首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutation of the essential Schizosaccharomyces pombe rad4/cut5 gene causes sensitivity to UV and ionising radiation at the permissive temperature whilst at the restrictive temperature cells fail to undergo DNA replication but still attempt mitosis owing to a defective S-phase checkpoint response. Many mutations in genes encoding DNA replication proteins also abolish checkpoint responses, possibly because the replication machinery is a pre-requisite for the generation of the signal. We demonstrate here that rad4/cut5 cells fail to arrest cell division when treated with the replication inhibitor hydroxyurea at the semi-permissive temperature 32° C, but retain essentially normal replicative capacity. This demonstrates that the replication and checkpoint function of the rad4/cut5 gene product can be separated and that the Rad4 protein differs from other replication proteins in being directly involved in generating the S-phase checkpoint signal. Furthermore, we have investigated the checkpoint response or rad4/cut5-deficient cells to γ-irradiation and UV-mimetic drugs. We find that, at the restrictive temperature, the rad4 /cut5 cells fail to delay mitosis in response to γ-irradiation whilst retaining a normal checkpoint response to the UV-mimetic drug 4-nitroquinoline-1-oxide. The lack of the γ-irradiation checkpoint is reminiscent of the deficiency associated with mutation of the human ATM locus, the causative deficiency of the heritable disorder ataxia telangiectasia. The implications of our results for the organisation of distinct checkpoint-response pathways in both fission yeast and mammalian cells are discussed. Moreover the data are consistent with a model in which the generation of the S-Phase checkpoint signal is DNA polymerase ɛ dependent. Received: 29 October 1996 / Accepted: 14 January 1997  相似文献   

2.
3.
In Saccharomyces cerevisiae, a DNA damage checkpoint in the S-phase is responsible for delaying DNA replication in response to genotoxic stress. This pathway is partially regulated by the checkpoint proteins Rad9, Rad17 and Rad24. Here, we describe a novel hypermutable phenotype for rad9Δ, rad17Δ and rad24Δ cells in response to a chronic 0.01% dose of the DNA alkylating agent MMS. We report that this hypermutability results from DNA damage introduction during the S-phase and is dependent on a functional translesion synthesis pathway. In addition, we performed a genetic screen for interactions with rad9Δ that confer sensitivity to 0.01% MMS. We report and quantify 25 genetic interactions with rad9Δ, many of which involve the post-replication repair machinery. From these data, we conclude that defects in S-phase checkpoint regulation lead to increased reliance on mutagenic translesion synthesis, and we describe a novel role for members of the S-phase DNA damage checkpoint in suppressing mutagenic post-replicative repair in response to sublethal MMS treatment.  相似文献   

4.
DNA replication and DNA repair are essential cell cycle steps ensuring correct transmission of the genome. The feedback replication control system links mitosis to completion of DNA replication and partially overlaps the radiation checkpoint control. Deletion of the chkl/rad27 gene abolishes the radiation but not the replication feedback control. Thermosensitive mutations in the DNA polymerase λ, cdc18 or cdc20 genes lead cells to arrest in the S phase of the cell cycle. We show that strains carrying any of these mutations enter lethal mitosis in the absence of the radiation checkpoint chk1/rad27. We interpret these data as an indication that an assembled replisome is essential for replication dependent control of mitosis and we propose that the arrest of the cell cycle in the thermosensitive mutants is due to the chk1 +/rad27 + pathway, which monitors directly DNA for signs of damage.  相似文献   

5.
The Mec1 and Rad53 protein kinases are essential for budding yeast cell viability and are also required to activate the S-phase checkpoint, which supports DNA replication under stress conditions. Whether these two functions are related to each other remains to be determined, and the nature of the replication stress-dependent lethality of mec1 and rad53 mutants is still unclear. We show here that a decrease in cyclin-dependent kinase 1 (Cdk1) activity alleviates the lethal effects of mec1 and rad53 mutations both in the absence and in the presence of replication stress, indicating that the execution of a certain Cdk1-mediated event(s) is detrimental in the absence of Mec1 and Rad53. This lethality involves Cdk1 functions in both G1 and mitosis. In fact, delaying either the G1/S transition or spindle elongation in mec1 and rad53 mutants allows their survival both after exposure to hydroxyurea and under unperturbed conditions. Altogether, our studies indicate that inappropriate entry into S phase and segregation of incompletely replicated chromosomes contribute to cell death when the S-phase checkpoint is not functional. Moreover, these findings suggest that the essential function of Mec1 and Rad53 is not necessarily separated from the function of these kinases in supporting DNA synthesis under stress conditions.  相似文献   

6.
DNA damaging agents are widely used in treatment of hematogical malignancies and solid tumors. While effects on hematopoietic stem cells have been characterized, less is known about the DNA damage response in human mesenchymal stem cells (hMSCs) in the bone marrow stroma, progenitors of osteoblasts, chondrocytes and adipocytes. To elucidate the response of undifferentiated hMSCs to γ-irradiation and cisplatin, key DNA damage responses have been characterised in hMSCs from normal adult donors. Cisplatin and γ-irradiation activated the DNA damage response in hMSCs, including induction of p53 and p21, and activation of PI3 kinase-related protein kinase (PIKK)-dependent phosphorylation of histone H2AX on serine 139, and replication protein A2 on serine4/serine8. Chemical inhibition of ATM or DNA-PK reduced DNA damage-induced phosphorylation of H2AX, indicating a role for both PIKKs in the response of hMSCs to DNA damage. Consistent with repair of DNA strand breaks, γ-H2AX staining decreased by 24 hours following gamma-irradiation. γ-irradiation arrested hMSCs in the G1 phase of the cell cycle, while cisplatin induced S-phase arrest, mediated in part by the ATR/Chk1 checkpoint pathway. In hMSCs isolated from a chronic lymphocytic leukemia (CLL) patient, p53 and p21 were induced by cisplatin and γ-irradiation, while RPA2 was phosphorylated on serine4/8 in particular following cisplatin. Compared to peripheral blood lymphocytes or the leukemia cell line K562, both normal hMSCs and CLL-derived hMSCs were more resistant to cisplatin and γ-irradiation. These results provide insights into key pathways mediating the response of bone marrow-derived hMSCs to DNA damaging agents used in cancer treatment.  相似文献   

7.
The Saccharomyces cerevisiae gene RHC21 is a homologue of the fission yeast rad21 +gene, which affects the sensitivity of cells to γ-irradiation and is essential for cell growth in S. pombe. Disruption of the RHC21 gene showed that it is also essential in S. cerevisiae. To examine its function in cell growth further, we have isolated temperature-sensitive mutants for the RHC21 gene and characterized one of them, termed rhc21-sk16. When this mutant was incubated at 36°?C, the percentage of large-budded cells was increased. Most of the large-budded cells had aberrant nuclear structures, such as unequally extended nuclear DNA with incompletely elongated spindles across the mother-daughter neck or only in a mother cell. Furthermore, a circular minichromosome is more unstable in the mutant than in the wild-type, even at 25°?C. Flow cytometry showed that the bulk of DNA replication takes place normally at the restrictive temperature in the mutant. These results indicated that the RHC21 gene is required for proper segregation of the chromosomes. In addition, we found that the mutant is sensitive not only to UV radiation and γ-rays but also to the antimicrotubule agent nocodazole at 25°?C. This suggests that the RHC21 gene is involved in the microtubule function. We discuss how the RHC21 gene product may be involved in chromosome segregation and microtubule function.  相似文献   

8.
The fission yeast minichromosome loss mutant mcl1-1 was identified in a screen for mutants defective in chromosome segregation. Missegregation of the chromosomes in mcl1-1 mutant cells results from decreased centromeric cohesion between sister chromatids. mcl1+ encodes a β-transducin-like protein with similarity to a family of eukaryotic proteins that includes Ctf4p from Saccharomyces cerevisiae, sepB from Aspergillus nidulans, and AND-1 from humans. The previously identified fungal members of this protein family also have chromosome segregation defects, but they primarily affect DNA metabolism. Chromosomes from mcl1-1 cells were heterogeneous in size or structure on pulsed-field electrophoresis gels and had elongated heterogeneous telomeres. mcl1-1 was lethal in combination with the DNA checkpoint mutations rad3Δ and rad26Δ, demonstrating that loss of Mcl1p function leads to DNA damage. mcl1-1 showed an acute sensitivity to DNA damage that affects S-phase progression. It interacts genetically with replication components and causes an S-phase delay when overexpressed. We propose that Mcl1p, like Ctf4p, has a role in regulating DNA replication complexes.  相似文献   

9.
    
DNA replication and DNA repair are essential cell cycle steps ensuring correct transmission of the genome. The feedback replication control system links mitosis to completion of DNA replication and partially overlaps the radiation checkpoint control. Deletion of the chkl/rad27 gene abolishes the radiation but not the replication feedback control. Thermosensitive mutations in the DNA polymerase , cdc18 or cdc20 genes lead cells to arrest in the S phase of the cell cycle. We show that strains carrying any of these mutations enter lethal mitosis in the absence of the radiation checkpoint chk1/rad27. We interpret these data as an indication that an assembled replisome is essential for replication dependent control of mitosis and we propose that the arrest of the cell cycle in the thermosensitive mutants is due to the chk1 +/rad27 + pathway, which monitors directly DNA for signs of damage.  相似文献   

10.
Mutator Phenotype Induced by Aberrant Replication   总被引:7,自引:4,他引:3       下载免费PDF全文
We have identified thermosensitive mutants of five Schizosaccharomyces pombe replication proteins that have a mutator phenotype at their semipermissive temperatures. Allele-specific mutants of DNA polymerase δ (polδ) and mutants of Polα, two Polδ subunits, and ligase exhibited increased rates of deletion of sequences flanked by short direct repeats. Deletion of rad2+, which encodes a nuclease involved in processing Okazaki fragments, caused an increased rate of duplication of sequences flanked by short direct repeats. The deletion mutation rates of all the thermosensitive replication mutators decreased in a rad2Δ background, suggesting that deletion formation requires Rad2 function. The duplication mutation rate of rad2Δ was also reduced in a thermosensitive polymerase background, but not in a ligase mutator background, which suggests that formation of duplication mutations requires normal DNA polymerization. Thus, although the deletion and duplication mutator phenotypes are distinct, their mutational mechanisms are interdependent. The deletion and duplication replication mutators all exhibited decreased viability in combination with deletion of a checkpoint Rad protein, Rad26. Interestingly, deletion of Cds1, a protein kinase functioning in a checkpoint Rad-mediated reversible S-phase arrest pathway, decreased the viability and exacerbated the mutation rate only in the thermosensitive deletion replication mutators but had no effect on rad2Δ. These findings suggest that aberrant replication caused by allele-specific mutations of these replication proteins can accumulate potentially mutagenic DNA structures. The checkpoint Rad-mediated pathways monitor and signal the aberrant replication in both the deletion and duplication mutators, while Cds1 mediates recovery from aberrant replication and prevents formation of deletion mutations specifically in the thermosensitive deletion replication mutators.  相似文献   

11.
The Mre11-Rad50-Nbs1 (MRN) complex has many biological functions: processing of double-strand breaks in meiosis, homologous recombination, telomere maintenance, S-phase checkpoint, and genome stability during replication. In the S-phase DNA damage checkpoint, MRN acts both in activation of checkpoint signaling and downstream of the checkpoint kinases to slow DNA replication. Mechanistically, MRN, along with its cofactor Ctp1, is involved in 5′ resection to create single-stranded DNA that is required for both signaling and homologous recombination. However, it is unclear whether resection is essential for all of the cellular functions of MRN. To dissect the various roles of MRN, we performed a structure–function analysis of nuclease dead alleles and potential separation-of-function alleles analogous to those found in the human disease ataxia telangiectasia-like disorder, which is caused by mutations in Mre11. We find that several alleles of rad32 (the fission yeast homologue of mre11), along with ctp1Δ, are defective in double-strand break repair and most other functions of the complex, but they maintain an intact S phase DNA damage checkpoint. Thus, the MRN S-phase checkpoint role is separate from its Ctp1- and resection-dependent role in double-strand break repair. This observation leads us to conclude that other functions of MRN, possibly its role in replication fork metabolism, are required for S-phase DNA damage checkpoint function.  相似文献   

12.
The human BLM gene is a member of the Escherichia coli recQ helicase family, which includes the Saccharomyces cerevisiae SGS1 and human WRN genes. Defects in BLM are responsible for the human disease Bloom’s syndrome, which is characterized in part by genomic instability and a high incidence of cancer. Here we describe the cloning of rad12+, which is the fission yeast homolog of BLM and is identical to the recently reported rhq1+ gene. We showed that rad12 null cells are sensitive to DNA damage induced by UV light and γ radiation, as well as to the DNA synthesis inhibitor hydroxyurea. Overexpression of the wild-type rad12+ gene also leads to sensitivity to these agents and to defects associated with the loss of the S-phase and G2-phase checkpoint control. We showed genetically and biochemically that rad12+ acts upstream from rad9+, one of the fission yeast G2 checkpoint control genes, in regulating exit from the S-phase checkpoint. The physical chromosome segregation defects seen in rad12 null cells combined with the checkpoint regulation defect seen in the rad12+ overproducer implicate rad12+ as a key coupler of chromosomal integrity with cell cycle progression.  相似文献   

13.
Kiely J  Haase SB  Russell P  Leatherwood J 《Genetics》2000,154(2):599-607
orp2 is an essential gene of the fission yeast Schizosaccharomyces pombe with 22% identity to budding yeast ORC2. We isolated temperature-sensitive alleles of orp2 using a novel plasmid shuffle based on selection against thymidine kinase. Cells bearing the temperature-sensitive allele orp2-2 fail to complete DNA replication at a restrictive temperature and undergo cell cycle arrest. Cell cycle arrest depends on the checkpoint genes rad1 and rad3. Even when checkpoint functions are wild type, the orp2-2 mutation causes high rates of chromosome and plasmid loss. These phenotypes support the idea that Orp2 is a replication initiation factor. Selective spore germination allowed analysis of orp2 deletion mutants. These experiments showed that in the absence of orp2 function, cells proceed into mitosis despite a lack of DNA replication. This suggests either that the Orp2 protein is a part of the checkpoint machinery or more likely that DNA replication initiation is required to induce the replication checkpoint signal.  相似文献   

14.
In most eukaryotic cells, DNA replication is confined to S phase of the cell cycle [1]. During this interval, S-phase checkpoint controls restrain mitosis until replication is complete [2]. In budding yeast, the anaphase inhibitor Pds1p has been associated with the checkpoint arrest of mitosis when DNA is damaged or when mitotic spindles have formed aberrantly [3] [4], but not when DNA replication is blocked with hydroxyurea (HU). Previous studies have implicated the protein kinase Mec1p in S-phase checkpoint control [5]. Unlike mec1 mutants, pds1 mutants efficiently inhibit anaphase when replication is blocked. This does not, however, exclude an essential S-phase checkpoint function of Pds1 beyond the early S-phase arrest point of a HU block. Here, we show that Pds1p is an essential component of a previously unsuspected checkpoint control system that couples the completion of S phase with mitosis. Further, the S-phase checkpoint comprises at least two distinct pathways. A Mec1p-dependent pathway operates early in S phase, but a Pds1p-dependent pathway becomes essential part way through S phase.  相似文献   

15.
The cytotoxicity of camptothecin (CPT) is S phase specific and is associated with an inhibition of DNA replication. The relationship between CPT-induced inhibition of DNA replication and CPT cytotoxicity remains unclear. We previously reported that the CPT-induced inhibition reflects an activated S-phase (S) checkpoint response and that this response is mainly regulated by ATR/CHK1 pathway. In this study, by comparing A1-5 and B4, the two transformed rat embryo fibroblasts cell lines, we showed that with higher CHK1 expression, A1-5 cells had a stronger S checkpoint response and were more resistant to CPT-treatment. The data suggested that over-activated CHK1 in CPT-treated A1-5 cells regulated the strong S checkpoint response through the CDC25A/CDK2 pathway. When the CHK-1 regulated strong S checkpoint response was abolished, A1-5 cells became much more sensitive to CPT-induced killing. These data indicated that CHK1 regulated S checkpoint response protected cells from CPT-induced killing.

Key Words:

CHK1, S-phase checkpoint, Camptothecin, DNA damage  相似文献   

16.
Cisplatin (CDDP) has been used as a DNA cross-linking agent to evaluate whether there is a specific cell cycle checkpoint response to such damage in Saccharomyces cerevisiae (S. cerevisiae). Fluorescent-activated cell sorting (FACS) analysis showed only a G2/M checkpoint, normal exit from G1 and progression through S-phase following alpha-factor arrest and CDDP treatment. Of the checkpoint mutants tested, rad9, rad17 and rad24, did not show increased sensitivity to CDDP compared to isogenic wild-type cells. However, other checkpoint mutants tested (mec1, mec3 and rad53) showed increased sensitivity to CDDP, as did controls with a defect in excision repair (rad1 and rad14) or a defect in recombination (rad51 and rad52). Thus, by survival and cell cycle kinetics, it appears that DNA cross-links do not inhibit entry into S-phase or slow DNA replication and that replication continues after cisplatin treatment in yeast.  相似文献   

17.
18.
The Schizosaccharomyces pombe rad1+ gene is involved in the G2 DNA damage cell-cycle checkpoint and in coupling mitosis to completed DNA replication. It is also required for viability when the cdc17 (DNA ligase) or wee1 proteins are inactivated. We have introduced mutations into the coding regions of rad1+ by site-directed mutagenesis. The effects of these mutations on the DNA damage and DNA replication checkpoints have been analyzed, as well as their associated phenotypes in a cdc17-K42 or a wee1-50 background. For all alleles, the resistance to radiation or hydroxyurea correlates well with the degree of functioning of checkpoint pathways activated by these treatments. One mutation, rad1-S3, completely abolishes the DNA replication checkpoint while partially retaining the DNA damage checkpoint. As single mutants, the rad1-S1, rad1-S2, rad1-S5, and rad1-S6 alleles have a wild-type phenotype with respect to radiation sensitivity and checkpoint functions; however, like the rad1 null allele, the rad1-S1 and rad1-S2 alleles exhibit synthetic lethality at the restrictive temperature with the cdc17-K42 or the wee1-50 mutation. The rad1-S5 and rad1-S6 alleles allow growth at higher temperatures in a cdc17-K42 or wee1-50 background than does wild-type rad1+, and thus behave like "superalleles." In most cases both chromosomal and multi-copy episomal mutant alleles have been investigated, and the agreement between these two states is very good. We provide evidence that the functions of rad1 can be dissociated into three groups by specific mutations. Models for the action of these rad1 alleles are discussed. In addition, a putative negative regulatory domain of rad1 is identified.  相似文献   

19.
We have isolated a mutant in fission yeast, in which mitosis is uncoupled from completion of DNA replication when DNA synthesis is impaired by a thermosensitive mutation in the gene encoding the catalytic subunit of DNA polymerase δ. By functional complementation, we cloned the wild-type gene and identified it as the recently cloned checkpoint gene crb2 + /rhp9 + . This gene has been implicated in the DNA damage checkpoint and acts in the Chk1 pathway. Unlike the deleted strain dcrb2, cells bearing the crb2-1 allele were not affected in the DNA repair checkpoint after UV or MMS treatment at 30°?C, but were defective in this checkpoint function when treated with MMS at 37°?C. We analysed the involvement of Crb2 in the S/M checkpoint by blocking DNA replication with hydroxyurea, by using S phase cdc mutants, or by overexpression of the mutant PCNA L68S. Both crb2 mutants were unable to maintain the S/M checkpoint at 37°?C. Furthermore, the crb2 + gene was required, together with the cds1 + gene, for the S/M checkpoint at 30°?C. Finally, both the crb2 deletion and the crb2-1 allele induced a rapid death phenotype in the polδts3 background at both 30°?C and 37°?C. The rapid death phenotype was independent of the checkpoint functions.  相似文献   

20.
The fission yeast Hsk1p kinase is an essential activator of DNA replication. Here we report the isolation and characterization of a novel mutant allele of the gene. Consistent with its role in the initiation of DNA synthesis, hsk1(ts) genetically interacts with several S-phase mutants. At the restrictive temperature, hsk1(ts) cells suffer abnormal S phase and loss of nuclear integrity and are sensitive to both DNA-damaging agents and replication arrest. Interestingly, hsk1(ts) mutants released to the restrictive temperature after early S-phase arrest in hydroxyurea (HU) are able to complete bulk DNA synthesis but they nevertheless undergo an abnormal mitosis. These findings indicate a second role for hsk1 subsequent to HU arrest. Consistent with a later S-phase role, hsk1(ts) is synthetically lethal with Deltarqh1 (RecQ helicase) or rad21ts (cohesin) mutants and suppressed by Deltacds1 (RAD53 kinase) mutants. We demonstrate that Hsk1p undergoes Cds1p-dependent phosphorylation in response to HU and that it is a direct substrate of purified Cds1p kinase in vitro. These results indicate that the Hsk1p kinase is a potential target of Cds1p regulation and that its activity is required after replication initiation for normal mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号