a potent, reversible, and competitive inhibitor of PTP1B and Yersinia PTP (YopH). We therefore screened 45 suramin analogs against a panel of seven PTPs, including PTP1B, YopH, CD45, Cdc25A, VHR, PTPalpha, and LAR, to identify compounds with improved potency and specificity. Of the 45 compounds, we found 11 to have inhibitory potency comparable or significantly improved relative to suramin. We also found suramin to be a potent inhibitor (IC(50) = 1.5 microm) of Cdc25A, a phosphatase that mediates cell cycle progression and a potential target for cancer therapy. In addition we also found three other compounds, NF201, NF336, and NF339, to be potent (IC(50) < 5 microm) and specific (at least 20-30-fold specificity with respect to the other human PTPs tested) inhibitors of Cdc25A. Significantly, we found two potent and specific inhibitors, NF250 and NF290, for YopH, the phosphatase that is an essential virulence factor for bubonic plague. Two of the compounds tested, NF504 and NF506, had significantly improved potency as PTP inhibitors for all phosphatases tested except for LAR and PTPalpha. Surprisingly, we found that a significant number of these compounds activated the receptor-like phosphatases, PTPalpha and LAR. In further characterizing this activation phenomenon, we reveal a novel role for the membrane-distal cytoplasmic PTP domain (D2) of PTPalpha: the direct intramolecular regulation of the activity of the membrane-proximal cytoplasmic PTP domain (D1). Binding of certain of these compounds to PTPalpha disrupts D1-D2 basal state contacts and allows new contacts to occur between D1 and D2, which activates D1 by as much as 12-14-fold when these contacts are optimized.  相似文献   

8.
Approximately 40% of people will get cancer in their lifetime in the US, and 20% are predicted to die from the condition when it is invasive and metastatic. Targeted screening for drugs that interact with proteins that drive cancer cell growth and migration can lead to new therapies. We screened molecular libraries with the AtomNet® AI-based drug design tool to identify compounds predicted to interact with the cytoplasmic domain of protein tyrosine phosphatase mu. Protein tyrosine phosphatase mu (PTPmu) is proteolytically downregulated in cancers such as glioblastoma generating fragments that stimulate cell survival and migration. Aberrant nuclear localization of PTPmu intracellular fragments drives cancer progression, so we targeted a predicted drug-binding site between the two cytoplasmic phosphatase domains we termed a D2 binding pocket. The function of the D2 domain is controversial with various proposed regulatory functions, making the D2 domain an attractive target for the development of allosteric drugs. Seventy-five of the best-scoring and chemically diverse computational hits predicted to interact with the D2 binding pocket were screened for effects on tumour cell motility and growth in 3D culture as well as in a direct assay for PTPmu-dependent adhesion. We identified two high-priority hits that inhibited the migration and glioma cell sphere formation of multiple glioma tumour cell lines as well as aggregation. We also identified one activator of PTPmu-dependent aggregation, which was able to stimulate cell migration. We propose that the PTPmu D2 binding pocket represents a novel regulatory site and that inhibitors targeting this region may have therapeutic potential for treating cancer.  相似文献   

9.
Protein tyrosine phosphatases (PTPases) regulate intracellular signal transduction pathways by controlling the level of tyrosine phosphorylation in cells. These enzymes play an important role in a variety of diseases including type II diabetes and infection by the bacterium Yersinia pestis, which is the causative agent of bubonic plague. This report describes the synthesis, using parallel solution-phase methods, of a library of 104 potential inhibitors of PTPases. The library members are based on the bis(aryl alpha-ketocarboxylic acid) motif that incorporates a carboxylic acid on the central benzene linker. This carboxylic acid was coupled with a variety of different aromatic amines through an amide linkage. The aromatic component of the resulting amides is designed to make contacts with residues that surround the active site of the PTPase. The library was screened against the Yersinia PTPase and PTP1B. Based upon the screening results, four members of the library were selected for further study. These four compounds were evaluated against the Yersinia PTPase, PTP1B, TCPTP, CD45, and LAR. Compound 14 has an IC(50) value of 590nM against PTP1B and is a reversible competitive inhibitor. This affinity represents a greater than 120-fold increase in potency over compound 2, the parent structure upon which the library was based. A second inhibitor, compound 12, has an IC(50) value of 240nM against the Yersinia PTPase. In general, the selectivity of the inhibitors for PTP1B was good compared to LAR, but modest when compared to TCPTP and CD45.  相似文献   

10.
A library of 1,3-disubstituted 2-propanols was synthesized and evaluated as low molecular weight probes for β-secretase inhibition. By screening a library of 121 1,3-disubstituted 2-propanol derivatives, we identified few compounds inhibiting the enzyme at low micromolar concentrations. The initial hits were optimized to yield a potent BACE-1 inhibitor exhibiting an IC(50) constant in the nanomolar range. Exploration of the pharmacological properties revealed that these small molecular inhibitors possessed a high selectivity over cathepsin D and desirable physicochemical properties beneficial to cross the blood-brain barrier.  相似文献   

11.
NDM-1 can hydrolyze nearly all available β-lactam antibiotics, including carbapenems. NDM-1 producing bacterial strains are worldwide threats. It is still very challenging to find a potent NDM-1 inhibitor for clinical use. In our study, we used a metal-binding pharmacophore (MBP) enriched virtual fragment library to screen NDM-1 hits. SPR screening helped to verify the MBP virtual hits and identified a new NDM-1 binder and weak inhibitor A1. A solution NMR study of 15N-labeled NDM-1 showed that A1 disturbed all three residues coordinating the second zinc ion (Zn2) in the active pocket of NDM-1. The perturbation only happened in the presence of zinc ion, indicating that A1 bound to Zn2. Based on the scaffold of A1, we designed and synthesized a series of NDM-1 inhibitors. Several compounds showed synergistic antibacterial activity with meropenem against NDM-1 producing K. pneumoniae.  相似文献   

12.
Formylchromone inhibits a human protein tyrosine phosphatase PTP1B with a IC(50) value of 73 microM. The chemical reactivity of formylchromone was adjusted by substitution at various positions of the formylchromone skeleton. In an initial assessment of the structure-activity relationship, the most potent inhibitor showed an IC(50) of 4.3 microM against PTP1B and strong or medium selectivity against other human PTPases, LAR and TC-PTP. This compound, however, was not selective against microbial PTPases, YPTP1 and YOP. The potency and selectivity of the formylchromone derivatives expecting further improvements provides a novel pharmacophore for the design of drugs for the treatment of type 2 diabetes and obesity.  相似文献   

13.
Protein tyrosine phosphatases (PTPs) are important signaling enzymes that control such fundamental processes as proliferation, differentiation, survival/apoptosis, as well as adhesion and motility. Potent and selective PTP inhibitors serve not only as powerful research tools, but also as potential therapeutics against a variety illness including cancer and diabetes. PTP activity-based assays are widely used in high throughput screening (HTS) campaigns for PTP inhibitor discovery. These assays suffer from a major weakness, in that the reactivity of the active site Cys can cause serious problems as highly reactive oxidizing and alkylating agents may surface as hits. We describe the development of a fluorescence polarization (FP)-based displacement assay that makes the use of an active site Cys to Ser mutant PTP (e.g., PTP1B/C215S) that retains the wild-type binding affinity. The potency of library compounds is assessed by their ability to compete with the fluorescently labeled active site ligand for binding to the Cys to Ser PTP mutant. Finally, the substitution of the active site Cys by a Ser renders the mutant PTP insensitive to oxidation and alkylation and thus will likely eliminate "false" positives due to modification of the active site Cys that destroy the phosphatase activity.  相似文献   

14.
Using ligand and receptor based virtual screening approaches we have identified potential virtual screening hits targeting type II dehydroquinase from Mycobacterium tuberculosis, an effective and validated anti-mycobacterial target. Initially, we applied a virtual screening workflow based on a combination of 2D structural fingerprints, 3D pharmacophore and molecular docking to identify compounds that rigidly match specific aspects of ligand bioactive conformation. Subsequently, the resulting compounds were ranked and prioritized using receptor interaction fingerprint based scoring and quantitative structure activity relationship model developed using already known actives. The virtual screening hits prioritized belong to several classes of molecular scaffolds with several available substitution positions that could allow chemical modification to enhance binding affinity. Finally, identified hits may be useful to a medicinal chemist or combinatorial chemist to pick up the new molecular starting points for medicinal chemistry optimization for the design of novel type II dehydroquinase inhibitors.  相似文献   

15.
Approximately 40% of rectal cancers harbor activating K-RAS mutations, and these mutations are associated with poor clinical response to chemoradiotherapy. We aimed to identify small molecule inhibitors (SMIs) that synergize with ionizing radiation (IR) (“radiosensitizers”) that could be incorporated into current treatment strategies for locally advanced rectal cancers (LARCs) expressing mutant K-RAS. We first optimized a high-throughput assay for measuring individual and combined effects of SMIs and IR that produces similar results to the gold standard colony formation assay. Using this screening platform and K-RAS mutant rectal cancer cell lines, we tested SMIs targeting diverse signaling pathways for radiosensitizing activity and then evaluated our top hits in follow-up experiments. The two most potent radiosensitizers were the Chk1/2 inhibitor AZD7762 and the PI3K/mTOR inhibitor BEZ235. The chemotherapeutic agent 5-fluorouracil (5-FU), which is used to treat LARC, synergized with AZD7762 and enhanced radiosensitization by AZD7762. This study is the first to compare different SMIs in combination with IR for the treatment of K-RAS mutant rectal cancer, and our findings suggest that Chk1/2 inhibitors should be evaluated in new clinical trials for LARC.  相似文献   

16.
Abstract

Nonstructural protein 5B (NS5B), the RNA-dependent RNA polymerase of Hepatitis C Virus (HCV), plays a key role in viral amplification and is an attractive and most explored target for discovery of new therapeutic agents for Hepatitis C. Though safe and effective, NS5B inhibitors were launched in 2013 (Sovaldi) and 2014 (Harvoni, Viekira Pak), the high price tags of these medications limit their use among poor people in developing countries. Hence, still there exists a need for cost-effective and short duration anti-HCV agents especially those targeting niche patient population who were non-respondent to earlier therapies or with comorbid conditions. The present study describes the discovery of novel non-nucleoside (NNI) inhibitors of NS5B using a series of rational drug design techniques such as virtual screening, scaffold matching and molecular docking. 2D and 3D structure based virtual screening technique identified 300 hit compounds. Top 20 hits were screened out from identified hits using molecular docking technique. Four molecules, that are representative of 20 hits were evaluated for binding affinity under in vitro conditions using surface plasmon resonance-based assay and the results emphasized that compound with CoCoCo ID: 412075 could exhibit good binding response toward NS5B and could be a potential candidate as NS5B inhibitor.

Communicated by Ramaswamy H. Sarma  相似文献   

17.
通过建立的选择性膜型前列腺素E2合酶-1(mPGES-1)表达抑制剂的体外细胞筛选模型,对50味中药共236个样品进行筛选。初筛中,筛选中药不同极性提取物对mPGES-1表达的抑制作用,抑制率50%的样品进入复筛;复筛中,检测初筛活性样品对环氧化酶(COX)-1和COX-2表达的抑制作用,抑制率均20%的样品认为是阳性物。结果表明,吲哚美辛对3种酶的抑制活性与文献报道相近;筛选发现泽泻组分1、蒲黄组分2对mPGES-1的表达有可重复的选择性抑制作用,对泽泻组分1、蒲黄组分2进行进一步研究,有望确定其抗炎的有效部位或化合物。  相似文献   

18.
Acid-sensing ion channels are ligand/proton-gated ion channels belonging to the family of the degenerin/epithelial Na+ channel (DEG/ENaC). They function as a sodium-selective pore for Ca2+ entry into neuronal cells during pathological conditions. The blocking of this channel has therapeutic importance, because at basal physiological pH (7.2), it is in a closed state and under a more acidic condition, and the ASIC1a ion channel is activated. To investigate the different states of the hASIC1a channel based on mutational analysis, structure-based virtual screening and molecular dynamics simulation studies. The system showed stability after 30 ns (after 1500 frame), and it was stabilized to an average value around 2.2Å. During the simulation, the ion channel residues in persistent contact with toxin PcTx1 were D237, E238, D347, D351, E219 and E355. These residues are important physiologically for the activation of the channel. From in silico alanine scanning, the significant hotspots obtained in hASIC1 are E344, P347, F352, D351, E355 and E219. From the sitemap analysis, it was evident that the sitemap found one of the active sites at the PcTx1 binding site with a site score of 1.086 and a D-score of 1.035 for hASIC1. We obtained a few promising hits and final potential hits from the virtual screening in hASIC1 that made interactions with the residues in the acidic pocket (E344, P347, F352, D351, E355 and E219). Based on these studies, the hits and scaffolds of potential therapeutic interest against various pathological conditions are associated with hASIC1a for future studies.  相似文献   

19.
20.
Crystal structure of the tandem phosphatase domains of RPTP LAR.   总被引:7,自引:0,他引:7  
H J Nam  F Poy  N X Krueger  H Saito  C A Frederick 《Cell》1999,97(4):449-457
Most receptor-like protein tyrosine phosphatases (RPTPs) contain two conserved phosphatase domains (D1 and D2) in their intracellular region. The carboxy-terminal D2 domain has little or no catalytic activity. The crystal structure of the tandem D1 and D2 domains of the human RPTP LAR revealed that the tertiary structures of the LAR D1 and D2 domains are very similar to each other, with the exception of conformational differences at two amino acid positions in the D2 domain. Site-directed mutational changes at these positions (Leu-1644-to-Tyr and Glu-1779-to-Asp) conferred a robust PTPase activity to the D2 domain. The catalytic sites of both domains are accessible, in contrast to the dimeric blocked orientation model previously suggested. The relative orientation of the LAR D1 and D2 domains, constrained by a short linker, is stabilized by extensive interdomain interactions, suggesting that this orientation might be favored in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号