首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Studies on the regulatory RNA MicF in Enterobacteriaceae reveal a pivotal role in gene regulation. Multiple target gene mRNAs were identified and, importantly, MicF RNA regulates the expression of the global regulatory gene lrp (Holmqvist et al., 2012; Corcoran et al., 2012). Thus MicF RNA is a central factor in a regulatory network that regulates bacterial cell physiology.  相似文献   

4.
5.
6.
In the complete annotated genome sequences of cyanobacterium Synechocystis sp. PCC 6803, one can find many putative genes for two-component response regulators that include a helix-turn-helix DNA-binding domain. The mRNA level of one of the putative genes, sll1330, was increased by glucose, especially in the presence of light. We successfully disrupted the sll1330 gene by targeted mutagenesis with a spectinomycin resistance cassette. Deltasll1330 could not grow well under light-activated heterotrophic growth conditions. Analyses of the expression of glycolytic genes revealed that the mRNA levels of five glycolytic genes, that is, glk (sll0593), pfkA (sll1196), fbaA (sll0018), gpmB (slr1124), and pk (sll0587), were decreased, and were regulated by Sll1330 under light and glucose-supplemented conditions. The Synechocystis sp. PCC 6803 genome each encodes two isozymes for these five glycolytic genes, suggesting that each of the two isozymes is regulated by Sll1330 at the mRNA level.  相似文献   

7.
8.
9.
The Crc protein is involved in the repression of several catabolic pathways for the assimilation of some sugars, nitrogenated compounds, and hydrocarbons in Pseudomonas putida and Pseudomonas aeruginosa when other preferred carbon sources are present in the culture medium (catabolic repression). Crc appears to be a component of a signal transduction pathway modulating carbon metabolism in pseudomonads, although its mode of action is unknown. To better understand the role of Crc, the proteome profile of two otherwise isogenic P. putida strains containing either a wild-type or an inactivated crc allele was compared. The results showed that Crc is involved in the catabolic repression of the hpd and hmgA genes from the homogentisate pathway, one of the central catabolic pathways for aromatic compounds that is used to assimilate intermediates derived from the oxidation of phenylalanine, tyrosine, and several aromatic hydrocarbons. This led us to analyze whether Crc also regulates the expression of the other central catabolic pathways for aromatic compounds present in P. putida. It was found that genes required to assimilate benzoate through the catechol pathway (benA and catBCA) and 4-OH-benzoate through the protocatechuate pathway (pobA and pcaHG) are also negatively modulated by Crc. However, the pathway for phenylacetate appeared to be unaffected by Crc. These results expand the influence of Crc to pathways used to assimilate several aromatic compounds, which highlights its importance as a master regulator of carbon metabolism in P. putida.  相似文献   

10.
Archaeal swimming motility is driven by archaella: rotary motors attached to long extracellular filaments. The structure of these motors, and particularly how they are anchored in the absence of a peptidoglycan cell wall, is unknown. Here, we use electron cryotomography to visualize the archaellar basal body in vivo in Thermococcus kodakaraensis KOD1. Compared to the homologous bacterial type IV pilus (T4P), we observe structural similarities as well as several unique features. While the position of the cytoplasmic ATPase appears conserved, it is not braced by linkages that extend upward through the cell envelope as in the T4P, but rather by cytoplasmic components that attach it to a large conical frustum up to 500 nm in diameter at its base. In addition to anchoring the lophotrichous bundle of archaella, the conical frustum associates with chemosensory arrays and ribosome‐excluding material and may function as a polar organizing center for the coccoid cells.  相似文献   

11.
12.
13.
14.
Extensive biochemical and structural analyses have been performed on the putative DNA repair proteins of hyperthermophilic archaea, in contrast to the few genetic analyses of the genes encoding these proteins. Accordingly, little is known about the repair pathways used by archaeal cells at high temperature. Here, we attempted to disrupt the genes encoding the potential repair proteins in the genome of the hyperthermophilic archaeon Thermococcus kodakaraensis. We succeeded in isolating null mutants of the hjc, hef, hjm, xpb, and xpd genes, but not the radA, rad50, mre11, herA, nurA, and xpg/fen1 genes. Phenotypic analyses of the gene-disrupted strains showed that the xpb and xpd null mutants are only slightly sensitive to ultraviolet (UV) irradiation, methyl methanesulfonate (MMS) and mitomycin C (MMC), as compared with the wild-type strain. The hjm null mutant showed sensitivity specifically to mitomycin C. On the other hand, the null mutants of the hjc gene lacked increasing sensitivity to any type of DNA damage. The Hef protein is particularly important for maintaining genome homeostasis, by functioning in the repair of a wide variety of DNA damage in T. kodakaraensis cells. Deletion of the entire hef gene or of the segments encoding either its nuclease or helicase domain produced similar phenotypes. The high sensitivity of the Δhef mutants to MMC suggests that Hef performs a critical function in the repair process of DNA interstrand cross-links. These damage-sensitivity profiles suggest that the archaeal DNA repair system has processes depending on repair-related proteins different from those of eukaryotic and bacterial DNA repair systems using homologous repair proteins analyzed here.  相似文献   

15.
By deletion across the promoter region of the xynF1 gene encoding the major Aspergillus oryzae xylanase, a 53-bp DNA fragment containing the XlnR binding sequence GGCTAAA as well as two similar sequences was shown to confer xylan inducibility on the gene. Complementary and genomic DNAs encoding the Aspergillus niger xlnR homologous gene, abbreviated AoxlnR, were cloned from A. oryzae and sequenced. AoXlnR comprised 971 amino acids with a zinc binuclear cluster domain at the N-terminal region and revealed 77.5% identity to the A. niger XlnR. Recombinant AoXlnR protein encompassing the zinc cluster region of the N-terminal part bound to both the consensus binding sequence and its cognate sequence, GGCTGA, with an approximately 10 times lower affinity. GGCTA/GA is more appropriate as the XlnR consensus binding sequence. Both sequences functioned independently in vivo in XlnR-mediating induction of the xynF1 gene. This was further confirmed by using an AoxlnR disruptant. Neither the xynF1 nor the xylA gene was expressed in the disruptant, suggesting that the xylan-inducible genes in A. oryzae may also be controlled in the same manner as described for A. niger.  相似文献   

16.
17.
18.
Shuttle vectors that replicate stably and express selectable phenotypes in both Thermococcus kodakaraensis and Escherichia coli have been constructed. Plasmid pTN1 from Thermococcus nautilis was ligated to the commercial vector pCR2.1-TOPO, and selectable markers were added so that T. kodakaraensis transformants could be selected by DeltatrpE complementation and/or mevinolin resistance. Based on Western blot measurements, shuttle vector expression of RpoL-HA, a hemagglutinin (HA) epitope-tagged subunit of T. kodakaraensis RNA polymerase (RNAP), was approximately 8-fold higher than chromosome expression. An idealized ribosome binding sequence (5'-AGGTGG) was incorporated for RpoL-HA expression, and changes to this sequence reduced expression. Changing the translation initiation codon from AUG to GUG did not reduce RpoL-HA expression, but replacing AUG with UUG dramatically reduced RpoL-HA synthesis. When functioning as translation initiation codons, AUG, GUG, and UUG all directed the incorporation of methionine as the N-terminal residue of RpoL-HA synthesized in T. kodakaraensis. Affinity purification confirmed that an HA- plus six-histidine-tagged RpoL subunit (RpoL-HA-his(6)) synthesized ectopically from a shuttle vector was assembled in vivo into RNAP holoenzymes that were active and could be purified directly from T. kodakaraensis cell lysates by Ni(2+) binding and imidazole elution.  相似文献   

19.
Branching enzyme (BE) catalyzes formation of the branch points in glycogen and amylopectin by cleavage of the alpha-1,4 linkage and its subsequent transfer to the alpha-1,6 position. We have identified a novel BE encoded by an uncharacterized open reading frame (TK1436) of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. TK1436 encodes a conserved protein showing similarity to members of glycoside hydrolase family 57 (GH-57 family). At the C terminus of the TK1436 protein, two copies of a helix-hairpin-helix (HhH) motif were found. TK1436 orthologs are distributed in archaea of the order Thermococcales, cyanobacteria, some actinobacteria, and a few other bacterial species. When recombinant TK1436 protein was incubated with amylose used as the substrate, a product peak was detected by high-performance anion-exchange chromatography, eluting more slowly than the substrate. Isoamylase treatment of the reaction mixture significantly increased the level of short-chain alpha-glucans, indicating that the reaction product contained many alpha-1,6 branching points. The TK1436 protein showed an optimal pH of 7.0, an optimal temperature of 70 degrees C, and thermostability up to 90 degrees C, as determined by the iodine-staining assay. These properties were the same when a protein devoid of HhH motifs (the TK1436DeltaH protein) was used. The average molecular weight of branched glucan after reaction with the TK1436DeltaH protein was over 100 times larger than that of the starting substrate. These results clearly indicate that TK1436 encodes a structurally novel BE belonging to the GH-57 family. Identification of an overlooked BE species provides new insights into glycogen biosynthesis in microorganisms.  相似文献   

20.
Shc proteins play a role in energy metabolism through interaction with the insulin receptor. The aim of this study was to determine whether Shc proteins influence liver glycolysis and gluconeogenesis under both fed and fasted states. Decreased glycolytic and increased gluconeogenic and transamination enzyme activities were observed in ShcKO versus WT mice. Levels of key regulatory metabolites, such as fructose-2,6-bisphosphate, matched the activity of metabolic pathways. Protein levels of glycolytic and gluconeogenic enzymes were not different. pAMPK protein levels increased with fasting and were higher in ShcKO versus WT mice. Therefore, Shc proteins play a role in shifting the metabolism from glucose oxidation to gluconeogenesis and lipid catabolism and should be considered as regulators of fuel selection. Fuel selection and utilization could play a critical role in healthy aging. Characterization of metabolic events in ShcKO mice would help to elucidate how metabolism is influenced by these proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号