首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The report of a putative schizophrenia susceptibility gene linked to markers in the chromosome 5q11-q13 region and subsequent failures of replication have provoked considerable controversy. We here report six Welsh families multiply affected with schizophrenia in which there is no evidence for linkage between a dominant-like schizophrenia gene and 5q11-q13 markers. It is argued that our new results together with a combined reanalysis of previous studies suggest that a schizophrenia susceptibility gene can be excluded from the 5q11-q13 region. The apparent disparities between published results are most likely to reflect a chance finding in the one positive study and probably should not be interpreted as resulting from true linkage heterogeneity.  相似文献   

2.
To identify genetic loci for autism-spectrum disorders, we have performed a two-stage genomewide scan in 38 Finnish families. The detailed clinical examination of all family members revealed infantile autism, but also Asperger syndrome (AS) and developmental dysphasia, in the same set of families. The most significant evidence for linkage was found on chromosome 3q25-27, with a maximum two-point LOD score of 4.31 (Z(max )(dom)) for D3S3037, using infantile autism and AS as an affection status. Six markers flanking over a 5-cM region on 3q gave Z(max dom) >3, and a maximum parametric multipoint LOD score (MLS) of 4.81 was obtained in the vicinity of D3S3715 and D3S3037. Association, linkage disequilibrium, and haplotype analyses provided some evidence for shared ancestor alleles on this chromosomal region among affected individuals, especially in the regional subisolate. Additional potential susceptibility loci with two-point LOD scores >2 were observed on chromosomes 1q21-22 and 7q. The region on 1q21-22 overlaps with the previously reported candidate region for infantile autism and schizophrenia, whereas the region on chromosome 7q provided evidence for linkage 58 cM distally from the previously described autism susceptibility locus (AUTS1).  相似文献   

3.
A number of recent linkage studies have suggested the presence of a schizophrenia susceptibility locus on chromosome 6p. We evaluated 28 genetic markers, spanning chromosome 6, for linkage to schizophrenia in 10 moderately large Canadian families of Celtic ancestry. Parametric analyses of these families under autosomal dominant and recessive models, using broad and narrow definitions of schizophrenia, produced no significant evidence for linkage. A sib-pair analysis using categorical disease definitions also failed to produce significant evidence for linkage. We then conducted a separate sibpair analysis using scores on positive-symptom (psychotic), negative-symptom (deficit), and general psychopathology-symptom scales as quantitative traits. With the positive symptom-scale scores, the marker D6S1960 produced P = 1.2 x 10(-5) under two-point and P = 5.4 x 10(-6) under multipoint analyses. Using simulation studies, we determined that these nominal P values correspond to empirical P values of .034 and .0085, respectively. These results suggest that a schizophrenia susceptibility locus on chromosome 6p may be related to the severity of psychotic symptoms. Assessment of behavioral quantitative traits may provide increased power over categorical phenotype assignment for detection of linkage in complex psychiatric disorders.  相似文献   

4.
Common variable immunodeficiency (CVID, OMIM 240500) and selective immunoglobulin A deficiency (IgAD) are the most frequent primary immunodeficiencies in humans. Of the cases with CVID/IgAD, 20%-25% are familial, but the only previous claims of linkage or association are to the HLA region on chromosome 6p. We report the results of a genome-wide scan in three multiplex families with CVID, IgAD, and dysgammaglobulinemia, where affection is inherited in an autosomal dominant pattern. Two of the families are consistent with linkage to the telomeric region of chromosome 5p, whereas the third is consistent with linkage to the HLA region. Using a locus heterogeneity model and a conservative penetrance model, we obtained a LOD score of 3.35 for the 5p region. We sequenced the exons of one promising candidate gene within this region (PDCD6, also known as ALG-2) but found no causative mutation.  相似文献   

5.

Background

In order to confirm a previous finding of linkage to alcoholism on chromosome 1 we have carried out a genetic linkage study.

Methods

DNA from eighteen families, densely affected by alcoholism, was used to genotype a set of polymorphic microsatellite markers at loci approximately 10 centimorgans apart spanning the short arm and part of the long arm of chromosome 1. Linkage analyses were performed using the classical lod score and a model-free method. Three different definitions of affection status were defined, these were 1. Heavy Drinking (HD) where affected subjects drank more than the Royal College of Psychiatrists recommended weekly amount. 2. The Research Diagnostic Criteria for alcoholism (RDCA) 3. Alcohol Dependence Syndrome (ADS) as defined by Edwards and Gross (1976) and now incorporated into ICD10 and DSMIV.

Results

Linkage analyses with the markers D1S1588, D1S2134, D1S1675 covering the cytogenetic region 1p22.1-11.2 all gave positive two point and multipoint lods with a maximum lod of 1.8 at D1S1588 (1p22.1) for the RDCA definition of alcoholism. Another lod of 1.8 was found with D1S1653 in the region 1q21.3-24.2 using the HD affection model.

Conclusion

These results both support the presence of linkage in the 1p22.1-11.2 region which was previously implicated by the USA Collaborative Study of the Genetics of Alcoholism (COGA) study and also suggest the presence of another susceptibility locus at 1q21.3-24.2.  相似文献   

6.
OBJECTIVES: A recent linkage analysis of 360 families at high risk for prostate cancer identified the q27-28 region on chromosome X as the potential location of a gene involved in prostate cancer susceptibility. Here we report on linkage analysis at this putative HPCX locus in an independent set of 186 prostate cancer families participating in the Prostate Cancer Genetic Research Study (PROGRESS). METHODS: DNA samples from these families were genotyped at 8 polymorphic markers spanning 14.3 cM of the HPCX region. RESULTS: Two-point parametric analysis of the total data set resulted in positive lod scores at only two markers, DXS984 and DXS1193, with scores of 0.628 at a recombination fraction (theta) of 0.36 and 0.012 at theta = 0.48, respectively. The stratification of pedigrees according to the assumed mode of transmission increased the evidence of linkage at DXS984 in 81 families with no evidence of male-to-male transmission (lod = 1.062 at theta = 0.28). CONCLUSIONS: Although this analysis did not show statistically significant evidence for the linkage of prostate cancer susceptibility to Xq27-28, the results are consistent with a small percentage of families being linked to this region. The analysis further highlights difficulties in replicating linkage results in an etiologically heterogeneous, complexly inherited disease.  相似文献   

7.
Previous linkage studies in schizophrenia have been discouraging due to inconsistent findings and weak signals. Genetic heterogeneity has been cited as one of the primary culprits for such inconsistencies. We have performed a 10-cM autosomal genomewide linkage scan for schizophrenia susceptibility regions, using 29 multiplex families of Ashkenazi Jewish descent. Although there is no evidence that the rate of schizophrenia among the Ashkenazim differs from that in other populations, we have focused on this population in hopes of reducing genetic heterogeneity among families and increasing the detectable effects of any particular locus. We pursued both allele-sharing and parametric linkage analyses as implemented in Genehunter, version 2.0. Our strongest signal was achieved at chromosome 10q22.3 (D10S1686), with a nonparametric linkage score (NPL) of 3.35 (genomewide empirical P=.035) and a dominant heterogeneity LOD score (HLOD) of 3.14. Six other regions gave NPL scores >2.00 (on chromosomes 1p32.2, 4q34.3, 6p21.31, 7p15.2, 15q11.2, and 21q21.2). Upon follow-up with an additional 23 markers in the chromosome 10q region, our peak NPL score increased to 4.27 (D10S1774; empirical P=.00002), with a 95% confidence interval of 12.2 Mb for the location of the trait locus (D10S1677 to D10S1753). We find these results encouraging for the study of schizophrenia among Ashkenazi families and suggest further linkage and association studies in this chromosome 10q region.  相似文献   

8.
Three prostate cancer susceptibility genes have been reported to be linked to different regions on chromosome 1: HPC1 at 1q24-25, PCAP at 1q42-43, and CAPB at 1p36. Replication studies analyzing each of these regions have yielded inconsistent results. To evaluate linkage across this chromosome systematically, we performed multipoint linkage analyses with 50 microsatellite markers spanning chromosome 1 in 159 hereditary prostate cancer families (HPC), including 79 families analyzed in the original report describing HPC1 linkage. The highest lod scores for the complete dataset of 159 families were observed at 1q24-25 at which the parametric lod score assuming heterogeneity (hlod) was 2.54 (P=0.0006) with an allele sharing lod of 2.34 (P=0.001) at marker D1S413, although only weak evidence was observed in the 80 families not previously analyzed for this region (hlod=0.44, P=0.14, and allele sharing lod=0.67, P=0.08). In the complete data set, the evidence for linkage across this region was very broad, with allele sharing lod scores greater than 0.5 extending approximately 100 cM from 1p13 to 1q32, possibly indicating the presence of multiple susceptibility genes. Elsewhere on chromosome 1, some evidence of linkage was observed at 1q42-43, with a peak allele sharing lod of 0.56 (P=0.11) and hlod of 0.24 (P=0.25) at D1S235. For analysis of the CAPB locus at 1p36, we focused on six HPC families in our collection with a history of primary brain cancer; four of these families had positive linkage results at 1p36, with a peak allele sharing lod of 0.61 (P=0.09) and hlod of 0.39 (P=0.16) at D1S407 in all six families. These results are consistent with the heterogeneous nature of hereditary prostate cancer, and the existence of multiple loci on chromosome 1 for this disease.  相似文献   

9.
Chromosome 22 contains two potential schizophrenia loci on chromosomal regions 22q11.2 and 22q12–13. In the present study we report results from linkage mapping of the gene coding for the human A2a adenosine receptor (AR), which is one of two receptors mediating central nervous system effects of adenosine. From seven CEPH (Centre d’Etude du Polymorphisme Humain) families, 120 individuals were typed utilizing an intragenic restriction fragment length polymorphism. Significant linkage was found with many markers on chromosome 22. A 10-cM 1000 :1 support interval between markers D22S301 and D22S300 is defined on the CHLC (Cooperative Human Linkage Center) framework map of chromosome 22. Localization of the A2aAR gene outside the CATCH 22 syndrome region on 22q11.2 is demonstrated by the observation of heterozygous individuals with defined 2-Mb deletions from this region. Thus, the A2aAR gene is not the schizophrenia susceptibility gene suspected in the CATCH 22 syndrome region on 22q11.2, but remains a candidate for a schizophrenia susceptibility gene on 22q12–13. Received: 10 August 1996  相似文献   

10.
Two independent lines of evidence support the localization of a schizophrenia susceptibility locus to the proximal long arm of chromosome 5. A partial trisomy of chromosome 5 (5q11.2-q13.3) cosegregates with the disorder in a Canadian family of Chinese descent, and DNA markers from proximal 5q cosegregate with schizophrenia (plus related disorders) in families of British and Icelandic descent. We constructed a human:hamster hybrid cell line (HHW 1064) whose only human complement is a chromosome 5 that is missing the trisomic region associated with schizophrenia. In combination with a "matched" cell hybrid (HHW 105) containing an intact chromosome 5, we physically mapped DNA markers relative to the trisomy. "Schizophrenia-linked" DNA markers p105-153Ra (D5S39) and p105-599Ha (D5S76) map within the trisomy and proximal to the 5q11.2 breakpoint, respectively. The hybrid cell lines HHW 105 and HHW 1064 together provide a means to identify and generate syntenic DNA markers to further investigate the location of a schizophrenia locus.  相似文献   

11.
We report on our initial genetic linkage studies of schizophrenia in the genetically isolated population of the Afrikaners from South Africa. A 10-cM genomewide scan was performed on 143 small families, 34 of which were informative for linkage. Using both nonparametric and parametric linkage analyses, we obtained evidence for a small number of disease loci on chromosomes 1, 9, and 13. These results suggest that few genes of substantial effect exist for schizophrenia in the Afrikaner population, consistent with our previous genealogical tracing studies. The locus on chromosome 1 reached genomewide significance levels (nonparametric LOD score of 3.30 at marker D1S1612, corresponding to an empirical P value of.012) and represents a novel susceptibility locus for schizophrenia. In addition to providing evidence for linkage for chromosome 1, we also identified a proband with a uniparental disomy (UPD) of the entire chromosome 1. This is the first time a UPD has been described in a patient with schizophrenia, lending further support to involvement of chromosome 1 in schizophrenia susceptibility in the Afrikaners.  相似文献   

12.
Treacher Collins syndrome (TCOF1) is an autosomal dominant disorder of craniofacial development, the features of which include conductive hearing loss and cleft palate. The TCOF1 locus has been localized to chromosome 5q32-33.2. In the present study we have used the combined techniques of genetic linkage analysis and fluorescence in situ hybridization (FISH) to more accurately define the TCOF1 critical region. Cosmids IG90 and SPARC, which map to distal 5q, encompass two and one hypervariable microsatellite markers, respectively. The heterozygosity values of these three markers range from .72 to .81. Twenty-two unrelated TCOF1 families have been analyzed for linkage to these markers. There is strong evidence demonstrating linkage to all three markers, the strongest support for positive linkage being provided by haplotyping those markers at the locus encompassed by the cosmid IG90 (Zmax = 19.65; theta = .010). FISH to metaphase chromosomes and interphase nuclei established that IG90 lies centromeric to SPARC. This information combined with the data generated by genetic linkage analysis demonstrated that the TCOF1 locus is closely flanked proximally by IG90 and distally by SPARC.  相似文献   

13.
XU, WEIZHEN, DANIELLE R REED, YUAN DING AND R ARLEN PRICE. Absence of linkage between human obesity and the mouse agouti homologous region (20q11.2) or other markers spanning chromosome 20q. Obes Res. Mutant alleles of the agouti gene cause obesity in the mouse and the homologous gene in humans has been mapped to chromosome 20q11.2. An allelic variant of the agouti gene could account for obesity in humans and we tested this hypothesis by genotyping 210 sibling pairs from 45 families segregating an obesity phenotype. Using sibling pair linear regression analysis, evidence for linkage between obesity and markers flanking the agouti locus and other markers spanning chromosome 20q was assessed. We found no correlation between identity-by-descent at these markers and obesity differences within pairs. In the mouse, obesity caused by mutations of the agouti gene develops later in life, so a subset of families with adult-onset obesity were also tested for linkage, with negative results. Although it is not possible to exclude alleles of the agouti gene as a contributor to obesity in humans, the absence of positive linkage in this study suggests that either the agouti gene has small effects or the allele frequency is low.  相似文献   

14.
Characterization of allelic variants at chromosome 15q14 in schizophrenia   总被引:5,自引:1,他引:4  
Evidence of genetic linkage for schizophrenia at chromosome 15q14 has been reported in nine independent studies, but the molecular variants responsible for transmission of genetic risk are unknown. National Institute of Mental Health Schizophrenia Genetics Initiative families were genotyped for single nucleotide polymorphisms (SNPs) and dinucleotide repeat markers in the 15q14 linkage region and analyzed based on the presence of particular alleles of the dinucleotide repeat marker D15S165 in the 15q14 region. Two alleles showed both familial transmission disequilibrium and population-wide association with schizophrenia. The two groups identified by these two D15S165 alleles differ in age of onset, number of hospitalizations and intensity of nicotine abuse, as well as in predominant ethnicity. Variations in the frequency of SNPs in CHRNA7 , the α-7-nicotinic acetylcholine receptor subunit gene at 15q14, were found in each group. Further sequencing in these two groups may yield more definitive identification of the molecular pathology.  相似文献   

15.
Evidence for genetic influences in epilepsy is strong, but reports identifying specific chromosomal origins of those influences conflict. One early study reported that human leukocyte antigen (HLA) markers were genetically linked to juvenile myoclonic epilepsy (JME); this was confirmed in a later study. Other reports did not find linkage to HLA markers. One found evidence of linkage to markers on chromosome 15, another to markers on chromosome 6, centromeric to HLA. We identified families through a patient with JME and genotyped markers throughout chromosome 6. Linkage analysis assuming equal male-female recombination probabilities showed evidence for linkage (LOD score 2.5), but at a high recombination fraction (theta), suggesting heterogeneity. When linkage analysis was redone to allow independent male-female thetas, the LOD score was significantly higher (4.2) at a male-female theta of.5,.01. Although the overall pattern of LOD scores with respect to male-female theta could not be explained solely by heterogeneity, the presence of heterogeneity and predominantly maternal inheritance of JME might explain it. By analyzing loci between HLA-DP and HLA-DR and stratifying the families on the basis of evidence for or against linkage, we were able to show evidence of heterogeneity within JME and to propose a marker associated with the linked form. These data also suggest that JME may be predominantly maternally inherited and that the HLA-linked form is more likely to occur in families of European origin.  相似文献   

16.
Genetic homogeneity of cystic fibrosis.   总被引:5,自引:1,他引:4       下载免费PDF全文
We studied large Amish/Mennonite/Hutterite kindreds that segregate cystic fibrosis (CF) for linkage between CF and the polymorphic DNA markers pJ3.11 and 7C22 located on chromosome 7. These inbred pedigrees consist of more than 300 members including 30 affected individuals. In these families, linkage between the CF locus and the chromosome 21 marker D21S5 and between CF and the marker at the met oncogene locus on chromosome 7 had been previously indicated. We now report linkage between CF and pJ3.11 (Z = 4.92, theta = 0) and between CF and 7C22 (Z = 3.42, theta = 0). Therefore, CF segregates in these large pedigrees in a manner consistent with data from smaller outbred families with respect to the markers on chromosome 7 closest to CF. These data are consistent with locus homogeneity for the defect causing CF in the populations that have been examined to date.  相似文献   

17.
A primary genetic map of the pericentromeric region of the human X chromosome   总被引:17,自引:0,他引:17  
We report a genetic linkage map of the pericentromeric region of the human X chromosome, extending from Xp11 to Xq13. Genetic analysis with five polymorphic markers, including centromeric alpha satellite DNA, spanned a distance of approximately 38 cM. Significant lod scores were obtained with linkage analysis in 26 families from the Centre d'Etude du Polymorphisme Humain, establishing estimates of genetic distances between these markers and across the centromere. Physical mapping experiments, using a panel of somatic cell hybrids segregating portions of the X chromosome due to translocations or deletions, are in agreement with the multilocus linkage analysis and indicate the order Xp11 . . . DXS7(L1.28)-TIMP- DXZ1(alpha satellite, cen)- DXS159(cpX73)-PGK1 . . . Xq13. The frequency of recombination in the two approximately 20-cM intervals flanking alpha satellite on either chromosome arm was roughly proportional to the estimated physical distance between markers; no evidence for a reduced crossover frequency was found in the intervals adjacent to the centromere. However, significant interfamilial variations in recombination rates were noted in this region. This primary map should be useful both as a foundation for a higher resolution centromere-based linkage map of the X chromosome and in the localization of genes to the pericentromeric region.  相似文献   

18.
A converging body of evidence implicates the gamma-amino butyric acid neurotransmitter system in the pathogenesis of schizophrenia. Recently, Lo et al. reported strong positive association between schizophrenia and GABRB2, demonstrated by single markers and haplotypes of five markers in introns of GABRB2, rs6556547, rs1816071, rs194072, rs252944, and rs187269. To validate this linkage disequilibrium report, we genotyped these five SNPs and additional rs1816072 in 352 Chinese Han family trios. Though we failed to detect any positive results in single markers, we did find a significant haplotypic association (global p = 0.00157-0.00588) which had not been identified in Lo's study. Our data indicated that the haplotype 'GACTCT' (p = 0.00215, frequency = 53.6%) was overtransmitted which suggests that GABRB2 is in linkage disequilibrium with schizophrenia in the Chinese Han population. The difference between the two studies may be due to the respective analytic power of the two designs. These two independent studies highlighting linkage disequilibrium support the potential involvement of GABRB2 or a nearby gene in the genetic etiology of schizophrenia.  相似文献   

19.
We performed a two-stage linkage scan involving 25 Chinese schizophrenia families, focusing on 10 target chromosomes which have already been the subject of considerable research. We initially genotyped 237 individuals with 186 markers, five candidate regions were then chosen for fine mapping and 49 additional markers were genotyped. In region 1q21-23, a maximum multipoint HLOD (HLOD=2.38) was observed between D1S484 and D1S2705, under the dominant model. In region 5q35, dominant HOLD of 2.36, 2.04, and 2.31 were found at marker D5S2030, D5S408, and D5S2006, respectively. Consistent multipoint results also supported linkage to this region under the same dominant model, with a highest HOLD of 2.47. Furthermore, single-point HLODs (HLOD=1.95 at D22S274, and HLOD=1.91 at D22S1157) were found in region 22q13, under the dominant model. Evidence from these three regions satisfied the criteria for suggestive linkage and should help in identifying schizophrenia susceptibility genes.  相似文献   

20.
Linkage of Familial Schizophrenia to Chromosome 13q32   总被引:7,自引:0,他引:7       下载免费PDF全文
Over the past 4 years, a number of investigators have reported findings suggestive of linkage to schizophrenia, with markers on chromosomes 13q32 and 8p21, with one recent study by Blouin et al. reporting significant linkage to these regions. As part of an ongoing genome scan, we evaluated microsatellite markers spanning chromosomes 8 and 13, for linkage to schizophrenia, in 21 extended Canadian families. Families were analyzed under autosomal dominant and recessive models, with broad and narrow definitions of schizophrenia. All models produced positive LOD scores with markers on 13q, with higher scores under the recessive models. The maximum three-point LOD scores were obtained under the recessive-broad model: 3.92 at recombination fraction (theta).1 with D13S793, under homogeneity, and 4.42 with alpha=.65 and straight theta=0 with D13S793, under heterogeneity. Positive LOD scores were also obtained, under all models, for markers on 8p. Although a maximum two-point LOD score of 3.49 was obtained under the dominant-narrow model with D8S136 at straight theta=0.1, multipoint analysis with closely flanking markers reduced the maximum LOD score in this region to 2. 13. These results provide independent significant evidence of linkage of a schizophrenia-susceptibility locus to markers on 13q32 and support the presence of a second susceptibility locus on 8p21.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号